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Preface

These notes are for STA 4211 at the University of Florida. All examples are based on published articles, though
most data has been generated to match summary statistics.
library(tidyverse)

## Warning: package 'tidyverse' was built under R version 4.1.3

## -- Attaching packages ------------------------------------- tidyverse 1.3.2 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.8 v dplyr 1.0.10
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1

## Warning: package 'tibble' was built under R version 4.1.3

## Warning: package 'tidyr' was built under R version 4.1.2

## Warning: package 'readr' was built under R version 4.1.2

## Warning: package 'purrr' was built under R version 4.1.2

## Warning: package 'dplyr' was built under R version 4.1.3

## Warning: package 'forcats' was built under R version 4.1.2

## -- Conflicts ---------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
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Chapter 1

Introduction

In this chapter, we will introduce terminology and briefly describe experimental designs used in a wide variety of
research fields.

1.1 Terminology
Studies involve making observations on individual units under various conditions. When units have been randomly
assigned to a treatment condition, they may be referred to as Experimental Units. When units have been sampled
and observed from an existing population they may be referred to as Observational Units. In some studies, larger
blocks of units may be randomized to a treatment, with subunits being observed (as when classrooms are randomized
to various conditions), in this setting the measured units (e.g. students) may be referred to as Measurement Units.

• Experimental Studies - Observational units are assigned at random to treatments/conditions
– Experimental Factors - Conditions with two or more levels that are assigned (at random) to units.

Many experiments include multiple factors and treatments are the combinations of factor levels.
• Observational Studies - Observational units are sampled from various populations/subpopulations

– Observational Factors - Set of populations/subpopulations observed in a study
• Mixed Studies - Studies that have both experimental and observational factors (not to be confused with

Mixed Effects Designs)

Example 1.1 - Effect of Container Size on Food Intake

A study was conducted to compare three conditions on food intake in students [Marchiori et al., 2012]. A sample of
88 subjects was obtained, and randomly assigned to one of 3 conditions involving bowl size and portion of M&Ms
while watching a television program: 1) Medium portion size/Small container (𝑛1 = 30), 2) Medium portion/Large
container (𝑛2 = 29), and 3) Large portion/Large container (𝑛3 = 29). Researchers measured the food intake among
the students. Note that this is an Experimental Study, as Subjects were assigned at random to treatments.

∇

Example 1.2 - Waste in the Mediterranean Sea

A study measured the amounts of Natural and Artificial floating debris at samples of transects at 14 locations in
the Mediterranean Sea [Suaria and Aliani, 2014]. The researchers wished to compare the amounts of debris of each
type among the locations. Note this is an Observational Study, as transects were sampled within the selected
locations.

∇

Example 1.3 - Quilting Layers in Body Armour

7



8 CHAPTER 1. INTRODUCTION

A study was conducted to determine whether the number of quilting layers improved the fragment protective
performance of body armour [Carr et al., 2012]. The researchers sampled 36 specimens of each number of layers
(1,2,3, and 5), assigning 12 at random to each of 3 bullet impacts (slow, fast, and edge). The energy absorbed by
each specimen was measured. Note this is a Mixed Study, as Layers is Observational, and Impact is Experimental.

∇

1.2 Basics of Controlled Experiments
In this section we describe some aspects and terminology of controlled experiments and give brief examples of them.

• Explanatory Factors – Conditions (with 2 or more levels) that are assigned to units.
• Crossed Factors – Factors with levels that are the same within levels of the other factor(s)
• Nested Factors – Factors with levels that are different within levels of the other factor(s)
• Treatments – Combinations of factor levels given to units
• Experimental Units – Units used in the study, which are subject to randomization to treatments.
• Randomization Process - Use of random number generator to assign units to treatments
• Response(s) - Outcome measurement(s) obtained from treated units

Example 1.4 - Reading Times on 3 Electronic Readers at 4 Illumination Levels

An experiment was conducted to measure reading times on 3 e-reader devices at 4 illumination levels [Chang et al.,
2013]. A sample of 60 subjects were randomly assigned so that 5 received each of 12 treatments (combinations of
3 e-reader models and 4 illumination levels). The experiment was Crossed in the sense that each e-reader model
was set at the same 4 illumination levels (200, 500, 1000, 1500Lx). The time to complete a reading task was the
measured response.

∇

Example 1.5 - Combability of Hair for Two Shampoo Formulations

An experiment was conducted to compare two shampoo formulations with respect to combability of hair [Garcia
and Diaz, 1976]. A sample of 16 hair swatches were created and randomly assigned, such that 8 received shampoo
A, and 8 received shampoo B. Each swatch was washed 5 times, and the combability was measured. The experiment
was Nested, as the swatches receiving shampoo A were different from the swatches receiving shampoo B. Note that
the swatches are the experimental units, as they are randomly assigned to treatments (shampoos). The replicates
measured are the measurement units.

∇

1.3 Completely Randomized Design (CRD)
In the Completely Randomized Design, experimental units are randomly assigned to treatments, and responses
are recorded on the units after treatments are applied. We will refer to the number of treatments as 𝑟, with the
number of replicates for the 𝑖𝑡ℎ treatment being 𝑛𝑖. When all treatments have the same number of replicates
(𝑛1 = … = 𝑛𝑟 = 𝑛), the design is said to be balanced. The total sample size across all treatments will be labelled
𝑛𝑇 = 𝑛1 + ⋯ + 𝑛𝑟. When the experiment is balanced, 𝑛𝑇 = 𝑟𝑛.

The statistical model for the One-Way Analysis of Variance based on the Completely Randomized Design is as
follows, where the subscript 𝑖 represents the treatment and 𝑗 represents the replicate within the treatment.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

Example 1.6 - Anthocyanin Extractability in Cabernet Franc Grapes

In a study conducted by researchers in France and Italy, Cabernet Franc grapes were harvested at 𝑟 = 6 different
classes of sugar content (176.5, 192.6, 209.3, 225.0, 242.1, and 258.5 grams/litre). While these are numeric levels,
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the authors treated sugar content as a factor variable. There were 𝑛 = 15 berries within each treatment for a
total of 𝑛𝑇 = 6(15) = 90 berries included in the study. Various physical, textural, and anthocyanin extractability
measurements were made. We will focus on extraction yield of anthocyanin, which was labelled in the paper as
EA%, [Zouid et al., 2013]. A plot of the data is given in Figure 1.1.

## [1] "sugar" "anthExt"

90.0
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95.0
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factor(sugar)
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Figure 1.1: Berry texture scores by sugar content

∇

1.4 Randomized Complete Block Design (RCBD or RBD)
In the Randomized Complete Block Design (which is often simply referred to as the Randomized Block
Design), experimental units are blocked into “groups” of homogeneous units. Within each block, units are randomly
assigned to the treatments, with each treatment being applied to one unit within each block. We will continue using
𝑟 as the number of treatments and will use 𝑏 for the number of blocks. The goal is to remove the heterogeneity across
blocks to obtain more precise comparisons among treatments, when possible. In many instances, blocks will be the
same individual that will receive each treatment when this is feasible. Blocks are typically treated as a random
factor, in the sense that results are to be generalized across a population of such blocks or individuals. When
the blocks are individuals who receive each treatment, this design is often referred to as a Repeated Measures
Design or a Crossover Design.

The statistical model can be written as follows where the subscript 𝑖 represents the treatment and 𝑗 represents the
block.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑏 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

Example 1.7 - Comparison of 4 Treadmill Models for User Satisfaction
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Researchers in Italy and New Zealand conducted an experiment to compare 𝑟 = 4 treadmill models (Life Fitness,
Precor, Matrix, Technogym) among 𝑏 = 57 trained runners [Carraro et al., 2019]. Each runner rated each treadmill
model in terms of seven characteristics: Running Surface, Controls, Stability and Safety, Physical Interaction,
Console Readability, Aesthetic Appeal, and Enjoyment of Use. The responses were measured on visual Analogue
Scales (VAS) from very unpleasant to very pleasant. We will consider Enjoyment of Use (enjoyUse) in Figure 1.2
and Figure 1.3.

## trdMill subject runSurf controls stblSfty physIntrct consRead aesthApp
## 1 1 1 8.5473 6.2358 5.0478 6.8996 6.2044 4.5798
## 2 1 2 7.4018 7.2364 6.0081 2.5457 7.1048 6.4683
## 3 1 3 5.1259 8.6687 8.8688 6.4669 4.6827 9.3432
## 4 1 4 4.8110 4.8361 9.5405 5.1269 6.7633 6.4748
## 5 1 5 10.1249 4.2111 9.5724 6.4366 6.6144 7.0896
## 6 1 6 5.1529 6.5803 8.0583 5.8038 3.7302 6.3881
## enjoyUse
## 1 8.9383
## 2 4.8944
## 3 7.9970
## 4 7.4555
## 5 3.7710
## 6 5.2169
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Figure 1.2: Enjoyment of use of 4 treadmills for 57 runners

∇

1.5 Overview of Some Standard Experimental Designs
In this section we list some commonly used experimental designs as well as some examples of them.
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Figure 1.3: Boxplots of Enjoyment of use of 4 treadmills for 57 runners

• Completely Randomized Design (CRD) – Units randomized to treatments with no restrictions on ran-
domization process

• Factorial Experiments – CRD with two or more crossed factors. Treatment effects are made up of main
factor effects and interaction effects

• Randomized Complete Block Design (RCBD) – Units are grouped into blocks. Treatments are randomly
assigned to units within blocks

• Nested Designs – Levels of Factor B differ across levels of Factor A
• Crossed/Nested Designs – Designs with both crossed and nested factors
• Repeated Measures Designs – Each unit is measured multiple times

– RBD - Each subject receives each treatment once
– CRD Each subject receives only one treatment, but is measured at multiple time points

• Split-Plot Designs – Two (or more) sizes of experimental units due to randomization restrictions for factors
• Incomplete Block Designs – Block Designs with block sizes smaller than the number of treatments
• 2-Level Factorial Experiments – Several (possibly many) factors, each at 2 levels (low/high). With k

factors, there will be 2𝑘 treatments
• 2-Level Fractional Factorial Designs – Experiments with only a subset of all 2𝑘 treatments to reduce

cost, but still obtain estimates of main effects and lower-order interactions
• Response Surface Designs – Designs used to fit polynomial regression models to optimize responses for

numeric factors
• Mixture Designs – Designs used to fit models to optimize responses among mixtures (components sum to

1) of numeric factors.

Example 1.8 - Advertising Messaging Strategy and Attitude to the Firm

An experiment was conducted to compare 4 advertisement conditions [Hyllegard et al., 2009]. A sample of 425
students were selected and randomly assigned to one of 4 conditions. The ads were:

• Ad1: Firm as “pioneer of industry standards in social responsibility” and US location
• Ad2: Young woman partially clothed in shower, winner of wet t-shirt contest
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• Ad3: Female co-founder of porn mag for women, in jogging shorts/hoodie
• Ad4: Female and male partially clothed couple in bed, faces cropped out of image. Female on top of male.

The response was an overall attitude toward the firm based on a series of rating items. Note that each student was
exposed to only one condition. Condition 1: Ad1 Only, Condition 2: Ad1&Ad2, Condition 3: Ad1&Ad3, Condition
4: Ad1&Ad4.

∇

Example 1.9 - Energy Efficiency of 4 Dryer Types and 3 Clothing Categories

A study compared combinations of 4 dryer types and 3 clothing categories on energy efficiency [To et al., 2007]. The
dryer types were (1=Electric Dryer, 2=Bi-directional Electric dryer, 3=Town Gas-Fired Dryer, 4=LPG-Fired dryer)
and the clothing categories were (1=Towels, 2=Jeans, 3=Thermal Clothing). The response was Energy Efficiency
(kWh/kg), and there were 3 replications per treatment.

∇

Example 1.10 - Comparison of 6 Chopstick Lengths on Feeding Efficiency

A study compared 6 chopstick lengths (180, 210, 240, 270, 300, 330mm) in terms of the numbers of peanuts picked
up and placed in a cup [Hsu and Wu, 1991]. There were 31 subjects, and each subject used each chopstick. The
subjects act as blocks. This can also be treated as a Repeated Measures Design, where each subject receives each
treatment.

∇

Example 1.11 - Caffeine Content of Coke and Pepsi Products at Various Restaurants

A study compared Coca-Cola and Pepsi-Cola at various restaurants with respect to caffeine content [Grand and
Bell, 1997]. There were 5 restaurants that sold Coca-Cola brand (1=Red Lobster, 2=Applebees, 3=McDs, 4=BK,
5=Hardees) and 7 that sold Pepsi products (6=Arbys, 7=Subway2, 8=Subway1, 9=KFC, 10=PizzaHut, 11=Taco-
Bell, 12=Wendys). Each restaurant sold both sugar and diet formulations. There were 10 measurements per
restaurant per formulation. Note that restaurant is nested within brand, but crossed with formulation.

∇

Example 1.12 - Zylkene v Placebo for Cats with Anxiety Over Time

A study compared the effects of Zylkene v Placebo in cats with anxiety [Beata et al., 2007]. A sample of 34 cats
with anxiety was obtained, and randomized to receive either Zylkene or Placebo (17 cats per treatment). Each
cat was observed on a global anxiety scale at each of 5 time points. The goal is to compare the treatments and
determine whether time effects occur, and whether the treatment effects differ over time.

∇

Example 1.13 - Effects of Seeding Rates of Hardinggrass and Ryegrass on Growth

An experiment was conducted to measure the effects of 4 rates of seeding of the perennial hardinggrass and 6 rates
for ryegrass [Schultz and Biswell, 1952]. Hardinggrass was measured on whole (larger) plots, with levels of 1,2,3,4
pounds per acre) while ryegrass which was measured on subplots within the whole plots with levels of 0,3,6,9,12,15
pounds per acre). The experiment was conducted in 3 blocks (replicates). The response measured was the density of
hardinggrass. Note that the experimental units for levels of hardinggrass are larger than those for levels of ryegrass.

∇

Example 1.14 - Consumer Liking of 16 Dark Chocolate Formulations
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An experiment was conducted to compare computer liking among 16 dark chocolate formulations [Hinneh et al.,
2020]. As consumers have quite different tastes and preferences, they are treated as blocks, and there were 16 raters.
However, due to fatigue, the researchers had each consumer rate only 6 dark chocolate formulations. In a balanced
experiment, each formulation would be rated by the same numbers of consumers, and each pair of formulations
would be tasted by equal numbers of consumers. In this case, each chocolate was rated by 6 raters, and each pair
of chocolates were rated by 2 raters. This represents a Balanced Incomplete Block Design.

∇

Example 1.15 - Using Seaweed to Extract Phenol from Aqueous Solution

An experiment was conducted to study the effects of 3 factors (pH (3, 9), adsorbent dosage (1, 10 g/L), and
temperature (30, 60C)) on phenol extraction efficiency (%) from an aqueous solution [Ranthinam et al., 2011].
Dried seaweed was treated with zinc chloride, then applied to one of the 8 combinations of the 3 factors. There
were two replicates at each factor level. This is an example of a 23 full-factorial design.

∇

Example 1.16 - Factors Affecting Damage to Motorcycle Wheels

An experiment was conducted to determine the effect of 5 factors on the Crush Radius on the front wheel of a
motorcycle [Tan et al., 2009]. The factors were: Impact speed (3, 6), Impact Mass (51.18, 101.33), Tire Pressure
(148, 252), Striker Contact Geometry (0.03, 0.10), and Impact Offset Distance (0, 0.108). Although there are
25 = 32 combinations of the factors, the experimenters ran it in 25−1 = 16 combinations to reduce costs. There
were four replicates at each combination of factor settings. This is an example of a 25−1 fractional factorial design.

∇

Example 1.17 - Optimizing Qualities of Potato Chips

An experiment varied 3 factors to optimize responses regarding potato chips [Song et al., 2007]. The factors (and
levels) were: Vacuum microwave pre-drying time (0.95, 3, 6, 9, 11.05 minutes), Vacuum temperature (83.18, 90, 100,
110, 116.82C), and Frying Time (11.59, 15, 20, 25, 28.41 minutes). Three responses were measured (analyzed one
at a time): Moisture Content, Fat Content, and Breaking Force. The goal was to choose factor levels that optimize
the response. This is an example of a response surface design.

∇

Example 1.18 - Optimizing Antibacterial Effect of Mixtures of 3 Essential Oils

An experiment varied mixtures of 3 types of essential oils in terms of optimizing a response [Ouedrhiria et al., 2016].
The three oils were: (O. compactum, O. majorana, and T. serypyllum). Three responses were measured (analyzed
one-at-a-time): minimum inhibitory concentration (MIC %) of 3 types of bacterium: B. subtilis. S. aureus, and E.
coli. The goal was to choose the mixture of the 3 types of essential oils that minimizes the MIC of the bacterium.

∇

1.6 Overview of Observational Study Designs
• Cross-Sectional Studies – Observations made from populations/subpopulations at a single time point or

interval.
• Prospective Studies – Groups are formed by levels of a potential causal factor, then observed over time for

some measurable outcome.
• Retrospective Studies – Studies where subjects are identified based on the outcome of interest and potential

risk factors are identified that previously occurred.
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• Matching – Subjects from different populations are matched, based on external factors, similar to blocking
in experimental studies.

Example 1.19 - Medical Profession Students Attitudes Toward Interdisciplinary Studies

A survey was conducted to measure students’ in medical professions Readiness for Inter-Professional Learning
[Keshtkaran et al., 2014]. Students were sampled from 3 groups: Nursing, Science in Surgical Technology, and
Medicine, and given the scale measuring their readiness. This was cross-sectional in the sense that it was taken at
one point in time.

∇

Example 1.20 - Blood Transfusions and Caesarean Deliveries in 3 Pakistan Hospitals

A prospective study was conducted to compare birth deliveries in 3 Pakistan hospitals over the period of January-
June 2010 [Ismail et al., 2014]. In particular, the authors were interested in whether the mother had acCaesarean
Section and whether the patient had a subsequent blood transfusion.

∇

Example 1.21 - Fertilization Time-Lapse Variables and Embryo Sex

A study at a University-affiliated private fertility center considered the gender of an embryo, as well as various
cleavage timing variables, from the time of the fertilization, retrospectively [Bronet et al., 2015]. The researchers
were interested in determining whether any of the timing variables could predict the eventual sex of the embryo.

∇

Example 1.22 - Recidivism Rates for Juvenile Offenders

A study compared recidivism rates among juvenile offenders in 2 conditions: transferred to adult court and not
transferred to adult court, that is, tried in juvenile court [Bishop et al., 1996]. A database of past criminal record
including number and severity of prior and current charges, gender, and age was created, and matches were created
where within each pair, one had been transferred, the other had not. Subsequent recidivism was observed within
each pair.

∇

library(tidyverse)
library(kableExtra)

##
## Attaching package: 'kableExtra'

## The following object is masked from 'package:dplyr':
##
## group_rows
library(effectsize)



Chapter 2

Single Factor Studies

In this chapter, we consider the case where there is a single factor. The factor can be qualitative or quantitative.
Qualitative factors can be nominal or ordinal. Nominal factors have no inherent ordering, while ordinal factors
have an underlying ordering that is non-numeric. Quantitative factors can be used in linear or nonlinear regression
models, however in some cases researchers don’t wish to place a structure to the model and treat levels as categories.

The factor levels, unless specified otherwise, will be treated as all levels of interest to researchers. These are referred
to as fixed factors. Later in the course, we will consider factors with levels that are a sample from a population
of levels, which will be referred to as random factors.

We will let the number of levels of the factor be represented as 𝑟 where 𝑟 ≥ 2. When 𝑟 = 2, the analysis can be
analyzed as an independent sample 𝑡-test, which we will see gives identical conclusions as the 1-Way Analysis of
Variance described below.

The analysis will be the same whether the data are obtained from a Controlled Experiment or Observational Study,
however interpretations of cause and effect are stronger for Controlled Experiments.

In this chapter, we will focus on models with independent, normally distributed errors with constant variance. We
will consider other tests in subsequent chapters.

2.1 Models with 𝑟 = 2 Factor Levels
In this section, we consider a Controlled Experiment and an Observational Study, each with two groups. We use
the independent sample 𝑡-test in each case to compare the two means.

Example 2.1 - Tai Chi and Strength Training in Hip Replacement Patients

A controlled experiment was conducted to compare post-operative effects of an in-home training treatment for
patients who have received hip replacement surgery [Zeng et al., 2015]. The final analysis was based on 𝑛𝑇 = 59
subjects who completed the protocol, 32 in the treatment group (Tai Chi and strength training) and 27 in the
control group. Patients were randomly assigned to the 𝑟 = 2 conditions. One response that was reported was
Timed Up and Go Test (TUG) to measure mobility (lower times are better). The means, standard deviations, and
sample sizes are given below for the treatment and control groups (the units are seconds).

Treatment: 𝑦𝑇 = 14.61 𝑠𝑇 = 2.60 𝑛𝑇 = 32
Control: 𝑦𝐶 = 19.06 𝑠𝐶 = 3.37 𝑛𝐶 = 27

For the 2-sample 𝑡-test (aka independent sample 𝑡-test), we will first compute the pooled variance then the 𝑡-statistic,
critical value (𝛼 = 0.05) and 𝑃 -value for a 2-sided test.

Pooled Variance: 𝑠2
𝑝 = (32 − 1)(2.60)2 + (27 − 1)(3.37)2

32 + 27 − 2 = 8.86 𝑠𝑝 =
√

8.86 = 2.98

15
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Test Statistic: 𝑡∗ = 14.61 − 19.06
√8.86 ( 1

32 + 1
27 )

= −4.45
0.78 = −5.71

Rejection Region: 𝑡.975,57 = 2.002 P-value: 2𝑃 (𝑡57 ≥ | − 5.71|) < .0001

95% Confidence Interval: − 5.71 ± 2.002(0.78) ≡ −5.71 ± 1.56 ≡ (−7.27, −4.15)

The Effect Size is the absolute difference in the sample means in units of the pooled standard deviation. In this
example, 𝑒 = 4.45/2.98 = 1.49 which is considered a large effect size.

∇

Example 2.2 - Firefighter Air Consumption

An observational study was conducted to compare firefighters that were classified into two categories of air consump-
tion, slow and fast [Wohlgemuth et al., 2024]. The firefighters were classified based on scores for 10 tasks pertinent
to firefighting. Once the 𝑛𝑇 = 160 firefighters were classified into the two groups (94 fast and 66 slow), the groups
were compared with respect to several physical characteristics including Age, Body Mass Index, and Peak Heart
Rate (none of these were used in classifying as Fast/Slow Air Consumption). Summary statistics for the response
Body Fat Percentage and the corresponding 𝑡-test are given below.

Fast: 𝑦𝐹 = 20.71 𝑠𝐹 = 6.65 𝑛𝐹 = 94 Slow: 𝑦𝑆 = 25.11 𝑠𝑆 = 8.93 𝑛𝑆 = 66

𝑠2
𝑝 = (94 − 1)(6.65)2 + (66 − 1)(8.93)2

94 + 66 − 2 = 58.84 𝑠𝑝 = 7.67

𝑡∗ = 20.71 − 25.11
√58.85 ( 1

94 + 1
66 )

= −4.40
1.23 = −3.57 𝑡.975,158 = 1.975 𝑃 = .0005

95% Confidence Interval: − 4.40 ± 1.975(1.23) ≡ −4.40 ± 2.43 ≡ (−6.83, −1.97)

For this example, the effect size is 𝑒 = 4.40/7.67 = 0.57.

Idealized normal distributions for the Tai Chi and Firefighter Air Consumption studies are given in Figure 2.1 and
Figure 2.2.

∇

There are various ways to parameterize single factor models. We will consider the following three formulations in
this chapter.

• Cell Means Model - Each treatment mean is its own parameter (no intercept term)
• Treatment Effect Model - Intercept is the mean of the group means, each treatment has an effect relative

to the mean, with effects summing to 0
• Reference Group Model - Intercept corresponds to the mean for Group 1, remaining parameters are

differences between remaining group means and group 1 mean
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Figure 2.1: Idealized normal distibutions for the Tai Chi study
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2.2 Three Model Formulations
2.2.1 Cell Means Model
The model and assumptions are given below for the Cell Means Model. Note that the total sample size is
𝑛𝑇 = 𝑛1 + ⋯ + 𝑛𝑟 = ∑𝑟

𝑖=1 𝑛𝑖. When all sample sizes are equal (𝑛𝑖 = 𝑛), the design is said to be balanced.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

𝐸{𝑌𝑖𝑗} = 𝐸{𝜇𝑖 + 𝜖𝑖𝑗} = 𝜇𝑖 + 0 = 𝜇𝑖 𝜎2{𝑌𝑖𝑗} = 𝜎2{𝜇𝑖 + 𝜖𝑖𝑗} = 0 + 𝜎2 = 𝜎2

For this model, the treatment/population mean for the 𝑖𝑡ℎ condition is 𝜇𝑖 and the variance of the individual
measurements within each condition is assumed to be 𝜎2 (standard deviation = 𝜎) . Further, the individual
measurements within each condition are assumed to be independent and normally distributed.

The point estimators for the population means, which are derived below, are the sample means for the various
groups. The estimator for the population variance is the pooled variance among the individual groups, which is the
same for all three model forms.

2.2.2 Treatment Effects Model
Let 𝜇𝑖 be the mean for treatment 𝑖, and let 𝜇• be the unweighted mean of the 𝜇𝑠

𝑖 .

𝜇• = ∑𝑟
𝑖=1 𝜇𝑖
𝑟 𝜇𝑖 = 𝜇• + (𝜇𝑖 − 𝜇•) = 𝜇• + 𝜏𝑖 ⇒ 𝜏𝑖 = 𝜇𝑖 − 𝜇•

𝜇1 = ⋯ = 𝜇𝑟 = 𝜇• ⇒ 𝜏1 = ⋯ = 𝜏𝑟 = 0

𝑌𝑖𝑗 = 𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

𝐸{𝑌𝑖𝑗} = 𝐸{𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗} = 𝜇• + 𝜏𝑖 + 0 = 𝜇• + 𝜏𝑖 𝜎2{𝑌𝑖𝑗} = 𝜎2{𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗} = 0 + 𝜎2 = 𝜎2

𝑟
∑
𝑖=1

𝜏𝑖 = 0 ⇒ 𝜏𝑟 = −
𝑟−1
∑
𝑖=1

𝜏𝑖

The point estimator for the overall population mean is the unweighted mean of group sample means. The estimator
for the effect of group 𝑖 is the difference between the sample mean for group 𝑖 and the overall unweighted mean.

2.2.3 Reference Group Model
This model, which is the default model for the lm and aov functions in R, uses group 1 (based on alpha-numeric
ordering of the group levels) as the intercept. The remaining parameters are the differences between the remaining
𝑟 − 1 group means and the mean for group 1. The point estimators are based on the corresponding sample means.

An example where 𝑟 = 3 conditions have means of 𝜇1 = 40, 𝜇2 = 50, and 𝜇3 = 60, respectively and standard
deviation 𝜎 = 10 is given in Figure 2.3.

Example 2.3 - Virtual Training for a Lifeboat Launching Task A study in South Korea compared 𝑟 = 4
methods of training to conduct a lifeboat launching task [Jung and Ahn, 2018]. The treatments and their labels
from the paper are given below and the response 𝑌 was a procedural knowledge score for subjects post training.

• Lecture/Materials - Traditional Lecture with no computer component (LEC/MAT)
• Monitor/Keyboard - Trained virtually with a monitor, keyboard, and mouse (MON/KEY)
• Head-Mounted Display/Joypad - Trained virtually with HMD and joypad (HMD/JOY)
• Head-Mounted Display/Wearable Sensors - (HMD/WEA)
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Figure 2.3: Normal distibutions with means=40,50,60 and standard deviation=10

There were a total of 𝑛𝑇 = 64 subjects and they were randomized so that 16 subjects received each treatment
(𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 16). Data that have been generated to match the authors’ reported means and standard
deviations are given in Table 2.1. Note that when we later run this analysis in R, there will be a variable for
treatment and a variable for procedural score. Figure 2.4 gives the generated observed values (dots), treatment
means (green lines), and the overall mean (red line).

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

Using the summary data from the table, we will obtain point estimates and standard errors directly for the three
model formulations directly, then using R. First, we compute the pooled standard deviation (aka residual standard
error).

𝑠 = √∑𝑟
𝑖=1 (𝑛𝑖 − 1) 𝑠2

𝑖
𝑛𝑇 − 𝑟 = √(16 − 1) (1.942 + 1.432 + 2.822 + 1.992)

64 − 4 = 2.105

Cell Means Model

̂𝜇1 = 𝑦1 = 4.931 ̂𝜇2 = 𝑦2 = 7.708 ̂𝜇3 = 𝑦3 = 6.736 ̂𝜇4 = 𝑦4 = 6.875

𝑠 { ̂𝜇𝑖} = 𝑠√𝑛𝑖
= 2.105√

16 = 0.526 𝑖 = 1, 2, 3, 4
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Table 2.1: Lifeboat Virtual Training Data

LEC/MAT (i=1) MON/KEY (i=2) HMD/JOY (i=3) HMD/WEA (i=4)
j=1 4.5614 5.4532 1.8773 9.8257
j=2 6.6593 8.9208 6.1884 8.9988
j=3 5.6427 8.3489 6.8029 5.4112
j=4 6.4394 8.3175 9.4535 4.9396
j=5 4.8635 9.7848 8.7312 8.6486
j=6 0.3268 6.2697 6.4198 5.1459
j=7 5.6990 7.1327 8.4955 7.0656
j=8 6.3545 7.0886 5.9008 7.9552
j=9 6.7509 5.0733 3.3336 5.7284
j=10 6.6019 8.3865 1.6530 6.6314
j=11 3.2365 9.4227 9.4710 7.5014
j=12 6.1655 8.9142 7.2818 8.2456
j=13 2.4060 8.5150 9.7649 4.2465
j=14 1.9851 6.8198 3.4931 3.2286
j=15 5.2198 8.6390 8.9848 6.5520
j=16 5.9765 6.2467 9.9261 9.8754
n 16.0000 16.0000 16.0000 16.0000
Mean 4.9306 7.7083 6.7361 6.8750
SD 1.9400 1.4300 2.8200 1.9900
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Figure 2.4: Procedural knowledge scores for lifeboat training study
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Treatment Effects Model

̂𝜇 = 4.931 + 7.708 + 6.736 + 6.875
4 = 6.563

𝑠 { ̂𝜇} = 𝑠√ 1
𝑟2

𝑟
∑
𝑖=1

1
𝑛𝑖

= 2.105√ 1
42 4 ( 1

16) = 0.263

̂𝜏1 = 4.931 − 6.563 = −1.632 ̂𝜏2 = 1.145 ̂𝜏3 = 0.173 ̂𝜏4 = 0.312

To obtain the standard error for ̂𝜏𝑘, we can re-write it as follows and make use of independence among group means.

̂𝜏𝑘 = 𝑦𝑘 − ̂𝜇 = 𝑦𝑘 − 1
𝑟

𝑟
∑
𝑖=1

𝑦𝑖 = 𝑟 − 1
𝑟 𝑦𝑘 − 1

𝑟
𝑟

∑
𝑖=1
𝑖≠𝑘

𝑦𝑖

𝑠 { ̂𝜏𝑘} = 𝑠
√√√√
⎷

1
𝑟2

⎛⎜⎜
⎝

(𝑟 − 1)2

𝑛𝑘
+

𝑟
∑
𝑖=1
𝑖≠𝑘

1
𝑛𝑖

⎞⎟⎟
⎠

= 2.105√ 1
42 ((4 − 1)2

16 + 3 1
16) = 0.456

Reference Group Model

̂𝜇1 = 𝑦1 = 4.931 𝑠 { ̂𝜇1} = 𝑠√𝑛1
= 2.105√

16 = 0.526

𝑖 = 2, … , 𝑟 ̂𝜏𝑖 = 𝑦𝑖 − 𝑦1 𝑠 { ̂𝜏𝑖} = 𝑠√ 1
𝑛𝑖

+ 1
𝑛1

̂𝜏2 = 7.708 − 4.931 = 2.777 ̂𝜏3 = 6.736 − 4.931 = 1.805 ̂𝜏4 = 6.875 − 4.931 = 1.944

𝑠 { ̂𝜏𝑖} = 2.105√ 1
16 + 1

16 = 0.744

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

##
## Call:
## lm(formula = procKnow ~ factor(grp.trt) - 1, data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## factor(grp.trt)1 4.9306 0.5262 9.37 2.37e-13 ***
## factor(grp.trt)2 7.7083 0.5262 14.65 < 2e-16 ***
## factor(grp.trt)3 6.7361 0.5262 12.80 < 2e-16 ***
## factor(grp.trt)4 6.8750 0.5262 13.06 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.9139, Adjusted R-squared: 0.9082
## F-statistic: 159.2 on 4 and 60 DF, p-value: < 2.2e-16

##
## Call:
## lm(formula = procKnow ~ factor(grp.trt), data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5625 0.2631 24.943 < 2e-16 ***
## factor(grp.trt)1 -1.6319 0.4557 -3.581 0.000686 ***
## factor(grp.trt)2 1.1458 0.4557 2.514 0.014622 *
## factor(grp.trt)3 0.1736 0.4557 0.381 0.704573
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.1981, Adjusted R-squared: 0.158
## F-statistic: 4.941 on 3 and 60 DF, p-value: 0.003931

##
## Call:
## lm(formula = procKnow ~ factor(grp.trt), data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9305 0.5262 9.370 2.37e-13 ***
## factor(grp.trt)2 2.7778 0.7442 3.733 0.000423 ***
## factor(grp.trt)3 1.8056 0.7442 2.426 0.018277 *
## factor(grp.trt)4 1.9444 0.7442 2.613 0.011329 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.1981, Adjusted R-squared: 0.158
## F-statistic: 4.941 on 3 and 60 DF, p-value: 0.003931

∇

2.3 The Analysis of Variance and 𝐹 -test
In this section, we obtain a decomposition of the total variation of the individual measurements around the overall
mean, the Total Sum of Squares, which we will denote 𝑆𝑆𝑇 𝑂. The Degrees of Freedom associated with the
total sum of squares is 𝑑𝑓𝑇 𝑂 = 𝑛𝑇 − 1.
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𝑌 •• =
∑𝑟

𝑖=1 ∑𝑛𝑖
𝑗=1 𝑌𝑖𝑗

𝑛𝑇
𝑆𝑆𝑇 𝑂 =

𝑟
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 ••)2 𝑑𝑓𝑇 𝑂 = 𝑛𝑇 − 1

The total sum of squares can be partitioned into the Error Sum of Squares and the Treatment Sum of Squares.
The error sum of squares can be thought of as how variable are measurements within the same treatment or group.
The treatment sum of squares represents how variable the treatment or group means are around the overall mean
(weighted by their sample sizes). The sums of squares are given below (note that in R, for linear models, the error
sum of squares is labelled as 𝑅𝑆𝑆, for the residual sum of squares). As with linear regression models, the error sum
of squares is the sum of the squared distances from the observed values to their predicted values.

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗)
2

Noting that for this model, ̂𝑌𝑖𝑗 = 𝑌 𝑖•, we obtain the following formula for 𝑆𝑆𝐸. The degrees of freedom for the
error sum of squares is 𝑑𝑓𝐸 = 𝑛𝑇 − 𝑟.

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 𝑖•)2 𝑑𝑓𝐸 = 𝑛𝑇 − 𝑟

Another useful way of computing 𝑆𝑆𝐸 based on published summary statistics is given below. Suppose the authors
have published the sample sizes {𝑛𝑖}, the sample means {𝑦𝑖•} using lower case 𝑦 as these are observed means from
a realization of this experiment, and the sample standard deviations {𝑠𝑖} for the 𝑟 treatments. Then 𝑆𝑆𝐸 can be
computed as below.

𝑠𝑖 =
√√√
⎷

∑𝑛𝑖
𝑗=1 (𝑦𝑖𝑗 − 𝑦𝑖•)2

𝑛𝑖 − 1 ⇒ 𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

(𝑛𝑖 − 1) 𝑠2
𝑖

The Treatment Sum of Squares, denoted as 𝑆𝑆𝑇 𝑅, acts like the regression sum of squares for linear regression
models. That is, 𝑆𝑆𝑇 𝑅 represents the sum of squared differences from the predicted values to the overall mean.
The degrees of freedom for the treatment sum of squares is 𝑑𝑓𝑇 𝑅 = 𝑟 − 1. Keeping in mind that the fitted value for
𝑌𝑖𝑗 is ̂𝑌𝑖𝑗 = 𝑌 𝑖•, we obtain SSTR as follows.

𝑆𝑆𝑇 𝑅 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌 𝑖• − 𝑌 ••)2 =
𝑟

∑
𝑖=1

𝑛𝑖 (𝑌 𝑖• − 𝑌 ••)2 𝑑𝑓𝑇 𝑅 = 𝑟 − 1

For each sum of squares, the Mean Square is the sum of squares divided by its corresponding degrees of freedom,
and are used for inferences among the means.

In single factor models, the goal is typically to test for differences among the treatment or group means. The null
hypothesis is that the means are all equal, while the alternative hypothesis is that there are differences among the
means. In the next chapter, we consider specific comparisons among treatments.

𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑟 ⇒ 𝜏1 = ⋯ = 𝜏𝑟 = 0
The test statistic is the 𝐹 -statistic from the Analysis of Variance and will be used in many forms throughout
this course. Under the null hypothesis, the 𝐹 -statistic follows the 𝐹 -distribution, based on its numerator and
denominator degrees of freedom. Large values of the 𝐹 -statistic are evidence against the null hypothesis. Technical
details of the test are given in a subsequent section.

Test Statistic: 𝐹 ∗ =
[ 𝑆𝑆𝑇 𝑅

𝑑𝑓𝑇𝑅
]

[ 𝑆𝑆𝐸
𝑑𝑓𝐸

]
= 𝑀𝑆𝑇 𝑅

𝑀𝑆𝐸
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Rejection Region: 𝐹 ∗ ≥ 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟 𝑃 = 𝑃 (𝐹𝑟−1,𝑛𝑇 −𝑟 ≥ 𝐹 ∗)

The effect size for the One-Way ANOVA model is 𝜂2 = 𝑆𝑆𝑇 𝑅/𝑆𝑆𝑇 𝑂, that is, the fraction of the total variation
that is “attributable” to differences in the group means.

Example 2.4 - Virtual Training for a Lifeboat Launching Task

𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 16 𝑦1• = 4.931 𝑦2• = 7.708 𝑦3• = 6.736 𝑦4• = 6.875 𝑦•• = 6.563

𝑆𝑆𝑇 𝑅 = 16 [(4.931 − 6.563)2 + (7.708 − 6.563)2 + (6.736 − 6.563)2 + (6.875 − 6.563)2] = 65.628

𝑠1 = 1.94 𝑠2 = 1.43 𝑠3 = 2.82 𝑠4 = 1.99
⇒ 𝑆𝑆𝐸 = (16 − 1) (1.942 + 1.432 + 2.822 + 1.992) = 265.815

Now, we test for differences among the effects of the 𝑟 = 4 teaching methods. The degrees of freedom for treatments
is 𝑑𝑓𝑇 𝑅 = 𝑟 − 1 = 3 and for error is 𝑑𝑓𝐸 = 𝑛𝑇 − 𝑟 = 60.

𝐻0 ∶ 𝜇1 = ⋯ = 𝜇4 ⇒ 𝜏1 = ⋯ = 𝜏4 = 0

Test Statistic: 𝐹 ∗ =
[ 𝑆𝑆𝑇 𝑅

𝑑𝑓𝑇𝑅
]

[ 𝑆𝑆𝐸
𝑑𝑓𝐸

]
= [ 65.789

3 ]
[ 265.815

60 ] = 21.930
4.430 = 4.950

Rejection Region: 𝐹 ∗ ≥ 𝐹.95;3,60 = 2.578 𝑃 = 𝑃 (𝐹3,60 ≥ 4.950) = .0039

𝜂2 = 𝑆𝑆𝑇 𝑅
𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝑇 𝑅

𝑆𝑆𝑇 𝑅 + 𝑆𝑆𝐸 = 65.789
65.789 + 265.815 = 65.789

331.604 = 0.1984

Approximately 20% of the total variation is due to differences in the training methods.

We obtain the Sums of Squares for Treatments and Error below using the anova of the model. A warning involves
the fact that when using the cell means model (with no intercept) the Treatment Sum of Squares and Degrees of
Freedom are incorrect here. Under this formulation, we are testing 𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 0, which is a much
stronger hypothesis than testing 𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4. We will use the Treatment Effects model or the Reference
Group model function to obtain the correct degrees of freedom and 𝐹 -statistic below.
vt <- read.csv("http://www.stat.ufl.edu/~winner/data/virtual_training.csv")
head(vt)

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268
vt.mod1 <- lm(procKnow ~ factor(grp.trt) - 1, data=vt)
summary(vt.mod1)

##
## Call:
## lm(formula = procKnow ~ factor(grp.trt) - 1, data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## factor(grp.trt)1 4.9306 0.5262 9.37 2.37e-13 ***
## factor(grp.trt)2 7.7083 0.5262 14.65 < 2e-16 ***
## factor(grp.trt)3 6.7361 0.5262 12.80 < 2e-16 ***
## factor(grp.trt)4 6.8750 0.5262 13.06 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.9139, Adjusted R-squared: 0.9082
## F-statistic: 159.2 on 4 and 60 DF, p-value: < 2.2e-16
anova(vt.mod1) ## Incorrect df and MS for Treatments and F-stat

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 4 2821.91 705.48 159.24 < 2.2e-16 ***
## Residuals 60 265.81 4.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
vt.mod2 <- aov(procKnow ~ factor(grp.trt), data=vt)
anova(vt.mod2)

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 65.664 21.8880 4.9406 0.003931 **
## Residuals 60 265.815 4.4302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
options(es.use_symbols=TRUE)

eta_squared(vt.mod1)

## For one-way between subjects designs, partial eta squared is
## equivalent to eta squared. Returning eta squared.

## # Effect Size for ANOVA
##
## Parameter | Eta2 | 95% CI
## -------------------------------------
## factor(grp.trt) | 0.91 | [0.88, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].
eta_squared(vt.mod2)

## For one-way between subjects designs, partial eta squared is
## equivalent to eta squared. Returning eta squared.

## # Effect Size for ANOVA
##
## Parameter | Eta2 | 95% CI
## -------------------------------------
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## factor(grp.trt) | 0.20 | [0.05, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

Note that for the cell means model (vt.mod1) the sum of squares for treatments includes the “correction for the
mean,” thus it is larger than 𝑆𝑆𝑇 𝑅 by 𝑛𝑇 𝑦2

••. The effect size for that model is also too large 𝜂2 = 2821.91/(2821.91+
265.81) = 0.91.

Here we will conduct the analysis directly from the raw data, computing {𝑛𝑖}, {𝑦𝑖•}, and {𝑠𝑖} as well as sums of
squares and degrees of freedom.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## df SS MS F* F(.95) P(>F*) eta2
## Treatment 3 65.6639 21.8880 4.9406 2.7581 0.0039 0.1981
## Error 60 265.8149 4.4302 NA NA NA NA
## Total 63 331.4788 NA NA NA NA NA

∇

2.3.1 General Linear Test Approach
We begin with 𝑟 treatments with no restrictions on their population means {𝜇𝑖}. We then place a restriction on
the population means. Both models are fit, and the Error Sums of Squares and Degrees of Freedom are obtained
for each model.

Example 2.5 - Virtual Training for a Lifeboat Launching Task

Consider the following restrictions in light of the virtual training experiment.

• No treatment differences among the 4 treatments: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4
• No treatment differences among the 3 virtual reality treatments: 𝜇2 = 𝜇3 = 𝜇4
• No treatment differences among the 2 Head-Mounted Display treatments: 𝜇3 = 𝜇4

All of these can be tested using a general linear test. Note that the first test is the same as the 𝐹 -test conducted
from the Analysis of Variance.

The form of the test is as follows. Let the Complete model be the model with all 𝑟 means allowed to be different
values. In the virtual reality case we have the following numbers of restrictions.

• 𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 - There are 3 restrictions
• 𝐻0 ∶ 𝜇1, 𝜇2 = 𝜇3 = 𝜇4 - There are 2 restrictions
• 𝐻0 ∶ 𝜇1, 𝜇2, 𝜇3 = 𝜇4 - There is 1 restriction

Once we fit the Complete (No restriction) and Reduced (Restricted) models, we can obtain the Test Statistic as
follows. Start with the first restriction: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇𝑐 where 𝜇𝑐 is the common mean.

Reduced Model: (1 Mean) ̂𝜇𝑐 = 𝑌 •• = ̂𝑌𝑖𝑗(𝑅)

⇒ 𝑆𝑆𝐸(𝑅) =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗(𝑅))2 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 ••)2 = 𝑆𝑆𝑇 𝑂 𝑑𝑓𝑅 = 𝑛𝑇 − 1

Complete Model: (4 Means) ̂𝜇𝑖 = 𝑌 𝑖• = ̂𝑌𝑖𝑗(𝐶)
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⇒ 𝑆𝑆𝐸(𝐶) =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗(𝐶))2 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 𝑖•)2 = 𝑆𝑆𝐸 𝑑𝑓𝐶 = 𝑛𝑇 − 𝑟

The general linear 𝐹 -test is conducted as follows once the previous models have been fit.

𝐹 ∗ =
[ 𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐶)

𝑑𝑓𝑅−𝑑𝑓𝐶
]

[ 𝑆𝑆𝐸(𝐶)
𝑑𝑓𝐶

]
Reject 𝐻0 if: 𝐹 ∗ ≥ 𝐹1−𝛼,𝑑𝑓𝑅−𝑑𝑓𝐶,𝑑𝑓𝐶

In the case of the test of 𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑟, we obtain the following result where we reproduce the ANOVA
𝐹 -test.

𝑆𝑆𝐸(𝑅) = 𝑆𝑆𝑇 𝑂 𝑆𝑆𝐸(𝐶) = 𝑆𝑆𝐸 ⇒ 𝑆𝑆𝐸(𝑅) − 𝑆𝑆𝐸(𝐶) = 𝑆𝑆𝑇 𝑅

𝑑𝑓𝑅 = 𝑛𝑇 − 1 𝑑𝑓𝐶 = 𝑛𝑇 − 𝑟 ⇒ 𝑑𝑓𝑅 − 𝑑𝑓𝐶 = (𝑛𝑇 − 1) − (𝑛𝑇 − 𝑟) = 𝑟 − 1

𝐹 ∗ =
[ 𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐶)

𝑑𝑓𝑅−𝑑𝑓𝐶
]

[ 𝑆𝑆𝐸(𝐶)
𝑑𝑓𝐶

]
= [ 𝑆𝑆𝑇 𝑅

𝑟−1 ]
[ 𝑆𝑆𝐸

𝑛𝑇 −𝑟 ]
= 𝑀𝑆𝑇 𝑅

𝑀𝑆𝐸

For the second model described above (equality of virtual reality means), the reduced model would have a single
mean for the LEC/MAT control group and common means for the three virtual reality treatments.

̂𝑌1𝑗 = 𝑌 1• ̂𝑌2𝑗 = ̂𝑌3𝑗 = ̂𝑌4𝑗 =
∑4

𝑖=2 ∑𝑛𝑖
𝑗=1 𝑌𝑖𝑗

𝑛2 + 𝑛3 + 𝑛4
= ∑4

𝑖=2 𝑛𝑖𝑌 𝑖•

∑4
𝑖=2 𝑛𝑖

The third model involves leaving treatments 1 and 2 as individual groups and combines treatments 3 and 4 into a
single group.

̂𝑌1𝑗 = 𝑌 1• ̂𝑌2𝑗 = 𝑌 2• ̂𝑌3𝑗 = ̂𝑌4𝑗 = ∑4
𝑖=3 𝑛𝑖𝑌 𝑖•

∑4
𝑖=3 𝑛𝑖

We will fit these models in R and use the anova command to conduct the 𝐹 -tests from the various model fits. The
trick is to create new treatment factors for the various restrictions, and fit an lm or aov object.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

##
## 1 234
## 16 48

##
## 1 2 34
## 16 16 32

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 63 331.48 5.2616
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## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 65.664 21.8880 4.9406 0.003931 **
## Residuals 60 265.815 4.4302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Model 1: procKnow ~ 1
## Model 2: procKnow ~ factor(grp.trt)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 63 331.48
## 2 60 265.81 3 65.664 4.9406 0.003931 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt_1_234) 1 56.816 56.816 12.825 0.000672 ***
## Residuals 62 274.663 4.430
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Model 1: procKnow ~ factor(grp.trt_1_234)
## Model 2: procKnow ~ factor(grp.trt)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 62 274.66
## 2 60 265.81 2 8.8479 0.9986 0.3744

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt_1_2_34) 2 65.51 32.755 7.5123 0.001212 **
## Residuals 61 265.97 4.360
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Model 1: procKnow ~ factor(grp.trt_1_2_34)
## Model 2: procKnow ~ factor(grp.trt)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 61 265.97
## 2 60 265.81 1 0.15432 0.0348 0.8526

These are the interpretations of the results of the three tests from the models fit above.

• 𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 - Conclude the 4 means are NOT all equal
• 𝐻0 ∶ 𝜇1, 𝜇2 = 𝜇3 = 𝜇4 - Fail to reject that 3 virtual means are equal
• 𝐻0 ∶ 𝜇1, 𝜇2, 𝜇3 = 𝜇4 - Fail to reject that 2 HMD means are equal
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∇

Later we will see formally how to make contrasts among treatments to answer specific research questions.

2.3.2 Power Calculations
When the null hypothesis 𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑟 is false, the 𝐹 -statistic is distributed non-central 𝐹 with degrees of
freedom 𝜈1 = 𝑟 − 1 and 𝜈2 = 𝑛𝑇 − 𝑟, and non-centrality parameter 𝜆 defined below. We will use the notation
𝐹 ∗ ∼ 𝐹𝜈1,𝜈2

(𝜆).

𝜆 = ∑𝑟
𝑖=1 𝑛𝑖 (𝜇𝑖 − 𝜇•)2

𝜎2 𝜇• = ∑𝑟
𝑖=1 𝑛𝑖𝜇𝑖
𝑛𝑇

For a given configuration {𝑛𝑖}, {𝜇𝑖}, and 𝜎2, the power of the test, the probability that it will reject 𝐻0 can be
computed as follows.

• Compute the non-centrality parameter 𝜆
• Obtain the critical value for the 𝐹 -statistic: 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟
• Obtain the area in the non-central 𝐹 -distribution that exceeds the critical value in the previous step:

𝑃 (𝐹𝜈1,𝜈2
(𝜆) ≥ 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟)

In many practical applications, researchers are interested in detecting a certain effect size among treatments and
must iteratively solve for sample sizes that assure a certain power, such as 0.80.

Example 2.6 - Virtual Training for a Lifeboat Launching Task

Consider the example described previously, and suppose we have samples of size 𝑛𝑖 = 5 from each treatment.

𝑛1 = 𝑛2 = 𝑛3 = 5 𝜇1 = 40 𝜇2 = 50 𝜇3 = 60 𝜇• = 50 𝜎2 = 102 = 100

𝜆 = 5(40 − 50)2 + 5(50 − 50)2 + 5(60 − 50)2

100 = 1000
100 = 10

If we were conducting a test of equal means, we would reject the null hypothesis if the 𝐹 -statistic 𝑀𝑆𝑇 𝑅/𝑀𝑆𝐸
exceeds the 1 − 𝛼 quantile of the 𝐹𝑟−1,𝑛𝑇 −𝑟 distribution. The following plot gives the central and non-central
F-distributions for this scenario with with critical value for 𝛼 = 0.05 significance level 𝐹.95;2,12 = 3.885. Note that
the area above 3.885 in the non-central F-distribution represents the power, the probability that we reject 𝐻0
under this scenario for 𝑟, {𝜇𝑖}, 𝜎, and {𝑛𝑖}. Using the pf function in R, we find the power to be .7015. In many
experimental settings, the goal is to reach a power of .80 to detect a particular effect. In that case, given the settings
for {𝜇𝑖}, and 𝜎, we would need to increase the sample sizes within treatments, {𝑛𝑖}.

## [1] 3.885294

## [1] 50

## [1] 10

## [1] 0.7015083

∇

2.4 Technical Details
2.4.1 Least Squares Estimation for the Cell Means Model (Regression Approach)
The cell means model can be written as a regression model in matrix form as follows. Note that there will not be
an intercept in this formulation. We assume the data are stacked by treatment, then replicate within treatment in
the 𝑛𝑇 × 1 vector 𝑌 . The vector 𝛽 representing the regression coefficients is the 𝑟 × 1 vector containing 𝜇1, … , 𝜇𝑟
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Figure 2.5: Central and non-central F-distributions used for testing for treatment effects and power calculations

and the 𝑋 matrix is the 𝑛𝑇 × 𝑟 matrix containing a 1 if the observation in row 𝑖 is in the treatment (column) 𝑗 and
0 otherwise. We will formalize this for the simple case of 𝑟 = 3 treatments and 𝑛1 = 𝑛2 = 𝑛3 = 2 replicates per
treatment, then we will generalize it. As with the linear regression model, we will write the model in matrix form
as follows.

𝑌 = 𝑋𝛽 + 𝜖

where:

𝑌 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑌11
𝑌12
𝑌21
𝑌22
𝑌31
𝑌32

⎤
⎥
⎥
⎥
⎥
⎦

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

𝛽 = ⎡⎢
⎣

𝜇1
𝜇2
𝜇3

⎤⎥
⎦

𝜖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜖11
𝜖12
𝜖21
𝜖22
𝜖31
𝜖32

⎤
⎥
⎥
⎥
⎥
⎦

Recall that in linear regression, we obtain the ordinary least squares estimator of 𝛽, which is labelled 𝑏 as follows.
Further the variance-covariance matrix of 𝑏 is given as well.

𝑏 = (𝑋′𝑋)−1 𝑋′𝑌 𝜎2{𝑏} = 𝜎2 (𝑋′𝑋)−1

For this example, we obtain the following results.
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𝑋′𝑋 = ⎡⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= ⎡⎢
⎣

2 0 0
0 2 0
0 0 2

⎤⎥
⎦

⇒ (𝑋′𝑋)−1 = ⎡⎢
⎣

1
2 0 0
0 1

2 0
0 0 1

2

⎤⎥
⎦

Continuing on the computations, we obtain the following results.

𝑋′𝑌 = ⎡⎢
⎣

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑌11
𝑌12
𝑌21
𝑌22
𝑌31
𝑌32

⎤
⎥
⎥
⎥
⎥
⎦

= ⎡⎢
⎣

𝑌11 + 𝑌12
𝑌21 + 𝑌22
𝑌31 + 𝑌32

⎤⎥
⎦

⇒ 𝑏 = (𝑋′𝑋)−1 𝑋′𝑌 = ⎡⎢
⎣

1
2 0 0
0 1

2 0
0 0 1

2

⎤⎥
⎦

⎡⎢
⎣

𝑌11 + 𝑌12
𝑌21 + 𝑌22
𝑌31 + 𝑌32

⎤⎥
⎦

= ⎡⎢
⎣

𝑌11+𝑌12
2𝑌21+𝑌22
2𝑌31+𝑌32
2

⎤⎥
⎦

𝜎2{𝑏} = 𝜎2 (𝑋′𝑋)−1 = 𝜎2 ⎡⎢
⎣

1
2 0 0
0 1

2 0
0 0 1

2

⎤⎥
⎦

So, this leads to the (hopefully) not surprising general results.

𝑌 𝑖• =
∑𝑛𝑖

𝑗=1 𝑌𝑖𝑗
𝑛𝑖

𝑏 =
⎡
⎢
⎢
⎢
⎣

𝑌 1•
𝑌 2•

⋮
𝑌 𝑟−1,•

𝑌 𝑟•

⎤
⎥
⎥
⎥
⎦

𝜎2{𝑏} = 𝜎2

⎡
⎢
⎢
⎢
⎢
⎣

1
𝑛1

0 ⋯ 0 0
0 1

𝑛2
⋯ 0 0

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1

𝑛𝑟−1
0

0 0 ⋯ 0 1
𝑛𝑟

⎤
⎥
⎥
⎥
⎥
⎦

Example 2.7 - Virtual Training for a Lifeboat Launching Task

For this example, we will set up the 𝑋 matrix and 𝑌 vector as follow. Let 116 represent a 16 × 1 vector of 1𝑠

and 016 represent a 16 × 1 vector of 0𝑠 and 𝑌𝑖 be the 16 × 1 vector of 𝑌𝑖1, … , 𝑌𝑖,16 for 𝑖 = 1, 2, 3, 4. Further, let
𝑌𝑖• = ∑𝑛𝑖

𝑗=1 𝑌𝑖𝑗 and 𝑌 𝑖• = 𝑌𝑖•/𝑛𝑖.

𝑋 =
⎡
⎢⎢
⎣

116 016 016 016
016 116 016 016
016 016 116 016
016 016 016 116

⎤
⎥⎥
⎦

𝑋′𝑋 =
⎡
⎢⎢
⎣

16 0 0 0
0 16 0 0
0 0 16 0
0 0 0 16

⎤
⎥⎥
⎦
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𝑌 =
⎡
⎢⎢
⎣

𝑌1
𝑌2
𝑌3
𝑌4

⎤
⎥⎥
⎦

𝑋′𝑌 =
⎡
⎢⎢
⎣

𝑌1•
𝑌2•
𝑌3•
𝑌4•

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

78.8888
123.3334
107.7777
109.9999

⎤
⎥⎥
⎦

𝑏 = (𝑋′𝑋)−1𝑋′𝑌 =
⎡
⎢⎢
⎣

1
16 0 0 0
0 1

16 0 0
0 0 1

16 0
0 0 0 1

16

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

78.8888
123.3334
107.7777
109.9999

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

4.9306
7.7083
6.7361
6.8750

⎤
⎥⎥
⎦

The variance of each element of 𝑏 is 𝜎2/16, and the standard error is 𝜎/
√

16 = 𝜎/4. Here, we make use of the lm
function in R to obtain point estimates and estimated standard errors for the cell means model. Note that the
intercept is removed (−1) in the command and we have to define the treatment as a factor variable (so as not to fit
a straight line).
vt <- read.csv("http://www.stat.ufl.edu/~winner/data/virtual_training.csv")
head(vt, 2)

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
vt.mod1 <- lm(procKnow ~ factor(grp.trt) - 1, data=vt)
summary(vt.mod1)

##
## Call:
## lm(formula = procKnow ~ factor(grp.trt) - 1, data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## factor(grp.trt)1 4.9306 0.5262 9.37 2.37e-13 ***
## factor(grp.trt)2 7.7083 0.5262 14.65 < 2e-16 ***
## factor(grp.trt)3 6.7361 0.5262 12.80 < 2e-16 ***
## factor(grp.trt)4 6.8750 0.5262 13.06 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.9139, Adjusted R-squared: 0.9082
## F-statistic: 159.2 on 4 and 60 DF, p-value: < 2.2e-16

The summary output includes the residual standard error, which is our estimate of 𝜎, the standard deviation of the
model errors. Derivation of the unbiased estimator of 𝜎2 is described below.

∇

2.4.2 Scalar Estimation for the Cell Means Model
We re-write the model here in scalar form.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)
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Let 𝑄 = ∑𝑟
𝑖=1 ∑𝑛𝑖

𝑗=1 𝜖2
𝑖𝑗. We choose ̂𝜇𝑘 that minimizes 𝑄 for 𝑘 = 1, … , 𝑟. This is done by taking the derivative of

𝑄 with respect to 𝜇𝑘, setting it equal to zero and solving for the least squares estimator.

𝑄 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝜖2
𝑖𝑗 =

𝑟
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝜇𝑖)
2

⇒ 𝜕𝑄
𝜕𝜇𝑘

= 𝜕
𝜕𝜇𝑘

𝑟
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝜇𝑖)
2 = 2

𝑛𝑘

∑
𝑗=1

(𝑌𝑘𝑗 − 𝜇𝑘) (−1)

Note that this only involves the 𝑛𝑘 observations for treatment 𝑘. Now we set the partial derivative to zero for the
least squares (and maximum likelihood) estimator of 𝜇𝑘.

−2
𝑛𝑘

∑
𝑗=1

(𝑌𝑘𝑗 − ̂𝜇𝑘) = 0 ⇒
𝑛𝑘

∑
𝑗=1

𝑌𝑘𝑗 = 𝑛𝑘 ̂𝜇𝑘 ⇒ ̂𝜇𝑘 =
∑𝑛𝑘

𝑗=1 𝑌𝑘𝑗
𝑛𝑘

= 𝑌 𝑘•

Thus the fitted values for 𝑌𝑖𝑗 are ̂𝑌𝑖𝑗 = 𝑌 𝑖•.

2.4.3 Estimation for the Treatment Effects Model
Let 𝜇𝑖 be the population mean for treatment 𝑖, and let 𝜇• be the unweighted mean of the 𝜇𝑠

𝑖 . Note that this will
differ from 𝜇• used in the cell means model when the sample sizes are not all equal.

𝜇• = ∑𝑟
𝑖=1 𝜇𝑖
𝑟 𝜇𝑖 = 𝜇• + (𝜇𝑖 − 𝜇•) = 𝜇• + 𝜏𝑖 ⇒ 𝜏𝑖 = 𝜇𝑖 − 𝜇•

We will refer to 𝜏𝑖 as the effect of treatment 𝑖 relative to the mean among all treatments. The sum of 𝜏𝑖 is zero,
when we use the unweighted mean 𝜇•.

𝜇1 = ⋯ = 𝜇𝑟 = 𝜇• ⇒ 𝜏1 = ⋯ = 𝜏𝑟 = 0

𝑌𝑖𝑗 = 𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

𝐸{𝑌𝑖𝑗} = 𝐸{𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗} = 𝜇• + 𝜏𝑖 + 0 = 𝜇• + 𝜏𝑖 𝜎2{𝑌𝑖𝑗} = 𝜎2{𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗} = 0 + 𝜎2 = 𝜎2

𝑟
∑
𝑖=1

𝜏𝑖 = 0 ⇒ 𝜏𝑟 = −
𝑟−1
∑
𝑖=1

𝜏𝑖

2.4.4 Least Squares Estimation (Regression Approach)
Let 𝑌 be defined as before. We will parameterize 𝛽 in terms of 𝜇• and 𝜏1, … , 𝜏𝑟−1, keeping in mind the result above
regarding 𝜏𝑟. First consider the case as we did previously with 𝑟 = 3 and 𝑛1 = 𝑛2 = 𝑛3 = 2.

𝑌 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑌11
𝑌12
𝑌21
𝑌22
𝑌31
𝑌32

⎤
⎥
⎥
⎥
⎥
⎦

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1

⎤
⎥
⎥
⎥
⎥
⎦

𝛽 = ⎡⎢
⎣

𝜇•
𝜏1
𝜏2

⎤⎥
⎦

𝜖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜖11
𝜖12
𝜖21
𝜖22
𝜖31
𝜖32

⎤
⎥
⎥
⎥
⎥
⎦

𝑏 = (𝑋′𝑋)−1 𝑋′𝑌 𝜎2{𝑏} = 𝜎2 (𝑋′𝑋)−1
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For this example, we obtain the following results.

𝑋′𝑋 = ⎡⎢
⎣

1 1 1 1 1 1
1 1 0 0 −1 −1
0 0 1 1 −1 −1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0
1 1 0
1 0 1
1 0 1
1 −1 −1
1 −1 −1

⎤
⎥
⎥
⎥
⎥
⎦

= ⎡⎢
⎣

6 0 0
0 4 2
0 2 4

⎤⎥
⎦

Making use of cofactors, we obtain (𝑋′𝑋)−1 below.

⇒ (𝑋′𝑋)−1 = ⎡⎢
⎣

1
6 0 0
0 1

3 − 1
6

0 − 1
6

1
3

⎤⎥
⎦

= 1
6

⎡⎢
⎣

1 0 0
0 2 −1
0 −1 2

⎤⎥
⎦

Continuing on the computations, we obtain the following results.

𝑋′𝑌 = ⎡⎢
⎣

1 1 1 1 1 1
1 1 0 0 −1 −1
0 0 1 1 −1 −1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑌11
𝑌12
𝑌21
𝑌22
𝑌31
𝑌32

⎤
⎥
⎥
⎥
⎥
⎦

= ⎡⎢
⎣

𝑌11 + 𝑌12 + 𝑌21 + 𝑌22 + 𝑌31 + 𝑌32
𝑌11 + 𝑌12 − 𝑌31 − 𝑌32
𝑌21 + 𝑌22 − 𝑌31 − 𝑌32

⎤⎥
⎦

When the dust settles, the estimator 𝑏 for 𝛽 is obtained below.

𝑏 = (𝑋′𝑋)−1 𝑋′𝑌 = 1
6

⎡⎢
⎣

1 0 0
0 2 −1
0 −1 2

⎤⎥
⎦

⎡⎢
⎣

𝑌11 + 𝑌12 + 𝑌21 + 𝑌22 + 𝑌31 + 𝑌32
𝑌11 + 𝑌12 − 𝑌31 − 𝑌32
𝑌21 + 𝑌22 − 𝑌31 − 𝑌32

⎤⎥
⎦

= ⎡⎢
⎣

𝑌 ••
𝑌 1• − 𝑌 ••
𝑌 2• − 𝑌 ••

⎤⎥
⎦

The general result is as follows, allowing for unequal sample sizes.

𝑏 =
⎡
⎢
⎢
⎣

1
𝑟 ∑𝑟

𝑖=1 𝑌 𝑖•
𝑟−1

𝑟 𝑌 1• − 1
𝑟 ∑𝑟

𝑖=2 𝑌 𝑖•
⋮

𝑟−1
𝑟 𝑌 𝑟−1,• − 1

𝑟 ∑𝑟
𝑖=1

𝑖≠𝑟−1
𝑌 𝑖•

⎤
⎥
⎥
⎦

̂𝜏𝑟 = −
𝑟−1
∑
𝑖=1

̂𝜏𝑖 = 𝑟 − 1
𝑟 𝑌 𝑟• − 1

𝑟
𝑟−1
∑
𝑖=1

𝑌 𝑖•

From these expressions, we obtain the following variances for ̂𝜇 and ̂𝜏𝑘.

𝜎2 { ̂𝜇} = 𝜎2

𝑟2

𝑟
∑
𝑖=1

1
𝑛𝑖

𝜎2 { ̂𝜏𝑘} = 𝜎2

𝑟2
⎡⎢
⎣

(𝑟 − 1)2

𝑛𝑘
+

𝑟
∑
𝑖=1
𝑖≠𝑘

1
𝑛𝑖

⎤⎥
⎦

2.4.5 The Analysis of Variance
In this section, we obtain a decomposition of the total variation of the individual measurements around the overall
mean, the Total Sum of Squares, which we will denote 𝑆𝑆𝑇 𝑂. Further, we will derive the expectations of the
error and treatment sums of squares (and mean squares).

𝑌 •• =
∑𝑟

𝑖=1 ∑𝑛𝑖
𝑗=1 𝑌𝑖𝑗

𝑛𝑇
𝑆𝑆𝑇 𝑂 =

𝑟
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 ••)2

A useful expansion of this is helpful for derivations below.
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𝑆𝑆𝑇 𝑂 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌 2
𝑖𝑗 + 𝑌 2

•• − 2𝑌𝑖𝑗𝑌 ••)

⇒ 𝑆𝑆𝑇 𝑂 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌 2
𝑖𝑗 + 𝑛𝑇 𝑌 2

•• − 2𝑌 ••
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌𝑖𝑗

⇒ 𝑆𝑆𝑇 𝑂 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌 2
𝑖𝑗 − 𝑛𝑇 𝑌 2

••

As was the case for the linear regression model, we obtain fitted values for the observations in the form ̂𝑌 = 𝑋𝑏.
This leads to the error sum of squares, labelled as 𝑆𝑆𝐸 = (𝑌 − ̂𝑌 )′ (𝑌 − ̂𝑌 ) here (note that in R, for linear models,
it is labelled as 𝑅𝑆𝑆, for the residual sum of squares).

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗)
2

Noting that for this model, ̂𝑌𝑖𝑗 = 𝑌 𝑖•, we obtain the following formula for 𝑆𝑆𝐸.

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 𝑖•)2

We can expand this form of 𝑆𝑆𝐸 which will be used to derive the unbiased estimator for 𝜎2, the error variance.

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌 2
𝑖𝑗 + 𝑌 2

𝑖• − 2𝑌𝑖𝑗𝑌 𝑖•)

⇒ 𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌 2
𝑖𝑗 +

𝑟
∑
𝑖=1

𝑛𝑖𝑌
2
𝑖• − 2

𝑟
∑
𝑖=1

𝑌 𝑖•𝑛𝑖𝑌 𝑖•

⇒ 𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌 2
𝑖𝑗 −

𝑟
∑
𝑖=1

𝑛𝑖𝑌
2
𝑖•

To obtain an unbiased estimator for 𝜎2, consider the following results from the Cell Means Model.

𝐸 {𝑌𝑖𝑗} = 𝜇𝑖 𝜎2 {𝑌𝑖𝑗} = 𝜎2

⇒ 𝐸 {𝑌 2
𝑖𝑗} = 𝜎2 {𝑌𝑖𝑗} + [𝐸 {𝑌𝑖𝑗}]2 = 𝜎2 + 𝜇2

𝑖

Similarly, we obtain the expected value of the treatment sample mean squared below.

𝐸 {𝑌 𝑖•} = 1
𝑛𝑖

𝑛𝑖

∑
𝑗=1

𝐸 {𝑌𝑖𝑗} = 𝜇𝑖 𝜎2 {𝑌 𝑖•} = 1
𝑛2

𝑖

𝑛𝑖

∑
𝑗=1

𝜎2 {𝑌𝑖𝑗} = 𝜎2

𝑛𝑖

⇒ 𝐸 {𝑌 2
𝑖•} = 𝜎2

𝑛𝑖
+ 𝜇2

𝑖

Next, we obtain 𝐸 {𝑆𝑆𝐸} making use of these results.

𝐸 {𝑆𝑆𝐸} =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝐸 {𝑌 2
𝑖𝑗} −

𝑟
∑
𝑖=1

𝑛𝑖𝐸 {𝑌 2
𝑖•}
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⇒ 𝐸 {𝑆𝑆𝐸} =
𝑟

∑
𝑖=1

𝑛𝑖 (𝜎2 + 𝜇2
𝑖 ) −

𝑟
∑
𝑖=1

𝑛𝑖 (𝜎2

𝑛𝑖
+ 𝜇2

𝑖 )

⇒ 𝐸 {𝑆𝑆𝐸} = 𝑛𝑇 𝜎2 − 𝑟𝜎2 = (𝑛𝑇 − 𝑟) 𝜎2

Thus, if we divide 𝑆𝑆𝐸 by 𝑛𝑇 − 𝑟, we obtain an unbiased estimator of 𝜎2. This is the Mean Square Error,
denoted as 𝑀𝑆𝐸, and often labelled as 𝑆2 (as an estimator) and 𝑠2 when computed on an observed set of data.
The denominator 𝑛𝑇 − 𝑟 is the Error Degrees of Freedom.

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑛𝑇 − 𝑟 𝐸 {𝑀𝑆𝐸} = 𝜎2

The Treatment Sum of Squares, denoted as 𝑆𝑆𝑇 𝑅, acts like the regression sum of squares for linear regression
models. That is, 𝑆𝑆𝑇 𝑅 = ( ̂𝑌 − 𝑌 1)′ ( ̂𝑌 − 𝑌 1). Keeping in mind that the fitted value for 𝑌𝑖𝑗 is ̂𝑌𝑖𝑗 = 𝑌 𝑖•, we
obtain SSTR as follows.

𝑆𝑆𝑇 𝑅 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌 𝑖• − 𝑌 ••)2 =
𝑟

∑
𝑖=1

𝑛𝑖 (𝑌 𝑖• − 𝑌 ••)2

Again, it is helpful to expand this as before.

𝑆𝑆𝑇 𝑅 =
𝑟

∑
𝑖=1

𝑛𝑖 (𝑌 𝑖•)2 − 𝑛𝑇 𝑌 2
••

We know the expectation of the first term from the derivation of 𝐸 {𝑆𝑆𝐸}, so we just need the second term.

𝐸 {𝑌 ••} =
∑𝑟

𝑖=1 ∑𝑛𝑖
𝑗=1 𝐸 {𝑌𝑖𝑗}
𝑛𝑇

= ∑𝑟
𝑖=1 𝑛𝑖𝜇𝑖
𝑛𝑇

= 𝜇•

𝜎2 {𝑌 ••} = 1
𝑛2

𝑇

𝑟
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝜎2 {𝑌𝑖𝑗} = 𝜎2

𝑛𝑇

⇒ 𝐸 {𝑆𝑆𝑇 𝑅} =
𝑟

∑
𝑖=1

𝑛𝑖 (𝜎2

𝑛𝑖
+ 𝜇2

𝑖 ) − (𝜎2 + 𝑛𝑇 𝜇2
•)

⇒ 𝐸 {𝑆𝑆𝑇 𝑅} = 𝜎2(𝑟 − 1) +
𝑟

∑
𝑖=1

𝑛𝑖𝜇2
𝑖 − 𝑛𝑇 𝜇2

•

⇒ 𝐸 {𝑆𝑆𝑇 𝑅} = 𝜎2(𝑟 − 1) +
𝑟

∑
𝑖=1

𝑛𝑖 (𝜇𝑖 − 𝜇•)2

The treatment degrees of freedom are 𝑟 − 1, the number of treatments minus one. We compute the Treatment
Mean Square by dividing the Treatment Sum of Squares by its degrees of freedom and obtain its expectation
below.

𝑀𝑆𝑇 𝑅 = 𝑆𝑆𝑇 𝑅
𝑟 − 1 𝐸 {𝑀𝑆𝑇 𝑅} = 𝜎2 + ∑𝑟

𝑖=1 𝑛𝑖 (𝜇𝑖 − 𝜇•)2

𝑟 − 1

When all treatment means are equal, that is, 𝜇1 = ⋯ = 𝜇𝑟 = 𝜇•, then the expected mean squares for treatment
and error are equal (𝐸 {𝑀𝑆𝑇 𝑅} = 𝐸 {𝑀𝑆𝐸} = 𝜎2), otherwise it is higher for treatments than for error. Further,
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under the assumptions of the model thus far (normal, independent errors with constant variance) we obtain the
following results.

𝑆𝑆𝐸
𝜎2 = (𝑛𝑇 − 𝑟) 𝑀𝑆𝐸

𝜎2 ∼ 𝜒2
𝑛𝑇 −𝑟

𝑆𝑆𝑇 𝑅
𝜎2 = (𝑟 − 1)𝑀𝑆𝑇 𝑅

𝜎2 ∼ 𝜒2
𝑟−1(𝜆)

where 𝜆 is the non-centrality parameter of the chi-square distribution. In the One-Way Analysis of Variance, 𝜆 is
computed as follow.

𝜆 = ∑𝑟
𝑖=1 𝑛𝑖 (𝜇𝑖 − 𝜇•)2

𝜎2

Further 𝑀𝑆𝑇 𝑅 and 𝑀𝑆𝐸 are independent. When all 𝜇𝑖 are equal, then the chi-square distribution for 𝑆𝑆𝑇 𝑅/𝜎2

is “central” chi-square, and we can use the (central) 𝐹 -distribution to test the hypothesis 𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑟.

We will make use of the following results when testing for differences among means. Suppose 𝑊1 is chi-square with
𝜈1 degrees of freedom, 𝑊2 is chi-square with 𝜈2 degrees of freedom and 𝑊1 and 𝑊2 are independent, then we get
the following distributional result.

𝑊1 ∼ 𝜒2
𝜈1

𝑊2 ∼ 𝜒2
𝜈2

𝑊1⊥𝑊2 ⇒ 𝐹 = 𝑊1/𝜈1
𝑊2/𝜈2

∼ 𝐹𝜈1,𝜈2

When 𝑊1 is chi-square with 𝜈1 degrees of freedom and non-centrality parameter 𝜆 and 𝑊2 is chi-square with 𝜈2
degrees of freedom and 𝑊1 and 𝑊2 are independent, then we get the following distributional result.

𝑊1 ∼ 𝜒2
𝜈1

(𝜆) 𝑊2 ∼ 𝜒2
𝜈2

𝑊1⊥𝑊2 ⇒ 𝐹 = 𝑊1/𝜈1
𝑊2/𝜈2

∼ 𝐹𝜈1,𝜈2
(𝜆)

This is the non-central 𝐹 -distribution. We can use R to obtain probabilities, densities, quantiles, and random
samples for non-central 𝐹 -distributions.
library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
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Chapter 3

Analysis of Treatment Means

In this chapter, we will consider estimation and inference concerning treatment/group means. We will first consider
estimating individual treatment means. Then, we will consider Contrasts among treatment means. Finally, we
consider all pairwise comparisons.

3.1 Individual Treatment Means
For the cell means model, we may be interested in making inference regarding the individual treatment.group means.
The model is of the following form.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛𝑖 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

The least squares estimator for 𝜇𝑖 is ̂𝜇𝑖 = 𝑌 𝑖•.

̂𝜇𝑖 = 𝑌 𝑖• = 1
𝑛𝑖

𝑛𝑖

∑
𝑗=1

𝑌𝑖𝑗 𝐸 {𝑌 𝑖•} = 1
𝑛𝑖

𝑛𝑖𝜇𝑖 = 𝜇𝑖 𝜎2 {𝑌 𝑖•} = 1
𝑛2

𝑖
𝑛𝑖𝜎2 = 𝜎2

𝑛𝑖

For this model, the treatment means are independent and we have the following distributional properties.

𝑌 𝑖• ∼ 𝑁 (𝜇𝑖,
𝜎2

𝑛𝑖
) (𝑛𝑇 − 𝑟) 𝑀𝑆𝐸

𝜎2 ∼ 𝜒2
𝑛𝑇 −𝑟

Further, 𝑌 𝑖• and 𝑀𝑆𝐸 are independent. Since 𝜎2 is unknown in practice and must be estimated with 𝑠2 = 𝑀𝑆𝐸,
we obtain the following results.

𝑠2 {𝑌 𝑖•} = 𝑀𝑆𝐸
𝑛𝑖

𝑌 𝑖• − 𝜇𝑖
𝑠 {𝑌 𝑖•} ∼ 𝑡𝑛𝑇 −𝑟

This leads to a (1 − 𝛼)100% Confidence Interval for 𝜇𝑖 of this form.

𝑌 𝑖• ± 𝑡1−𝛼/2;𝑛𝑇 −𝑟𝑠 {𝑌 𝑖•} ≡ 𝑌 𝑖• ± 𝑡1−𝛼/2;𝑛𝑇 −𝑟√𝑀𝑆𝐸
𝑛𝑖

In the rare situation that we wish to test 𝐻0 ∶ 𝜇𝑖 = 𝑐 for some pre-specified constant 𝑐, we can compute the
𝑡-statistic as follows.

Test Statistic: 𝑡∗
𝑖 = 𝑌 𝑖• − 𝑐

𝑠 {𝑌 𝑖•} Rejection Region: |𝑡∗
𝑖 | ≥ 𝑡1−𝛼/2;𝑛𝑇 −𝑟

39
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## Comparing Two Treatment Means

In some cases, researchers may wish to compare two specific treatment means. In this case, suppose the goal is to
compare treatments 𝑖 and 𝑖′. The parameter of interest is 𝐷 = 𝜇𝑖 − 𝜇𝑖′ and the estimator is 𝐷̂ = 𝑌 𝑖• − 𝑌 𝑖′•. The
mean and variance of 𝐷̂ are given below.

𝐸 {𝐷̂} = 𝐸 {𝑌 𝑖• − 𝑌 𝑖′•} = 𝜇𝑖 − 𝜇𝑖′ = 𝐷

𝜎2 {𝐷̂} = 𝜎2 {𝑌 𝑖•} + 𝜎2 {𝑌 𝑖′•} = 𝜎2 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

As 𝜎2 is not known in practice, the estimated variance of 𝐷̂ replaces 𝜎2 with 𝑀𝑆𝐸.

𝑠2 {𝐷̂} = 𝑠2 {𝑌 𝑖•} + 𝑠2 {𝑌 𝑖′•} = 𝑀𝑆𝐸 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

A (1 − 𝛼)100% Confidence Interval for 𝐷 = 𝜇𝑖 − 𝜇𝑖′ is obtained as follows, as well as a test of 𝐻0 ∶ 𝐷 = 0 versus
𝐻𝐴 ∶ 𝐷 ≠ 0.

Confidence Interval: 𝐷̂ ± 𝑡1−𝛼/2;𝑛𝑇 −𝑟𝑠 {𝐷̂} ≡ 𝐷̂ ± 𝑡1−𝛼/2;𝑛𝑇 −𝑟√𝑀𝑆𝐸 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

Test Statistic: 𝑡∗ = 𝐷̂
𝑠 {𝐷̂}

Rejection Region: |𝑡∗| ≥ 𝑡1−𝛼/2;𝑛𝑇 −𝑟

The only difference between this and the 2-sample 𝑡-test is that all 𝑟 treatments/groups are used to estimate 𝜎2,
and increasing the degrees of freedom to 𝑛𝑇 −𝑟. We will consider adjustments for comparing all pairs of treatments
later in the chapter.

3.2 Contrasts Among Treatment Means
A Contrast is any linear function of treatment means such that the coefficients sum to 0. Thus, for instance
𝐷 = 𝜇𝑖 − 𝜇𝑖′ is a contrast among treatment means that only involves the difference between treatments 𝑖 and 𝑖′. In
general, we define contrasts as follows.

𝐿 =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 such that:
𝑟

∑
𝑖=1

𝑐𝑖 = 0

The estimator for 𝐿 is 𝐿̂ that replaces the {𝜇𝑖} with the treatment means {𝑌 𝑖•}.

𝐿̂ =
𝑟

∑
𝑖=1

𝑐𝑖𝑌 𝑖• 𝐸 {𝐿̂} =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 = 𝐿

𝜎2 {𝐿̂} =
𝑟

∑
𝑖=1

𝑐2
𝑖

𝜎2

𝑛𝑖
𝑠2 {𝐿̂} = 𝑀𝑆𝐸

𝑟
∑
𝑖=1

𝑐2
𝑖

𝑛𝑖

We can make use of the 𝑡-distribution to obtain confidence intervals and tests regarding contrasts. Also, we can use
an 𝐹 -test as well.

𝐿̂ − 𝐿
𝑠 {𝐿̂}

∼ 𝑡𝑛𝑇 −𝑟 ⇒ (1 − 𝛼)100% CI for L: 𝐿̂ ± 𝑡1−𝛼/2;𝑛𝑇 −𝑟𝑠 {𝐿̂}



3.2. CONTRASTS AMONG TREATMENT MEANS 41

For testing 𝐻0 ∶ 𝑙 = 0 versus 𝐻𝐴 ∶ 𝐿 ≠ 0, we can use either a 𝑡-test or 𝐹 -test, which provide the same conclusions
and 𝑃 -values. The 𝑡-test is given here.

Test Statistic: 𝑡∗ = 𝐿̂
𝑠 {𝐿̂}

Rejection Region: |𝑡∗| ≥ 𝑡1−𝛼/2;𝑛𝑇 −𝑟

For the 𝐹 -test, we first define the sum of squares for the contrast, then construct the 𝐹 -statistic.

Contrast Sum of Squares: 𝑆𝑆𝐿 =
(𝐿̂)2

∑𝑟
𝑖=1

𝑐2
𝑖

𝑛𝑖

𝑛1 = ⋯ = 𝑛𝑟 = 𝑛 ⇒ 𝑆𝑆𝐿 = 𝑛
(𝐿̂)2

∑𝑟
𝑖=1 𝑐2

𝑖

Test Statistic: 𝐹 ∗ = 𝑆𝑆𝐿
𝑀𝑆𝐸 Rejection Region: 𝐹 ∗ ≥ 𝐹1−𝛼;1,𝑛𝑇 −𝑟

Two contrasts 𝐿1 = ∑𝑟
𝑖=1 𝑎𝑖𝜇𝑖 and 𝐿2 = ∑𝑟

𝑖=1 𝑏𝑖𝜇𝑖 where ∑𝑟
𝑖=1 𝑎𝑖 = ∑𝑟

𝑖=1 𝑏𝑖 = 0 are said to be Orthogonal
Contrasts if the product of their coefficients divided by their sample sizes is 0.

𝐿1, 𝐿2 are orthogonal if:
𝑟

∑
𝑖=1

𝑎𝑖𝑏𝑖
𝑛𝑖

= 0

When the experiment is balanced, this simplifies to ∑𝑟
𝑖=1 𝑎𝑖𝑏𝑖 = 0. Among 𝑟 treatments/groups, we can construct

𝑟 − 1 pairwise orthogonal contrasts, whose sums of squares and degrees of freedom sum to 𝑆𝑆𝑇 𝑅 and 𝑑𝑓𝑇 𝑅,
respectively.

Example 3.1 - Virtual Training for a Lifeboat Launching Task

Here, we re-describe the virtual training study to set up some interesting contrasts among the training methods. A
study in South Korea compared 𝑟 = 4 methods of training to conduct a lifeboat launching task [Jung and Ahn, 2018].
The treatments and their labels from the paper are given below and the response 𝑌 was a procedural knowledge
score for subjects post training.

• Lecture/Materials - Traditional Lecture with no computer component (LEC/MAT)
• Monitor/Keyboard - Trained virtually with a monitor, keyboard, and mouse (MON/KEY)
• Head-Mounted Display/Joypad - Trained virtually with HMD and joypad (HMD/JOY)
• Head-Mounted Display/Wearable Sensors - (HMD/WEA)

There were a total of 𝑛𝑇 = 64 subjects and they were randomized so that 16 subjects received each treatment
(𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 16).
Consider the following 3 contrasts.

• Lecture Materials versus Virtual Training 𝑎1 = 3, 𝑎2 = 𝑎3 = 𝑎4 = −1
• Monitor/Keyboard versus Head Mounted Display 𝑏1 = 0, 𝑏2 = 2, 𝑏3 = 𝑏4 = −1
• Head Mounted Diplays: Joypad versus Wearables 𝑐1 = 𝑐2 = 0, 𝑐3 = 1, 𝑐4 = −1

All of these are contrasts, as their coefficients sum to zero. Further, they are pairwise orthogonal.

𝑟
∑
𝑖=1

𝑎𝑖𝑏𝑖 = 3(0) + (−1)(2) + (−1)(−1) + (−1)(−1) = 0 − 2 + 1 + 1 = 0

𝑟
∑
𝑖=1

𝑎𝑖𝑐𝑖 = 3(0) + 2(0) + (−1)(1) + (−1)(−1) = 0 + 0 − 1 + 1 = 0
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Table 3.1: Lifeboat Virtual Training Contrast Calculations

n Mean a b d L1 L2 L3 𝑎2/𝑛 𝑏2/𝑛 𝑑2/𝑛
LEC/MAT (i=1) 16 4.931 3 0 0 14.793 0 0 0.5625 0 0
MON/KEY (i=2) 16 7.708 -1 2 0 -7.708 15.416 0 0.0625 0.25 0
HMD/JOY (i=3) 16 6.736 -1 -1 1 -6.736 -6.736 6.736 0.0625 0.0625 0.0625
HMD/WEA (i=4) 16 6.875 -1 -1 -1 -6.875 -6.875 6.875 0.0625 0.0625 0.0625
Sum 64 0 0 0 -6.526 1.805 -0.139 0.75 0.375 0.125

𝑟
∑
𝑖=1

𝑏𝑖𝑐𝑖 = 0(0) + 2(0) + (−1)(1) + (−1)(−1) = 0 + 0 − 1 + 1 = 0

Table 3.1 gives calculations necessary to obtain the Confidence Intervals, 𝑡-tests, sums of squares and 𝐹 -tests for
the three contrasts. Recall from the last chapter, the following quantities.

𝑆𝑆𝑇 𝑅 = 65.628 𝑑𝑓𝑇 𝑅 = 3 𝑆𝑆𝐸 = 265.815 𝑑𝑓𝐸 = 60 𝑀𝑆𝐸 = 4.430
The critical 𝑡-value for 𝛼 = .05 and 𝑑𝑓𝐸 = 60 is 𝑡.975,60 = 2.000.

For contrast 𝐿1, comparing the virtual training methods to the “control” treatment has the following values.

𝐿̂1 = 3𝑌 1• − 𝑌 2• − 𝑌 3• − 𝑌 4• = −6.526

𝑠 {𝐿̂1} =
√√√
⎷

𝑀𝑆𝐸
4

∑
𝑖=1

𝑎2
𝑖

𝑛𝑖
= √4.430(0.75) = 1.823

95% CI for 𝐿1 ∶ −6.526 ± 2.000(1.823) ≡ −6.526 ± 3.646 ≡ (−10.172, −2.880)

Test Statistic: 𝑡∗
1 = −6.526

1.823 = −3.580

Rejection Region: |𝑡∗
1| ≥ 2.000 𝑃 = 2𝑃 (𝑡60 ≥ | − 3.580|) = .0007

𝑆𝑆𝐿1 =
(𝐿̂)2

∑𝑟
𝑖=1

𝑎2
𝑖

𝑛𝑖

= (−6.526)2

0.75 = 56.785

Test Statistic: 𝐹 ∗
1 = 𝑆𝑆𝐿1

𝑀𝑆𝐸 = 56.785
4.430 = 12.818

Rejection Region: 𝐹 ∗
1 ≥ 𝐹.95,1,60 = 4.001 𝑃 = 𝑃 (𝐹1,60 ≥ 12.818) = .0007

Without going through the calculations, we obtain the following values for 𝐿2 and 𝐿3.

𝐿2 ∶ 𝐿̂2 = −1.805 𝑠 {𝐿̂2} = 1.289 𝑆𝑆𝐿2 = 8.688

𝐿3 ∶ 𝐿̂3 = −0.139 𝑠 {𝐿̂3} = 0.744 𝑆𝑆𝐿3 = 0.155
The sums of squares for the three pairwise orthogonal contrasts sum up to the treatment sum of squares.

𝑆𝑆𝐿1 + 𝑆𝑆𝐿2 + 𝑆𝑆𝐿3 = 56.785 + 8.688 + 0.155 = 65.628 = 𝑆𝑆𝑇 𝑅
The main take away is that the three virtual training methods (as a group) have significantly higher scores than the
Lecture/Material control group. There appears to be no significant differences among the virtual training methods.

While it is possible to construct contrasts directly in R, it is very easy to compute them directly, as we show below.
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## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## vt.n vt.mean vt.var
## [1,] 16 4.930550 3.763633
## [2,] 16 7.708337 2.044874
## [3,] 16 6.736106 7.952409
## [4,] 16 6.874994 3.960078

## Lhat Std Err t* LB UB SS F* P(>F*)
## L1:(3,-1,-1,-1) -6.528 1.823 -3.581 -10.174 -2.882 56.816 12.825 0.001
## L2:(0,2,-1,-1) 1.806 1.289 1.401 -0.773 4.384 8.694 1.962 0.166
## L3:(0,0,1,-1) -0.139 0.744 -0.187 -1.627 1.350 0.154 0.035 0.853

∇

3.3 Simultaneous Comparisons
Often when fitting models, we wish to make multiple comparisons simultaneously. If we have 𝑘 independent
comparisons and we make each one with significance level of 𝛼, the chances that all conclusions are correct is
(1 − 𝛼)𝑘 which is less than 1 − 𝛼.

Other issues arise when researchers wait until observing the data to choose which comparisons to make (like
comparing the maximum and minimum observed means). This practice has the effect of inflating the Type I error
rate, 𝛼, and is referred to as data snooping.

There are various methods for making simultaneous corrections. One common method is to do each comparison
with 𝛼∗ = 𝛼/𝑘, and then (1 − 𝛼∗)𝑘 ≥ (1 − 𝛼).
For instance, if we wish to compute 𝑘 = 5 confidence intervals, and we want them all to contain their true parameter
with 95% confidence, 𝛼 = 0.05 and 𝛼∗ = 𝛼/𝑘 = 0.01, then we should construct 99% confidence intervals for the
individual parameters. Note that (1 − .01)5 = .9510 > .95.

In this section, several procedures are described for making simultaneous comparisons.

3.3.1 Tukey’s Honest Significant Difference (HSD)
This method is widely used for ANOVA models. It makes use of the Studentized Range Distribution with
critical values given in many textbooks, online, and on the course slides. In R, the qtukey function can be used to
obtain critical values and the ptukey function can be used to obtain adjusted 𝑃 -values.

The basis for the distribution is as follows, where 𝑌1, … , 𝑌𝑟 are independent and normally distributed with mean
𝜇 and variance 𝜎2. Further, let 𝑠2 be an unbiased estimator of 𝜎2 that is independent of 𝑌1, … , 𝑌𝑟, with degrees
of freedom 𝜈. Note That 𝑠2 cannot be computed from 𝑌1, … , 𝑌𝑟 in this situation, but it does work when we are
comparing treatment/group means below. Let 𝑤 be the range of 𝑌1, … , 𝑌𝑟 and 𝑤/𝑠 be the studentized range,
indexed by the sample size, 𝑟 and the degrees of freedom for 𝑠, 𝜈. We will use 𝑞1−𝛼;𝑟,𝜈 represent the 1 − 𝛼 quantile
of the Studentized Range distribution.

𝑤 = max (𝑌1, … , 𝑌𝑟) − min (𝑌1, … , 𝑌𝑟) 𝑤
𝑠 = 𝑞(𝑟, 𝜈)

𝑃 (𝑤
𝑠 = 𝑞(𝑟, 𝜈) ≤ 𝑞1−𝛼;𝑟,𝜈) = 1 − 𝛼
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⇒ 𝑃 (|𝑌𝑖 − 𝑌𝑖′ |
𝑠 ≤ 𝑞1−𝛼;𝑟,𝜈) = 1 − 𝛼 for all 𝑖, 𝑖′

Now, consider making all pairwise comparisons among means under the assumption of equal means
(𝜇1 = ⋯ = 𝜇𝑟 = 𝜇) and equal sample sizes (𝑛1 = ⋯ = 𝑛𝑟 = 𝑛).
Then, we have the following results for the sampling distribution of 𝑌 𝑖• and its estimated variance, which is unbiased
with 𝑛𝑇 − 𝑟 degrees of freedom. Furthermore the sample means {𝑌 𝑖•} and 𝑀𝑆𝐸 are independent.

𝑌 𝑖• ∼ 𝑁 (𝜇, 𝜎2

𝑛 ) 𝑠2 {𝑌 𝑖•} = 𝑀𝑆𝐸
𝑛

⇒ 𝑃 (∣𝑌 𝑖• − 𝑌 𝑖′•∣
√𝑀𝑆𝐸/𝑛

≤ 𝑞1−𝛼;𝑟,𝜈) = 1 − 𝛼 for all 𝑖, 𝑖′

Then we conclude 𝜇𝑖 ≠ 𝜇𝑖′ if the following criteria is met.

∣𝑌 𝑖• − 𝑌 𝑖′•∣
√𝑀𝑆𝐸/𝑛

≥ 𝑞1−𝛼;𝑟,𝜈 ⇒ ∣𝑌 𝑖• − 𝑌 𝑖′•∣ ≥ 𝑞1−𝛼;𝑟,𝜈√𝑀𝑆𝐸
𝑛

Subsequently this method was generalized to allow for unequal sample sizes with the following decision rule. Con-
clude 𝜇𝑖 ≠ 𝜇𝑖′ if the following result holds.

∣𝑌 𝑖• − 𝑌 𝑖′•∣ ≥ 𝑞1−𝛼;𝑟,𝜈√
2

√𝑀𝑆𝐸 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

An equivalent way of writing this test, in terms of 𝐷 = 𝜇𝑖 − 𝜇𝑖′ and 𝐷̂ = 𝑌 𝑖• − 𝑌 𝑖′• is to reject 𝐻0 ∶ 𝐷 = 0 based
on the following test.

Test Statistic: 𝑞∗ =
√

2𝐷̂
𝑠 {𝐷̂}

Rejection Region: |𝑞∗| ≥ 𝑞1−𝛼;𝑟,𝜈

The adjusted 𝑃 -value is the area above |𝑞∗| in the Studentized Range distribution.

To obtain simultaneous (1 − 𝛼)100% Confidence Intervals for all 𝑟(𝑟 − 1)/2 mean differences we can simply invert
the test as follows.

(1 − 𝛼)100% for 𝜇𝑖 − 𝜇𝑗 ∶ (𝑌 𝑖• − 𝑌 𝑖′•) ± 1√
2

𝑞1−𝛼;𝑟,𝑛𝑇 −𝑟√𝑀𝑆𝐸 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

Example 3.2 - Virtual Training for a Lifeboat Launching Task

First, we obtain 𝑟 = 4, 𝜈 = 64 − 4 = 60, and 𝑞.95;4,60 = 3.737 for this study. Using calculations from before, we
have the following results.

𝑛1 = 𝑛2 = 𝑛3 = 𝑛4 = 16 𝑦1• = 4.931 𝑦2• = 7.708 𝑦3• = 6.736 𝑦4• = 6.875

𝑀𝑆𝐸 = 4.430 𝑠 {𝐷̂} = √4.430 ( 1
16 + 1

16) = 0.744

Next we compute the Tukey HSD for all pairs of means (as this is a balanced design).

𝐻𝑆𝐷𝑖𝑖′ = 3.737√
2

(0.744) = 2.642(0.744) = 1.966
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That is, any pairs of means that differ by more than 1.966 in absolute value will be declared significantly different.
We also obtain simultaneous 95% Confidence Intervals by adding and subtracting 1.966 to each difference 𝐷̂. Here
we compute the values for the comparison of treatments 1 (LEC/MAT) and 2 (MON/KEY). Then we will use the
R function TukeyHSD after fitting the model with an aov object.

𝐷̂21 = 𝑌 2• − 𝑌 1• = 7.708 − 4.931 = 2.777

95% Simultaneous CI for 𝜇2 − 𝜇1 ∶ 2.777 ± 1.966 ≡ (0.811, 4.743)

Thus, we can conclude that the Monitor/Keyboard condition provides higher scores on average than the Lec-
ture/Material condition. That is 𝜇2 > 𝜇1. We next obtain the adjusted 𝑃 -value, making use of the ptukey
function in R. First, though, we have to scale it back to a studentized range, 𝑞∗.

𝑞∗ =
√

2𝐷̂
𝑠 {𝐷̂}

=
√

2(2.777)
0.744 = 5.279 𝑃 = 𝑃 (𝑞4,60 ≥ |5.279|) = .0023

Now, we use R to run all possible comparisons. Note that we have to fit an aov object and not a lm object to use
the TukeyHSD function.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

##
## Call:
## aov(formula = procKnow ~ factor(grp.trt), data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9305 0.5262 9.370 2.37e-13 ***
## factor(grp.trt)2 2.7778 0.7442 3.733 0.000423 ***
## factor(grp.trt)3 1.8056 0.7442 2.426 0.018277 *
## factor(grp.trt)4 1.9444 0.7442 2.613 0.011329 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.1981, Adjusted R-squared: 0.158
## F-statistic: 4.941 on 3 and 60 DF, p-value: 0.003931

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 65.664 21.8880 4.9406 0.003931 **
## Residuals 60 265.815 4.4302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = procKnow ~ factor(grp.trt), data = vt)
##
## $`factor(grp.trt)`
## diff lwr upr p adj
## 2-1 2.7777875 0.8113167 4.7442583 0.0023332
## 3-1 1.8055563 -0.1609146 3.7720271 0.0829543
## 4-1 1.9444438 -0.0220271 3.9109146 0.0537097
## 3-2 -0.9722313 -2.9387021 0.9942396 0.5624876
## 4-2 -0.8333438 -2.7998146 1.1331271 0.6788308
## 4-3 0.1388875 -1.8275833 2.1053583 0.9976681

Note that only treatments 2 and 1 are significantly different. The Confidence Interval does not contain 0 and the
adjusted 𝑃 -value is below 0.05. Treatments 1 and 4 are close to being significantly different, but the Confidence
Interval contains 0 and the 𝑃 -value is above 0.05.

∇

3.3.2 Scheffe’s Method for Multiple Comparisons
This method is very conservative, but due to its procedure, it can be applied to all possible contrasts among
treatment means. Using previous results on contrasts, we have the following set up for the procedure.

𝐿 =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 such that
𝑟

∑
𝑖=1

𝑐𝑖 = 0

𝐿̂ =
𝑟

∑
𝑖=1

𝑐𝑖𝑌 𝑖• 𝑠 {𝐿̂} = √𝑀𝑆𝐸
𝑟

∑
𝑖=1

𝑐2
𝑖

𝑛𝑖

Then we construct simultaneous intervals of the following form.

(1 − 𝛼)100% Simultaneous CI for 𝐿 ∶ 𝐿̂ ± (√(𝑟 − 1)𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟) 𝑠 {𝐿̂}

The critical 𝐹 -value is the same critical value for testing 𝐻0 ∶ 𝜇1 = ⋯ = 𝜇𝑟 for the Analysis of Variance. Note that
when this hypothesis is true, all contrasts are 0.

We can also simultaneously test whether a set of contrasts are 0.

𝐻0 ∶ 𝐿 = ∑𝑟
𝑖=1 𝑐𝑖𝜇𝑖 = 0 vs 𝐻𝐴 ∶ 𝐿 = ∑𝑟

𝑖=1 𝑐𝑖𝜇𝑖 ≠ 0

Test Statistic: 𝐹 ∗ =
(𝐿̂)2

(𝑟 − 1)𝑠2 {𝐿̂}
Rejection Region: 𝐹 ∗ ≥ 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟

Example 3.3 - Virtual Training for a Lifeboat Launching Task

Consider the three pairwise orthogonal contrasts that we previously estimated.

• 𝐿1: Lecture/Materials vs Virtual Training
• 𝐿2: Monitor/Keyboard versus Head Mounted Displays
• 𝐿3: HMD/Joypad versus HMD/Wearables

The critical 𝐹 -value we need is 𝐹.95;3,60 = 2.758, leading to the following critical value for the Scheffe simultaneous
confidence intervals.
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√(𝑟 − 1)𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟 = √(4 − 1)2.758 = 2.876

Next, we give the estimated contrasts, their standard errors, and simultaneous 95% Confidence Intervals for the
population based contrasts.

𝐿̂1 = −6.526 𝑠 {𝐿̂1} = 1.823

𝐿̂2 = 1.805 𝑠 {𝐿̂2} = 1.289

𝐿̂3 = −0.139 𝑠 {𝐿̂3} = 0.744

95% CI for: 𝐿1 = 3𝜇1 − 𝜇2 − 𝜇3 − 𝜇4 ∶ −6.526 ± 2.876(1.823)

≡ −6.526 ± 5.243 ≡ (−11.769, −1.283)

95% CI for: 𝐿2 = 2𝜇2 − 𝜇3 − 𝜇4 ∶ 1.805 ± 2.876(1.289)

≡ 1.805 ± 3.707 ≡ (−1.902, 5.512)

95% CI for: 𝐿3 = 𝜇3 − 𝜇4 ∶ −0.139 ± 2.876(0.744)

≡ −0.139 ± 2.140 ≡ (−2.779, 2.001)

As a comparison between no adjustment for multiple Confidence Intervals and the Scheffe adjustment, consider the
case of 𝐿1. When there was no adjustment, the interval was (10.172, −2.880). When the Scheffe adjustment was
used, it was (11.769, −1.283). Again, Scheffe’s method can be used for all possible contrasts simultaneously.

∇

3.3.3 Bonferroni Method for Multiple Comparisons
The Bonferroni method is widely used in many situations where multiple tests are conducted (not just among
treatment means). If we have 𝑔 pre-planned comparisons or contrasts to be made, we make each comparison at the
𝛼∗ = 𝛼/𝑔 significance level. Note that a special case of this is making 𝑔 = 𝑟(𝑟 − 1)/2 comparisons among all pairs of
treatment means. In that case, Tukey’s HSD will provide more powerful tests than the Bonferroni method (unless
𝑟=2, and there is only one comparison).

𝐿 =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 such that
𝑟

∑
𝑖=1

𝑐𝑖 = 0

𝐿̂ =
𝑟

∑
𝑖=1

𝑐𝑖𝑌 𝑖• 𝑠 {𝐿̂} = √𝑀𝑆𝐸
𝑟

∑
𝑖=1

𝑐2
𝑖

𝑛𝑖

Then we construct simultaneous confidence intervals of the following form.

(1 − 𝛼)100% Simultaneous CI for 𝐿 ∶ 𝐿̂ ± 𝑡1−𝛼/(2𝑔);𝑛𝑇 −𝑟𝑠 {𝐿̂}
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Tables that give critical 𝑡-values for the Bonferroni method are available in textbooks, online, and on the course
slides.

Simultaneous tests for 𝑔 pre-planned contrasts can be conducted to test whether the contrast is equal to zero.

𝐻0 ∶ 𝐿 =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 = 0 𝐻𝐴 ∶ 𝐿 =
𝑟

∑
𝑖=1

𝑐𝑖𝜇𝑖 ≠ 0

Test Statistic: 𝑡∗ = 𝐿̂
𝑠 {𝐿̂}

Rejection Region: |𝑡∗| ≥ 𝑡1−𝛼/(2𝑔),𝑛𝑇 −𝑟

Adjusted P-value: 𝑃 = min (1, 𝑔 × 2𝑃 (𝑡𝑛𝑇 −𝑟 ≥ |𝑡∗|))

Example 3.4 - Virtual Training for a Lifeboat Launching Task

Consider the 𝑔 = 3 pairwise orthogonal contrasts that we previously estimated.

• 𝐿1 Lecture/Materials vs Virtual Training
• 𝐿2 Monitor/Keyboard versus Head Mounted Displays
• 𝐿3 HMD/Joypad versus HMD/Wearables

The critical 𝑡-value we need is 𝑡1−.05/(2(3));60 = 2.463. We will conduct the three simultaneous 𝑡-tests and obtain
their adjusted 𝑃 -values.

Next, we give the estimated contrasts, their standard errors, and simultaneous 𝑡-tests with an overall experimentwise
error rate of 𝛼 = 0.05 for the population based contrasts. Note that the individual tests are being conducted at
𝛼∗ = .05/3 = .0167 error rate.

𝐿̂1 = −6.526 𝑠 {𝐿̂1} = 1.823 𝑡∗
1 = −6.526

1.823 = −3.580

𝐿̂2 = 1.805 𝑠 {𝐿̂2} = 1.289 𝑡∗
2 = 1.805

1.289 = 1.400

𝐿̂3 = −0.139 𝑠 {𝐿̂3} = 0.744 𝑡∗
3 = −0.139

0.744 = −0.187

Thus, again, only the first contrast is significant. We compute the 3 adjusted 𝑃 -values by first obtaining the 2-sided
tail areas for the 𝑔 = 3 𝑡-statistics, then applying the Bonferroni adjustments.

2𝑃 (𝑡60 ≥ |3.580|) = 2(.00034) = .0007 𝑃1 = min (1, 3(.0007)) = .0021
2𝑃 (𝑡60 ≥ |1.400|) = 2(.0833) = .1666 𝑃2 = min (1, 3(.1666)) = .4998

2𝑃 (𝑡60 ≥ | − 0.187|) = 2(.4261) = .8522 𝑃3 = min (1, 3(.8522)) = 1

Note that if we used the Bonferroni method for comparing all 𝑔 = 4(4 − 1)/2 = 6 pairs of treatment means, the
critical 𝑡-value would be 𝑡1−.05/(2(6));60 = 2.729. Since the standard error for the difference in two mean for this
example is 𝑠 {𝐷̂} = 0.744, the simultaneous confidence intervals would be of the following form.

𝐷̂𝑖𝑖′ ± 2.729(0.744) ≡ 𝐷̂𝑖𝑖′ ± 2.030

These intervals are slightly wider than the Tukey based intervals (𝐷̂𝑖𝑖′ ± 1.966). The same conclusions among
treatment means are made.

∇
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3.3.4 Multiple Range Methods
In this section, we briefly describe two methods that use multiple ranges for comparisons: Student-Newman-
Keuls’ (often shortened to SNK) and Duncan’s methods. They both are based on ordering the observed means.
Neither can be used to construct simultaneous confidence intervals.

𝑌 (1)• ≤ ⋯ ≤ 𝑌 (𝑟)• 𝑛(𝑖) is the sample size for the ordered groups

Each method uses different critical values for testing pairs of treatment means, depending on how many means are
between them. They both begin by comparing the extreme means, which encompass 𝑟 means.

For the SNK method, we reject 𝐻0 ∶ 𝜇(𝑖) − 𝜇(𝑖′) = 0 where 𝑖 > 𝑖′ if the following result holds, where 𝑞1−𝛼;𝑘,𝑛𝑇 −𝑟 is
obtained from the studentized range distribution.

𝑌 (𝑖)• − 𝑌 (𝑖′)• ≥
𝑞1−𝛼;𝑘,𝑛𝑇 −𝑟√

2

√√√
⎷

𝑀𝑆𝐸 ( 1
𝑛(𝑖)

+ 1
𝑛(𝑖′)

) 𝑘 = 𝑖 − 𝑖′ + 1

If we fail to reject this hypothesis, no means between these are compared.

For Duncan’s method, the error rates are increased as the means are farther apart in terms of the number of means
between them. This makes it “easier” to detect differences at the cost of increasing overall error rates. In this
case we reject 𝐻0 ∶ 𝜇(𝑖) = 𝜇(𝑖′) = 0 if the following result holds. As with the SNK method, if two means are not
significantly different, no means between them are compared.

𝑌 (𝑖)• − 𝑌 (𝑖′)• ≥
𝑞(1−𝛼)𝑘−1;𝑘,𝑛𝑇 −𝑟√

2

√√√
⎷

𝑀𝑆𝐸 ( 1
𝑛(𝑖)

+ 1
𝑛(𝑖′)

) 𝑘 = 𝑖 − 𝑖′ + 1

Example 3.5 - Virtual Training for a Lifeboat Launching Task

For this example, we have the following values.

𝑟 = 4 𝑛1 = ⋯ = 𝑛𝑟 = 16 𝑀𝑆𝐸 = 4.430 𝑠 {𝐷̂} = √4.430 ( 1
16 + 1

16) = 0.744

𝑌 (1)• = 4.931 𝑌 (2)• = 6.736 𝑌 (3)• = 6.875 𝑌 (4)• = 7.708
We first test 𝜇(4) − 𝜇(1) = with range 𝑘 = 4 − 1 + 1 = 4. Using the qtukey function in R, we obtain the following
critical values and rejection regions based on the studentized range distribution with overall experimentwise error
rate 𝛼 = .05.

SNK: 𝑞(.95; 4, 60) = 3.737 Rejection Region: 𝑌 (4)• − 𝑌 (1)• ≥ 3.737√
2

(0.744) = 1.966

Duncan: 𝑞((.95)4−1; 4, 60) = 3.073 Rejection Region: 𝑌 (4)• − 𝑌 (1)• ≥ 3.073√
2

(0.744) = 1.617

The observed difference is 𝑦(4)• −𝑦(1)• = 7.708−4.931 = 2.777. Both methods conclude these means are significantly
different.

Next, we obtain the critical values and rejection regions for testing 𝐻0 ∶ 𝜇(4) − 𝜇(2) = 0 and 𝐻0 ∶ 𝜇(3) − 𝜇(1) = 0,
each with a range of 𝑘 = 3.

SNK: 𝑞(.95; 3, 60) = 3.399 Rejection Region: 𝑌 (4)• − 𝑌 (1)• ≥ 3.399√
2

(0.744) = 1.788

Duncan: 𝑞((.95)3−1; 3, 60) = 2.976 Rejection Region: 𝑌 (𝑖)• − 𝑌 (𝑗)• ≥ 2.976√
2

(0.744) = 1.566
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The observed differences are as follow.

𝑦(4)• − 𝑦(2)• = 7.708 − 6.736 = 0.972 𝑦(3)• − 𝑦(1)• = 6.875 − 4.931 = 1.944

Neither test rejects 𝐻0 ∶ 𝜇(4) − 𝜇(2) = 0 and both reject 𝐻0 ∶ 𝜇(3) − 𝜇(1) = 0. Thus, we do not compare 𝜇(4) and 𝜇(3).
We will conduct the following two tests though, each with 𝑘 = 2.

𝐻0 ∶ 𝜇(3) − 𝜇(2) = 0 𝐻0 ∶ 𝜇(2) − 𝜇(1) = 0

SNK: 𝑞(.95, 2, 60) = 2.829 Rejection Region: 𝑌 (𝑖)• − 𝑌 (𝑖′)• ≥ 2.829√
2

(0.744) = 1.488

Duncan: 𝑞((.95)2−1, 2, 60) = 2.829 Rejection Region: 𝑌 (𝑖)• − 𝑌 (𝑖′)• ≥ 2.829√
2

(0.744) = 1.488

The observed differences are as follow.

𝑦(3)• − 𝑦(2)• = 6.875 − 6.736 = 0.139 𝑦(2)• − 𝑦(1)• = 6.736 − 4.931 = 1.805

Thus, we fail to reject 𝐻0 ∶ 𝜇(3) − 𝜇(2) = 0, but we do reject 𝐻0 ∶ 𝜇(2) − 𝜇(1) = 0.

Based on both the SNK and Duncan methods, we conclude that all three virtual reality methods perform better
than the control (Lecture/Material) method. These methods are available in the agricolae package in R. Note
that the treatment factor must be defined as a factor outside of aov or lm object to be used in the SNK.test and
duncan.test functions.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

##
## Call:
## lm(formula = procKnow ~ grp.trt.f, data = vt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.0831 -1.4444 0.5774 1.5495 3.1900
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9305 0.5262 9.370 2.37e-13 ***
## grp.trt.f2 2.7778 0.7442 3.733 0.000423 ***
## grp.trt.f3 1.8056 0.7442 2.426 0.018277 *
## grp.trt.f4 1.9444 0.7442 2.613 0.011329 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.105 on 60 degrees of freedom
## Multiple R-squared: 0.1981, Adjusted R-squared: 0.158
## F-statistic: 4.941 on 3 and 60 DF, p-value: 0.003931
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## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## grp.trt.f 3 65.664 21.8880 4.9406 0.003931 **
## Residuals 60 265.815 4.4302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Study: vt.mod1 ~ "grp.trt.f"
##
## Student Newman Keuls Test
## for procKnow
##
## Mean Square Error: 4.430248
##
## grp.trt.f, means
##
## procKnow std r se Min Max Q25 Q50 Q75
## 1 4.930550 1.940008 16 0.5262039 0.3268 6.7509 4.230175 5.67085 6.375725
## 2 7.708337 1.429991 16 0.5262039 5.0733 9.7848 6.682275 8.33320 8.707800
## 3 6.736106 2.820002 16 0.5262039 1.6530 9.9261 5.298875 7.04235 9.101975
## 4 6.874994 1.989995 16 0.5262039 3.2286 9.8754 5.344875 6.84850 8.346350
##
## Alpha: 0.05 ; DF Error: 60
##
## Critical Range
## 2 3 4
## 1.488551 1.788389 1.966471
##
## Means with the same letter are not significantly different.
##
## procKnow groups
## 2 7.708337 a
## 4 6.874994 a
## 3 6.736106 a
## 1 4.930550 b

##
## Study: vt.mod1 ~ "grp.trt.f"
##
## Duncan's new multiple range test
## for procKnow
##
## Mean Square Error: 4.430248
##
## grp.trt.f, means
##
## procKnow std r se Min Max Q25 Q50 Q75
## 1 4.930550 1.940008 16 0.5262039 0.3268 6.7509 4.230175 5.67085 6.375725
## 2 7.708337 1.429991 16 0.5262039 5.0733 9.7848 6.682275 8.33320 8.707800
## 3 6.736106 2.820002 16 0.5262039 1.6530 9.9261 5.298875 7.04235 9.101975
## 4 6.874994 1.989995 16 0.5262039 3.2286 9.8754 5.344875 6.84850 8.346350
##
## Alpha: 0.05 ; DF Error: 60
##
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## Critical Range
## 2 3 4
## 1.488551 1.565916 1.616955
##
## Means with the same letter are not significantly different.
##
## procKnow groups
## 2 7.708337 a
## 4 6.874994 a
## 3 6.736106 a
## 1 4.930550 b

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)

## Warning: package 'car' was built under R version 4.1.3

## Loading required package: carData

## Warning: package 'carData' was built under R version 4.1.3

##
## Attaching package: 'car'

## The following object is masked from 'package:dplyr':
##
## recode

## The following object is masked from 'package:purrr':
##
## some
library(PMCMRplus)

## Warning: package 'PMCMRplus' was built under R version 4.1.3



Chapter 4

Alternative Tests for Treatment Effects

In this chapter, we consider tests for the equality of variances among treatments/groups, as well as alternatives to
the 𝐹 -test that are used in practice.

The tests for equal variances are Levene’s Test, Hartley’s Test, and Bartlett’s Test.

Alternatives to the 𝐹 -test are Randomization/Permutation Tests, the Kruskal-Wallis Test, and Welch’s
Test. Also, Weighted Least Squares can be implemented with unequal variances.

Three departures of the model assumptions are briefly described below.

• Non-normal Errors - This is generally not too problematic for the 𝐹 -test as long as data are not too far
from normal with reasonable sample sizes

• Unequal Error Variances - As long as the sample sizes are approximately equal this is not a large problem
for the 𝐹 -test, but can be an issue with very unbalanced designs.

• Non-independence of Error Terms This can cause issues for the 𝐹 -test. If each unit receives each
treatment, can get a stronger test based on a Repeated Measures Design.

4.1 Randomization/Permutation Tests
These tests are based on resampling, and make no assumptions on the distribution of the error terms. The test
treats the units observed in the study as a finite population of units with fixed error terms 𝜖𝑖𝑗. The model and
hypothesis are of the following forms.

𝑌𝑖𝑗 = 𝜇• + 𝜏𝑖 + 𝜖𝑖𝑗 𝐻0 ∶ 𝜏1 = ⋯ = 𝜏𝑟 = 0
The idea is that if this null hypothesis true, the observed values are due only to the units themselves and not to
treatment/group differences. A statistic, such as 𝐹 ∗ or 𝑆𝑆𝑇 𝑅 is computed and saved. Then, many permutations
of the 𝑛𝑇 responses are randomly assigned to the treatment labels of sizes 𝑛1, … , 𝑛𝑟. The statistic is computed for
each permutation and saved. The 𝑃 -value is the number of more extreme values than the observed statistic plus
1, divided by the number of permutations plus 1. That is, the observed value counts in both the numerator and
denominator. Often the number of permutations is 9999 in practice.

This test is applied to the lifeboat training data here.

Example 4.1 - Virtual Training for a Lifeboat Launching Task

Here we will apply the Randomization test to the Lifeboat training data. For the original sample, 𝑆𝑆𝑇 𝑅 = 65.664.
Note that for each permutation, the total sum of squares will be the same, 𝑆𝑆𝑇 𝑂 = 331.479, so we can simply save
𝑆𝑆𝑇 𝑅 from each permuation, as opposed to computing 𝐹 ∗. The R code and output are given below.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427

53
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## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## [1] 65.66393

## [1] 0.005
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The
𝑃 -value is 0.005, which is well below 0.05. Only 49 permutations out of 9999 had larger values of 𝑆𝑆𝑇 𝑅 than the
observed data. There is strong evidence of treatment effects.

∇

4.2 Tests for Constant Error Variances
In this section, we consider three widely used tests of equal variances among the treatments/groups. They are based
on various assumptions and do not always provide the same conclusion. The three tests covered here are Hartley’s
Test, Levene’s Test, and Bartlett’s Test. All tests are testing the following hypotheses.

𝐻0 ∶ 𝜎2
1 = ⋯ = 𝜎2

𝑟 𝐻𝐴 ∶ Not all 𝜎2
𝑖 are equal

4.2.1 Hartley’s Test
This test is dependent on the errors being normally distributed. Further, its derivation is based on equal sample
sizes. It uses a special table of critical values available in many textbooks and online. There is a R package that
purports to generate the critical values, but I have had issues with certain sample sizes/numbers of treatments in
obtaining results.

The test statistic (𝐻) is simply the ratio of the largest to smallest variance (not standard deviation), and the critical
values are indexed by the number of treatments/groups (𝑟) and the number of degrees of freedom for each sample
variance (𝑛 − 1), where 𝑛 is the number of units per treatment.
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Example 4.2 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. The sample
standard deviations are given below. The critical value for this test with 𝛼 = 0.05, 𝑟 = 4, and 𝑛 − 1 = 15 is
𝐻.95;4,15 = 4.01.

𝑠1 = 1.94 𝑠2 = 1.43 𝑠3 = 2.82 𝑠4 = 1.99 𝐻∗ = max (𝑠2
𝑖 )

min (𝑠2
𝑖 ) = (2.82)2

(1.43)2 = 3.89

The test statistic is just below the critical value, so we fail to reject the hypothesis of equal variances.

∇

4.2.2 Levene’s Test
This test, also known as the Brown-Forsythe test is robust to outliers and does not require equal sample sizes. There
are various versions, based on whether deviations from group means or medians are used. For each observation, we
compute 𝑑𝑖𝑗 as described here.

𝑑𝑖𝑗 = ∣𝑌𝑖𝑗 − ̃𝑌𝑖∣ ̃𝑌𝑖 = median (𝑌𝑖1, … , 𝑌𝑖𝑛𝑖
)

Then an Analysis of Variance is applied to the 𝑑𝑖𝑗, with 𝑑𝑖• and 𝑑•• being the treatment and overall means.

𝑆𝑆𝑇 𝑅𝐿 =
𝑟

∑
𝑖=1

𝑛𝑖 (𝑑𝑖• − 𝑑••)2 𝑑𝑓𝑇 𝑅 = 𝑟 − 1

𝑆𝑆𝐸𝐿 =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑑𝑖𝑗 − 𝑑𝑖•)2 𝑑𝑓𝐸 = 𝑛𝑇 − 𝑟

Then, just as when we tested for equality of means, we compute the 𝐹 -statistic and compare it with 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟.

Test Statistic: 𝐹 ∗
𝐿 =

[ 𝑆𝑆𝑇 𝑅𝐿
𝑟−1 ]

[ 𝑆𝑆𝐸𝐿
𝑛𝑇 −𝑟 ]

Rejection Region: 𝐹 ∗
𝐿 ≥ 𝐹1−𝛼;𝑟−1,𝑛𝑇 −𝑟

Example 4.3 - Virtual Training for a Lifeboat Launching Task

We will first create the 𝑑𝑖𝑗 “brute-force”, then use the leveneTest function in the car package.

## grp.trt procKnow med.trt
## 1 1 4.5614 5.67085
## 2 1 6.6593 5.67085
## 3 1 5.6427 5.67085
## 4 1 6.4394 5.67085
## 5 1 4.8635 5.67085
## 6 1 0.3268 5.67085

## grp.trt procKnow med.trt
## 59 4 7.5014 6.8485
## 60 4 8.2456 6.8485
## 61 4 4.2465 6.8485
## 62 4 3.2286 6.8485
## 63 4 6.5520 6.8485
## 64 4 9.8754 6.8485
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## Analysis of Variance Table
##
## Response: d
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 11.108 3.7026 2.1463 0.1038
## Residuals 60 103.506 1.7251

## Levene's Test for Homogeneity of Variance (center = "median")
## Df F value Pr(>F)
## group 3 2.1463 0.1038
## 60

We fail to reject the null hypothesis of equal variances. Note that we ran the leveneTest function on the 𝑌𝑖𝑗 values,
not on the with the 𝑑𝑖𝑗 values (it creates them internally).

∇

4.2.3 Bartlett’s Test
Bartlett’s test is based on the residuals being normally distributed and can be used in applications beyond ANOVA
models, including regression models with categorical predictors. It makes use of the individual variances {𝑠2

𝑖 } and
the pooled 𝑀𝑆𝐸 to obtain a chi-square statistic that is defined here.

Test Statistic: 𝑋2
𝐵 = 1

𝐶 [(𝑛𝑇 − 𝑟) ln(𝑀𝑆𝐸) −
𝑟

∑
𝑖=1

(𝑛𝑖 − 1) ln (𝑠2
𝑖 )]

where: 𝐶 = 1 + 1
3(𝑟 − 1) [(

𝑟
∑
𝑖=1

1
𝑛𝑖 − 1) − ( 1

𝑛𝑇 − 𝑟)]

Rejection Region: 𝑋2
𝐵 ≥ 𝜒2

1−𝛼;𝑟−1 𝑃 = 𝑃 (𝜒2
𝑟−1 ≥ 𝑋2

𝐵)

Example 4.4 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. The sample
standard deviations are given below. The critical value for this test with 𝛼 = 0.05 and 𝑟 = 4 is 𝜒.95;4−1 = 7.815.

𝑠2
1 = 3.764 𝑠2

2 = 2.045 𝑠2
3 = 7.952 𝑠2

4 = 3.960 𝑀𝑆𝐸 = 4.430

(𝑛𝑇 − 𝑟) ln(𝑀𝑆𝐸) = 89.304
𝑟

∑
𝑖=1

(𝑛𝑖 − 1) ln (𝑠2
𝑖 ) = 82.358

𝐶 = 1 + 1
3(𝑟 − 1) [(

𝑟
∑
𝑖=1

1
𝑛𝑖 − 1) − ( 1

𝑛𝑇 − 𝑟)] = 1 + 1
9 [ 4

16 − 1 − 1
64 − 4] = 1.028

Test Statistic: 𝑋2
𝐵 = 1

1.028(89.304 − 82.358) = 6.757 𝑃 = 𝑃 (𝜒2
3 ≥ 6.757) = .0801

Finally, we use the bartlett.test function in R to conduct the test.

##
## Bartlett test of homogeneity of variances
##
## data: procKnow by factor(grp.trt)
## Bartlett's K-squared = 6.7626, df = 3, p-value = 0.07986

∇
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4.3 Remedial Measures
In this section, several procedures are considered for issues of normality and/or unequal variances among the error
terms. Methods will include Weighted Least Squares and Welch’s Test when the errors are normal, but the
error variances are unequal (heteroscedastic).

When variances are non-normal and heteroscedastic, transformations can be applied to 𝑌 that may solve both
problems. These include the Box-Cox Transformation, and were covered in the Linear Regression course.

When the distributions are highly skewed, non-parametric tests can be conducted based on ranks. We will describe
the Kruskal-Wallis Test.

4.3.1 Weighted Least Squares and Welch’s Test
Consider the following scenario and simulation.

• There are 𝑟 = 3 Treatments with equal means (𝜇1 = 𝜇2 = 𝜇3)
• The Treatments have unequal standard deviations (and thus variances)
• The Treatments have equal or unequal sample sizes

Note that the null hypothesis 𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇3 holds, so optimally, the rejection rate based on the 𝐹 -test with
significance level 𝛼 should be approximately 𝛼. We will simulate datasets for the following scenarios, all with
𝜇 = 100 for all treatments, and normal error terms.

• Scenario 1 - 𝑛1 = 𝑛2 = 𝑛3 = 20 𝜎1 = 𝜎2 = 𝜎3 = 20 (standard assumptions)
• Scenario 2 - 𝑛1 = 𝑛2 = 𝑛3 = 20 𝜎1 = 10, 𝜎2 = 20, 𝜎3 = 30
• Scenario 3 - 𝑛1 = 10, 𝑛2 = 20, 𝑛3 = 30 𝜎1 = 10, 𝜎2 = 20, 𝜎3 = 30
• Scenario 4 - 𝑛1 = 30, 𝑛2 = 20, 𝑛3 = 10 𝜎1 = 10, 𝜎2 = 20, 𝜎3 = 30

Each scenario will be run, and the rejection rate will be reported in each case. The program below is the same for
each scenario with only the inputs for n and sigma changing.
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n=10,sigma=10
n=20,sigma=20
n=30,sigma=30
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.000047 0.160073 0.414482 0.691802 0.904428 13.217528

## [1] 0.022

Each scenario was run on 10000 simulated data sets with 𝛼 = 0.05. The following results were obtained based on
the seed 32611.

• Scenario 1 - Equal variances, Equal sample sizes. Rejection Rate = .0513
• Scenario 2 - Unequal variances, Equal sample sizes. Rejection Rate = .0573
• Scenario 3 - Increasing variances, Increasing sample sizes. Rejection Rate = .0220.
• Scenario 4 - Increasing variances, Decreasing sample sizes. Rejection Rate = .1637

The primary result is that as long as sample sizes are equal (or very similar), the 𝐹 -test performs well whether the
variances are equal or not (both Scenarios 1 and 2 have rejection rates close to 𝛼).

When the sample sizes are positively correlated with the variance (Scenario 3), the rejection rate was well below
𝛼 (.0220 < .05). Thus, when the larger (smaller) samples correspond to the larger (smaller) variances the 𝐹 -test
rejects less often than it should.

When the sample sizes are negatively correlated with the variance (Scenario 4), the rejection rate was well above
𝛼 (.1637 > .05). Thus, when the smaller (larger) samples correspond to the larger (smaller) variances the 𝐹 -test
rejects more often than it should.

Estimated Weighted Least Squares can be used when the error variances are unequal. The estimated weights
for the individual measurements is the reciprocal of the variance of the measurements within that treatment/group,
𝑤𝑖𝑗 = 1/𝑠2

𝑖 . It is much easier doing direct computations in matrix form than in scalar form. A sketch of the method
is given below for the cell means model with balanced data: 𝑛1 = ⋯ = 𝑛𝑟 = 𝑛. Let 𝐼𝑛 be the 𝑛 × 𝑛 identity matrix
and 0𝑛 be the 𝑛 × 𝑛 matrix of 0𝑠. The 𝑛𝑇 × 𝑟 matrix 𝑋 and the 𝑛𝑇 × 1 vector 𝑌 are described in Chapter 2.

̂𝑉 =
⎡
⎢⎢
⎣

𝑠2
1𝐼𝑛 0𝑛 ⋯ 0𝑛
0𝑛 𝑠2

2𝐼𝑛 ⋯ 0𝑛
⋮ ⋮ ⋱ ⋮

0𝑛 0𝑛 ⋯ 𝑠2
𝑟𝐼𝑛

⎤
⎥⎥
⎦

𝑋∗ = ̂𝑉 −1/2𝑋 𝑌 ∗ = ̂𝑉 −1/2𝑌

𝐻∗ = 𝑋∗ (𝑋∗′𝑋∗)−1 𝑋∗′ 𝑆𝑆𝐸𝑊 (𝐹) = 𝑌 ∗′ (𝐼𝑛𝑇
− 𝐻∗) 𝑌 ∗ 𝑑𝑓𝐸(𝐹) = 𝑛𝑇 − 𝑟

Under the null hypothesis 𝐻0 ∶ 𝜇1 = ⋯ 𝜇𝑟 = 𝜇, the 𝑋0 matrix is the 𝑛𝑇 × 1 vector of 1𝑠. In this (null) case we
obtain the reduced 𝑆𝑆𝐸 below.

𝑋∗
0 = ̂𝑉 −1/2𝑋0 𝐻∗

0 = 𝑋∗
0 (𝑋∗′

0 𝑋∗
0)−1 𝑋∗′

0 𝑆𝑆𝐸𝑊 (𝑅) = 𝑌 ∗′ (𝐼𝑛𝑇
− 𝐻∗

0) 𝑌 ∗ 𝑑𝑓𝐸(𝑅) = 𝑛𝑇 − 1
The test statistic and rejection region for the general linear test are given below.

Test Statistic: 𝐹 ∗
𝐸𝑊𝐿𝑆 =

[ (𝑆𝑆𝐸𝑊 (𝑅)−𝑆𝑆𝐸𝑊 (𝐹))
(𝑛𝑇 −1)−(𝑛𝑇 −𝑟) ]
[ 𝑆𝑆𝐸𝑊 (𝐹)

𝑛𝑇 −𝑟 ]
Rejection Region:𝐹 ∗

𝐸𝑊𝐿𝑆 ≥ 𝐹1−𝛼,𝑟−1,𝑛𝑇 −𝑟

Example 4.5 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. The following
R code runs the matrix form of the general linear test and obtains the sample variance treatment and creates the
weights for the individual subjects in the experiment and uses the weight command used in the aov function.

## df(F) df(R) SSE(F) SSE(R) F* F(.95) P(>F*)
## EWLS 60 63 60 81.3196 7.1065 2.7581 4e-04

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
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## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 21.32 7.1065 7.1065 0.0003655 ***
## Residuals 60 60.00 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Response: procKnow
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(grp.trt) 3 65.664 21.8880 4.9406 0.003931 **
## Residuals 60 265.815 4.4302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

∇

Welch’s Test was developed to handle the issues that arise in Scenarios 3 and 4 above. The method involves
computing a weighted 𝐹 -statistic for testing for treatment effects. The weights for the treatment means are the
reciprocals of their variances, 𝑤𝑖 = 𝑛𝑖/𝑠2

𝑖 . The procedure (which is easy to run in a spreadsheet or statistical
package) computes the weighted 𝐹 -statistic and generates multiples of that statistic and the error degrees of
freedom to achieve an approximate 𝐹 -distribution for the test statistic.

A sketch of the calculations is given below. Note that all calculations are based on the treatment/group sample
sizes, means, and variances.

𝑤𝑖 = 𝑛𝑖
𝑠2

𝑖
𝑤• =

𝑟
∑
𝑖=1

𝑤𝑖 𝐶𝑊 =
𝑟

∑
𝑖=1

[ 1
𝑛𝑖 − 1 (1 − 𝑤𝑖

𝑤•
)] 𝑚𝑊 = [1 + 2(𝑟 − 2)

𝑟2 − 1 𝐶𝑊 ]
−1

𝐹 ∗ = 1
𝑟 − 1 [

𝑟
∑
𝑖=1

𝑤𝑖 (𝑦𝑖•)2 − (𝑤𝑖𝑦𝑖•)2

𝑤•
] 𝜈𝑊 = 𝑟2 − 1

3𝐶𝑊

𝐹𝑊 = 𝑚𝑊 𝐹 ∗ ⋅∼ 𝐹𝑟−1,𝜈𝑊

Example 4.6 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. The following
R code produces Welch’s 𝐹𝑊 -test directly from the treatment means, variances, and sample sizes as well as using
the oneway.test function in R.

## df1 df2 F_W* F(.95) P(>F_W*)
## Welch's F-test 3 32.5622 6.827 2.8957 0.0011

##
## One-way analysis of means (not assuming equal variances)
##
## data: procKnow and factor(grp.trt)
## F = 6.827, num df = 3.000, denom df = 32.562, p-value = 0.001072
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4.3.2 Post-hoc Comparisons with Unequal Variances
The Games-Howell method can be used to make pairwise comparisons among all pairs of treatments when
variances are unequal. Like Tukey’s method, it makes use of the studentized range distribution. It makes use of
Satterthwaite’s approximation for the degrees of freedom for each pair of means.

𝜈𝑖𝑖′ =
( 𝑠2

𝑖
𝑛𝑖

+ 𝑠2
𝑖′

𝑛𝑖′
)

2

( 𝑠2
𝑖

𝑛𝑖
)

2

𝑛𝑖−1 +
(

𝑠2
𝑖′

𝑛𝑖′ )
2

𝑛𝑖′ −1

𝐺𝐻𝑖𝑖′ =
𝑞1−𝛼;𝑟,𝜈𝑖𝑖′√

2
√𝑠2

𝑖
𝑛𝑖

+ 𝑠2
𝑖′

𝑛𝑖′

Conclude 𝜇𝑖 ≠ 𝜇𝑖′ if ∣𝑦𝑖• − 𝑦𝑖′•∣ ≥ 𝐺𝐻𝑖𝑖′ . Simultaneous (1 − 𝛼)100% Confidence Intervals for 𝜇𝑖 − 𝜇𝑖′ are of the
form (𝑦𝑖• − 𝑦𝑖′•) ± 𝐺𝐻𝑖𝑖′ .

Example 4.7 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. The following R
code computes Simultaneous 95% Confidence Intervals and adjusted 𝑃 -values based on the Games-Howell method.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## Trt i Trt i' Ybar diff df MSD LL UL Adj P
## [1,] 2 1 2.7778 27.5847 1.6466 1.1312 4.4244 0.0005
## [2,] 3 1 1.8056 26.5999 2.3440 -0.5384 4.1495 0.1759
## [3,] 3 2 -0.9722 22.2357 2.1931 -3.1654 1.2209 0.6150
## [4,] 4 1 1.9444 29.9806 1.8893 0.0552 3.8337 0.0418
## [5,] 4 2 -0.8333 27.2301 1.6756 -2.5089 0.8422 0.5340
## [6,] 4 3 0.1389 26.9707 2.3614 -2.2226 2.5003 0.9985

##
## Pairwise comparisons using Games-Howell test

## data: procKnow by grp.trt

## 1 2 3
## 2 0.00046 - -
## 3 0.17589 0.61503 -
## 4 0.04183 0.53405 0.99848

##
## P value adjustment method: none

## alternative hypothesis: two.sided

Treatment 2 (Monitor/Keyboard) is significantly higher than Treatment 1 (Lecture/Materials) and Treatment 4
(Head Mounted Display/Wearable sensors) is significantly higher than Treatment 1.

∇

Finally, we simulate Welch’s Test for Scenario 4 described previously where 𝜇1 = 𝜇2 = 𝜇3 = 100, 𝜎1 = 10, 𝜎2 =
20, 𝜎3 = 30, and 𝑛1 = 30, 𝑛2 = 20, 𝑛3 = 10.

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00079 0.41930 1.05392 1.75428 2.30132 37.07031

## [1] 0.1637
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## [1] 0.0562

The ANOVA 𝐹 -test rejected the null hypothesis in 16.37% of the samples, while Welch’s 𝐹𝑊 -test rejected it in
5.62% of the samples, much closer to the target of 5%.

4.4 Nonparametric Test for Non-normal Data
The Kruskal-Wallis Test is a rank based test used in cases where the errors are not normally distributed. In
particular, outlying observations, which have large impacts on the means and standard deviations have smaller
impact when measurements are replaced by ranks.

The 𝑛𝑇 observations are ranked from 1 (smallest) to 𝑛𝑇 (largest), with ties being given the average of the ranks
they would have received if not exactly equal. For instance, if two observations tie for the smallest value, they
would each receive the rank of 1.5, and the next smallest observation would get the rank of 3. The sum of the ranks
is 1 + ⋯ + 𝑛𝑇 = 𝑛𝑇 (𝑛𝑇 + 1) /2.

Once the individual measurements are ranked, rank sums are obtained for each treatment/group, as well as the
Kruskal-Wallis 𝐻-statistic, which under the null hypothesis of equal medians 𝐻0 ∶ 𝑀1 = ⋯ = 𝑀𝑟 follows a chi-square
distribution with 𝑟 − 1 degrees of freedom approximately.

𝑅𝑖𝑗 = rank (𝑌𝑖𝑗) among 𝑌11, … 𝑌𝑟𝑛𝑟
𝑅𝑖• =

𝑛𝑖

∑
𝑗=1

𝑅𝑖𝑗

Test Statistic: 𝐻∗ = [ 12
𝑛𝑇 (𝑛𝑇 + 1)

𝑟
∑
𝑖=1

𝑅2
𝑖•

𝑛𝑖
] − 3 (𝑛𝑇 + 1)

Rejection Region: 𝐻∗ ≥ 𝜒2
𝑟−1 𝑃 = 𝑃 (𝜒2

𝑟−1 ≥ 𝐻∗)
When there are ties, an adjustment can be made to 𝐻∗, that rarely makes a large effect. Let the number of groups
with ties be 𝑔 and let the 𝑘𝑡ℎ group have 𝑡𝑘 tied observations. Then, the adjusted test statistic is given below.

Test Statistic: 𝐻∗′ = 𝐻∗

[1 − ∑𝑔
𝑘=1(𝑡𝑘−1)𝑡𝑘(𝑡𝑘+1)

(𝑛𝑇 −1)𝑛𝑇 (𝑛𝑇 +1) ]

When the null hypothesis of equal medians is rejected, approximate Confidence Intervals for the differences in mean
ranks among the 𝑔 = 𝑟(𝑟 − 1)/2 pairs of treatments are computed as follows.

(𝑅𝑖• − 𝑅𝑖′•) ± 𝑧1−𝛼/(2𝑔)√
𝑛𝑇 (𝑛𝑇 + 1)

2 ( 1
𝑛𝑖

+ 1
𝑛𝑖′

)

Example 4.8 - Virtual Training for a Lifeboat Launching Task

For the lifeboat training experiment, there were 𝑟 = 4 treatments and each sample size was 𝑛 = 16. We will directly
compute the ranks, test, and multiple comparisons. Then the kruskal.test function will be used. Note that the
rank function in R correctly adjusts ranks for ties. The null hypothesis is that the population medians are equal
for the 𝑟 = 4 treatments.

## grp.trt procKnow
## 1 1 4.5614
## 2 1 6.6593
## 3 1 5.6427
## 4 1 6.4394
## 5 1 4.8635
## 6 1 0.3268

## KW stat df X2(.95) P(>KW)
## Kruskal-Wallis Test 12.9151 3 7.8147 0.0048
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## Trt i Trt i' Rank diff MSD LL UL Adj P
## [1,] 2 1 22.625 17.3671 5.2579 39.9921 0.0035
## [2,] 3 1 16.875 17.3671 -0.4921 34.2421 0.0622
## [3,] 3 2 -5.750 17.3671 -23.1171 11.6171 1.0000
## [4,] 4 1 15.250 17.3671 -2.1171 32.6171 0.1231
## [5,] 4 2 -7.375 17.3671 -24.7421 9.9921 1.0000
## [6,] 4 3 -1.625 17.3671 -18.9921 15.7421 1.0000

##
## Kruskal-Wallis rank sum test
##
## data: procKnow by grp.trt
## Kruskal-Wallis chi-squared = 12.915, df = 3, p-value = 0.004824

The test concludes that the medians are not all equal. Based on the simultaneous comparisons, conclude that the
median for treatment 2 (Monitor/Keyboard) is significantly higher than that for treatment 1 (Lecture/Materials).
No other medians are significantly different.

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)



Chapter 5

Balanced Two Factor Designs

In this chapter, we introduce two factor designs with equal numbers of replicates (𝑛) per treatment (factor com-
bination). The factors will be generically labelled as A with 𝑎 levels and B with 𝑏 levels. The total number of
observations is 𝑛𝑇 = 𝑎𝑏𝑛.

5.1 Introduction
In a controlled experiment, experimental units are obtained and randomly assigned to the 𝑎𝑏 treatments, with 𝑛
units per treatment. In observational studies, 𝑛 units are sampled from each of the 𝑎𝑏 populations/subpopulations.

The 1-factor-at-a-time method is used in some fields of study. This involves selecting a particular level of factor
A and obtain the best level of factor B. Then, at the “best” level of factor B, obtain the best level of factor A. This
method has problems, in particular it does not permit studying interactions between the factors. It is best (when
feasible) to conduct the experiment at all 𝑎𝑏 treatment levels.

We first consider the population mean structures for additive and interaction models based on hypothetical values
for an experiment of the “halo effect”.

Example 5.1 - Halo Effect

In this study, researchers were interested in observing the “halo effect” where individuals who are known to be
good/bad in a particular dimension and assumed to also be good/bad in another dimension. This phenomenon has
been studied involving people, consumer products, and in many other subject areas. This hypothetical data is taken
from a psychology experiment where students were given a picture of a student who had written an essay (Good,
Bad, No Picture), and an essay that was supposedly written by the student (Good, Poor). The response measured
was the score that the student assigned to the essay. Each student rater was assigned to one Picture/Essay Quality
condition [Landy and Sigall, 1974].

For this example, factor A is the Picture condition with 𝑎 = 3 levels and factor B is Essay quality with 𝑏 = 2 levels.
Let 𝜇𝑖𝑗 be the mean when factor A is at level 𝑖 and factor 𝐵 is at level 𝑗. Further, let 𝜇𝑖• be the mean when factor
A is at level 𝑖 (across levels of factor B) and 𝜇•𝑗 be the mean when factor B is at level 𝑗. Finally 𝜇•• is the overall
mean across all levels of factors A and B.

Consider the following hypothetical means.
means <- matrix(c(25,18,20,21, 17,10,12,13, 21,14,16,17), ncol=3)
colnames(means) <- c("j=1", "j=2", "Row Mean")
rownames(means) <- c("i=1", "i=2", "i=3", "Col Mean")
means

## j=1 j=2 Row Mean
## i=1 25 17 21
## i=2 18 10 14
## i=3 20 12 16

63
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## Col Mean 21 13 17

For the additive effects model, we define the following parameters based on the population means.

𝜇𝑖𝑗 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗 s.t.
𝑎

∑
𝑖=1

𝛼𝑖 =
𝑏

∑
𝑗=1

𝛽𝑗 = 0 𝜇•• = 1
𝑎𝑏

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝜇𝑖𝑗

𝜇𝑖• = 1
𝑏

𝑏
∑
𝑗=1

𝜇𝑖𝑗 = 1
𝑏

𝑏
∑
𝑗=1

(𝜇•• + 𝛼𝑖 + 𝛽𝑗) = 1
𝑏 [𝑏𝜇•• + 𝑏𝛼𝑖 +

𝑏
∑
𝑗=1

𝛽𝑗] = 𝜇•• + 𝛼𝑖 𝜇•𝑗 = 𝜇•• + 𝛽𝑗

𝛼𝑖 = 𝜇𝑖• − 𝜇•• 𝛽𝑗 = 𝜇•𝑗 − 𝜇•• 𝜇•• = 1
𝑎

𝑎
∑
𝑖=1

𝜇𝑖• = 1
𝑏

𝑏
∑
𝑖𝑗1

𝜇•𝑗

For the halo effect values, we obtain the following parameters.

𝛼1 = 𝜇1• − 𝜇•• = 21 − 17 = 4 𝛼2 = 14 − 17 = −3 𝛼3 = 16 − 17 = −1 𝛼1 + 𝛼2 + 𝛼3 = 0
𝛽1 = 𝜇•1 − 𝜇•• = 21 − 17 = 4 𝛽2 = 13 − 17 = −4 𝛽1 + 𝛽2 = 0

Plots of the means for each cell are given in Figure 5.1. The first plot gives means versus Picture with separate lines
for each Essay Quality. The second plot gives means versus Essay Quality with separate lines for each Picture. In
both cases lines are parallel, consistent with an additive model. This is an example of an interaction plot (though
for these means, there is no interaction).
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1 2
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25
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Poor i=2
None i=3

Figure 5.1: Halo effect means - Interaction plots with additive effects

The effect of Good versus Poor Essay Quality is the same for each Picture condition and the effects of the Picture
conditions are the same for each Essay Quality.

Now, consider the following mean structure, consistent with an interaction model.
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## j=1 j=2 Row Mean
## i=1 23 19 21
## i=2 20 8 14
## i=3 20 12 16
## Col Mean 21 13 17

For the interaction effects model, we define the following parameters based on the population means.

𝜇𝑖𝑗 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 s.t.
𝑎

∑
𝑖=1

𝛼𝑖 =
𝑏

∑
𝑗=1

𝛽𝑗 =
𝑎

∑
𝑖=1

(𝛼𝛽)𝑖𝑗 =
𝑏

∑
𝑗=1

(𝛼𝛽)𝑖𝑗 = 0

(𝛼𝛽)𝑖𝑗 = 𝜇𝑖𝑗 − 𝜇•• − 𝛼𝑖 − 𝛽𝑗 = 𝜇𝑖𝑗 − 𝜇•• − (𝜇𝑖• − 𝜇••) − (𝜇•𝑗 − 𝜇••)) = 𝜇𝑖𝑗 + 𝜇𝑖• + 𝜇•𝑗 − 𝜇••

For the halo effect example, we obtain the following values for the interaction effects.

(𝛼𝛽)11 = 23 − 21 − 21 + 17 = −2 (𝛼𝛽)12 = 19 − 21 − 13 + 17 = 2
(𝛼𝛽)21 = 20 − 14 − 21 + 17 = 2 (𝛼𝛽)22 = 8 − 14 − 13 + 17 = −2

(𝛼𝛽)31 = 20 − 16 − 21 + 17 = 0 (𝛼𝛽)32 = 12 − 16 − 13 + 17 = 0

Interaction plots are given in Figure 5.2. In this case, the lines are not parallel.
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Figure 5.2: Halo effect means - Interaction plots with non-additive effects

∇
In practice, we don’t know the structure of the population means, and must estimate them and make inferences
regarding them based on sample data. Before describing the data model, we make a few comments regarding
interactions.
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• In many situations, the interaction among effects is small relative to main effects and can be ignored.
• Transformations (as in the Box-Cox transformation) can be applied which may remove an interaction.
• In many research settings, interactions may be hypothesized and have interesting theoretical interpretations.
• When factors are ordinal or quantitative, interactions that are synergistic or antagonistic can be observed.

5.2 Two Factor Analysis of Variance
In this section, we describe the 2-factor Analysis of Variance. We will first consider the Cell Means model, where
interest is only on the 𝑎𝑏 means, typically trying to determine the “best” treatment. Then we consider the Factor
Effects model, which measures main effects and interactions among the treatments. In each model, 𝑌𝑖𝑗𝑘 represents
a random outcome when factor A is at level 𝑖, factor B is at level 𝑗, and replicate is 𝑘.

5.2.1 Cell Means Model
In this model, the focus is on the 𝑎𝑏 cell means among the combination of levels of factors A and B.

𝑌𝑖𝑗𝑘 = 𝜇𝑖𝑗 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛 𝑛𝑇 = 𝑎𝑏𝑛

𝜇𝑖𝑗 ≡ mean when factor A is at level 𝑖 and factor B is at level 𝑗 𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

The model can be written in matrix form with 𝑌 being 𝑛𝑇 × 1, 𝑋 being 𝑛𝑇 × 𝑎𝑏, 𝛽 being 𝑎𝑏 × 1, and 𝜖 being 𝑛𝑇 × 1.
For the case where 𝑎 = 𝑏 = 𝑛 = 2, we have the following structure.

𝑌 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑌111
𝑌112
𝑌121
𝑌122
𝑌211
𝑌212
𝑌221
𝑌222

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝛽 =
⎡
⎢⎢
⎣

𝜇11
𝜇12
𝜇21
𝜇22

⎤
⎥⎥
⎦

𝜖 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜖111
𝜖112
𝜖121
𝜖122
𝜖211
𝜖212
𝜖221
𝜖222

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Under this model, 𝜎2{𝑌 } = 𝜎2{𝜖} = 𝜎2𝐼𝑛𝑇
.

The Factor Effects model decomposes 𝜇𝑖𝑗 into main effects among the levels of factors A and B, as well as the
interactions among the combinations of levels of factors A and B.

𝑌𝑖𝑗𝑘 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛

𝜇•• = 1
𝑎𝑏

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝜇𝑖𝑗 𝜇𝑖• = 1
𝑏

𝑏
∑
𝑗=1

𝜇𝑖𝑗 𝜇•𝑗 = 1
𝑎

𝑎
∑
𝑖=1

𝜇𝑖𝑗

Main effect of level 𝑖 factor A: 𝛼𝑖 = 𝜇𝑖• − 𝜇••
𝑎

∑
𝑖=1

𝛼𝑖 = 0

Main effect of level 𝑗 factor B: 𝛽𝑗 = 𝜇•𝑗 − 𝜇••
𝑏

∑
𝑗=1

𝛽𝑗 = 0

Interaction effect of A at level 𝑖 and B at level 𝑗 ∶ (𝛼𝛽)𝑖𝑗 = 𝜇𝑖𝑗 − 𝜇𝑖• − 𝜇•𝑗 + 𝜇••

𝑎
∑
𝑖=1

(𝛼𝛽)𝑖𝑗 =
𝑏

∑
𝑗=1

(𝛼𝛽)𝑖𝑗 = 0

𝑌𝑖𝑗𝑘 ∼ 𝑁 (𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 , 𝜎2) independent
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5.2.2 Least Squares/Maximum Likelihood Estimators
First, we define the following means.

𝑌 𝑖𝑗• = 1
𝑛

𝑛
∑
𝑘=1

𝑌𝑖𝑗𝑘 𝑌 𝑖•• = 1
𝑏𝑛

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

𝑌𝑖𝑗𝑘 𝑌 •𝑗• = 1
𝑎𝑛

𝑎
∑
𝑖=1

𝑛
∑
𝑘=1

𝑌𝑖𝑗𝑘

𝑌 ••• = 1
𝑎𝑏𝑛

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

𝑌𝑖𝑗𝑘

For the cell means model, the least squares estimator for 𝜇𝑖𝑗 is simply the sample mean for that cell, 𝑌 𝑖𝑗•.

𝑄 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

𝜖2
𝑖𝑗𝑘 =

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝜇𝑖𝑗)
2 Set: 𝜕𝑄

𝜕𝜇𝑖𝑗
= 0 ⇒ ̂𝜇𝑖𝑗 = 𝑌 𝑖𝑗•

The fitted values and residuals for the cell means model are given below.

̂𝑌𝑖𝑗𝑘 = ̂𝜇𝑖𝑗 = 𝑌 𝑖𝑗• 𝑒𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − ̂𝑌𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•

For the factor effects model, we obtain the following least squares estimators.

̂𝜇•• = 𝑌 ••• ̂𝛼𝑖 = 𝑌 𝑖•• − 𝑌 ••• ̂𝛽𝑗 = 𝑌 •𝑗• − 𝑌 •••

̂(𝛼𝛽)𝑖𝑗 = 𝑌 𝑖𝑗• − 𝑌 𝑖•• − 𝑌 •𝑗• + 𝑌 •••

The fitted values and the residuals for the factor effects model are the same as for the cell means model.

̂𝑌𝑖𝑗𝑘 = ̂𝜇•• + ̂𝛼𝑖 + ̂𝛽𝑗 + ̂(𝛼𝛽)𝑖𝑗 = 𝑌 𝑖𝑗• 𝑒𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − ̂𝑌𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•

5.2.3 Sums of Squares and the Analysis of Variance
For the cell means model, the 2-Way ANOVA simplifies to a 1-Way ANOVA with 𝑟 = 𝑎𝑏 treatments.

𝑌𝑖𝑗𝑘 − 𝑌 ••• = (𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•) + (𝑌 𝑖𝑗• − 𝑌 •••)
This identity leads to the sums of squares, as the cross-products sum to zero.

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 •••)2 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•)2 +
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌 𝑖𝑗• − 𝑌 •••)2

𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝐸 + 𝑆𝑆𝑇 𝑅 𝑑𝑓𝑇 𝑂 = 𝑛𝑇 − 1 = (𝑛𝑇 − 𝑎𝑏) + (𝑎𝑏 − 1) = 𝑑𝑓𝐸 + 𝑑𝑓𝑇 𝑅

For the factor effects model, we decompose the treatment deviations and sums of squares into main effects and
interactions among levels of factors A and B.

𝑌𝑖𝑗𝑘 − 𝑌 ••• =

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•) + (𝑌 𝑖•• − 𝑌 •••) + (𝑌 •𝑗• − 𝑌 •••) + (𝑌 𝑖𝑗• − 𝑌 𝑖•• − 𝑌 •𝑗• + 𝑌 •••)

Again, sums of cross-product terms are zero and we partition the sums of squares as follows.
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𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 •••)2 =

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•)2 +
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌 𝑖•• − 𝑌 •••)2 +
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌 •𝑗• − 𝑌 •••)2 +

+
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌 𝑖𝑗• − 𝑌 𝑖•• − 𝑌 •𝑗• + 𝑌 •••)2

𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝐸 + 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵

𝑑𝑓𝑇 𝑂 = 𝑛𝑇 − 1 = (𝑛𝑇 − 𝑎𝑏) + (𝑎 − 1) + (𝑏 − 1) + (𝑎 − 1)(𝑏 − 1) =
= 𝑑𝑓𝐸 + 𝑑𝑓𝐴 + 𝑑𝑓𝐵 + 𝑑𝑓𝐴𝐵

For the factor effects model, we summarize the following sums of squares, degrees of freedom, and expected mean
squares.

Factor A: 𝑆𝑆𝐴 = 𝑏𝑛
𝑎

∑
𝑖=1

(𝑌 𝑖•• − 𝑌 •••)2 𝑑𝑓𝐴 = 𝑎 − 1 𝑀𝑆𝐴 = 𝑆𝑆𝐴
𝑎 − 1

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑏𝑛 ∑𝑎
𝑖=1 𝛼2

𝑖
𝑎 − 1

Factor B: 𝑆𝑆𝐵 = 𝑎𝑛
𝑏

∑
𝑗=1

(𝑌 •𝑗• − 𝑌 •••)2 𝑑𝑓𝐵 = 𝑏 − 1 𝑀𝑆𝐵 = 𝑆𝑆𝐵
𝑏 − 1

𝐸{𝑀𝑆𝐵} = 𝜎2 +
𝑎𝑛 ∑𝑏

𝑗=1 𝛽2
𝑗

𝑏 − 1

AB Interaction: 𝑆𝑆𝐴𝐵 = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌 𝑖𝑗• − 𝑌 𝑖•• − 𝑌 •𝑗• + 𝑌 •••)2

𝑑𝑓𝐴𝐵 = (𝑎 − 1)(𝑏 − 1) 𝑀𝑆𝐴𝐵 = 𝑆𝑆𝐴𝐵
(𝑎 − 1)(𝑏 − 1)

𝐸{𝑀𝑆𝐴𝐵} = 𝜎2 +
𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝛼𝛽)2

𝑖𝑗
(𝑎 − 1)(𝑏 − 1)

Error: 𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•)2 𝑑𝑓𝐸 = 𝑎𝑏(𝑛 − 1) = 𝑛𝑇 − 𝑎𝑏

𝑀𝑆𝐸 = 𝑆𝑆𝐸
𝑎𝑏(𝑛 − 1) 𝐸{𝑀𝑆𝐸} = 𝜎2

When working with published results, the error sum of squares can be obtained from the treatment standard
deviation as in the 1-Way ANOVA.

𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•)2 = (𝑛 − 1)
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑠2
𝑖𝑗
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When testing for the effects of the factors, begin with a test for interaction, then test for main effects. If the
interaction is important, the tests for the main effects may be deceiving, as the effects of factors A and B depend
of the level of the other factor.

The test for interaction is given here.

𝐻𝐴𝐵
0 ∶ (𝛼𝛽)11 = ⋯ = (𝛼𝛽)𝑎𝑏 = 0 𝐻𝐴𝐵

𝐴 ∶ Not all (𝛼𝛽)𝑖𝑗 = 0

Test Statistic: 𝐹 ∗
𝐴𝐵 = 𝑀𝑆𝐴𝐵

𝑀𝑆𝐸 Rejection Region: 𝐹 ∗
𝐴𝐵 ≥ 𝐹1−𝛼;(𝑎−1)(𝑏−1),𝑎𝑏(𝑛−1)

The tests for the main effects of factors A and B are conducted as follow.

𝐻𝐴
0 ∶ 𝛼1 = ⋯ = 𝛼𝑎 = 0 𝐻𝐴

𝐴 ∶ Not all 𝛼𝑖 = 0

Test Statistic: 𝐹 ∗
𝐴 = 𝑀𝑆𝐴

𝑀𝑆𝐸 Rejection Region: 𝐹 ∗
𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎𝑏(𝑛−1)

𝐻𝐵
0 ∶ 𝛽1 = ⋯ = 𝛽𝑏 = 0 𝐻𝐵

𝐴 ∶ Not all 𝛽𝑗 = 0

Test Statistic: 𝐹 ∗
𝐵 = 𝑀𝑆𝐵

𝑀𝑆𝐸 Rejection Region: 𝐹 ∗
𝐵 ≥ 𝐹1−𝛼;𝑏−1,𝑎𝑏(𝑛−1)

Effect sizes for the main effects and interaction can be obtained from the sums of squares in the Analysis of Variance.
The effect size 𝜂2 is obtained by dividing each sum of squares by the total sum of squares. Partial 𝜂2 is obtained
by dividing each sum of squares by the sum of it and the error sum of squares.

𝜂2
𝐴 = 𝑆𝑆𝐴

𝑆𝑆𝑇 𝑂 𝜂2
𝐵 = 𝑆𝑆𝐵

𝑆𝑆𝑇 𝑂 𝜂2
𝐴𝐵 = 𝑆𝑆𝐴𝐵

𝑆𝑆𝑇 𝑂

Partial-𝜂2
𝐴 = 𝑆𝑆𝐴

𝑆𝑆𝐴 + 𝑆𝑆𝐸 Partial-𝜂2
𝐵 = 𝑆𝑆𝐵

𝑆𝑆𝐴 + 𝑆𝑆𝐸 Partial-𝜂2
𝐴𝐵 = 𝑆𝑆𝐴𝐵

𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸

Example 5.2 - Drumstick Weights of Broiler Chickens

A study was conducted to compare weights of chicken parts under 4 diets [Aksu et al., 2007]. The 4 diets were
combinations of two factors, each with two levels (𝑎 = 𝑏 = 2). Factor A was base diet (Sorghum (i=1) and Corn
(i=2)). Factor B was methionine supplement (Absent (j=1) and Present (j=2)). There were 𝑛 = 60 chickens
receiving each diet for a total of (𝑛𝑇 = 𝑎𝑏𝑛 = 2(2)(60) = 240).
The observed means and standard deviations for the diets are given below.

𝑦11• = 106.08 𝑦12• = 93.67 𝑦21• = 101.17 𝑦22• = 108.83

𝑠11 = 15.04 𝑠12 = 12.29 𝑠21 = 16.74 𝑠22 = 20.93
Here we compute the marginal means for each level of factors A and B, as well as the overall mean, and then obtain
least squares estimates and the Analysis of Variance.

𝑦1•• = 106.08 + 93.67
2 = 99.875 𝑦2•• = 101.17 + 108.83

2 = 105.000

𝑦•1• = 106.08 + 101.17
2 = 103.625 𝑦•2• = 93.67 + 108.83

2 = 101.250
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𝑦••• = 106.08 + 93.67 + 101.17 + 108.83
4 = 102.4375

The main effect and interacion effects are computed from the means above.

̂𝛼1 = 99.875 − 102.4375 = −2.5625 ̂𝛼2 = 105.000 − 102.4375 = 2.5625

̂𝛽1 = 103.625 − 102.4375 = 1.1875 ̂𝛽2 = 101.250 − 102.4375 = −1.1875

̂(𝛼𝛽)11 = 106.08 − 99.875 − 103.625 + 102.4375 = 5.0175

̂(𝛼𝛽)12 = 93.67 − 99.875 − 101.250 + 102.4375 = −5.0175

̂(𝛼𝛽)21 = 101.17 − 105.000 − 103.625 + 102.4375 = −5.0175

̂(𝛼𝛽)22 = 108.83 − 105.000 − 101.250 + 102.4375 = 5.0175

Next, we compute the sums of squares, making use of the estimated effects for 𝑆𝑆𝐴, 𝑆𝑆𝐵, and 𝑆𝑆𝐴𝐵.

𝑆𝑆𝐴 = 𝑏𝑛
𝑎

∑
𝑖=1

̂𝛼2
𝑖 = 2(60) [(−2.5625)2 + (2.5625)2] = 1575.94

𝑑𝑓𝐴 = 2 − 1 𝑀𝑆𝐴 = 1575.94

𝑆𝑆𝐵 = 𝑎𝑛
𝑏

∑
𝑗=1

̂𝛽2
𝑗 = 2(60) [(1.1875)2 + (−1.1875)2] = 338.44

𝑑𝑓𝐵 = 2 − 1 𝑀𝑆𝐵 = 338.44

𝑆𝑆𝐴𝐵 = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

̂(𝛼𝛽)
2
𝑖𝑗 =

60 [(5.0175)2 + (−5.0175)2 + (−5.0175)2 + (5.0175)2] = 6445.58
𝑑𝑓𝐴𝐵 = (2 − 1)(2 − 1) = 1 𝑀𝑆𝐴𝐵 = 6445.58

𝑆𝑆𝐸 = (𝑛 − 1)
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑠2
𝑖𝑗 = 59 [(15.04)2 + (12.29)2 + (16.74)2 + (20.93)2] = 64636.75

𝑑𝑓𝐸 = 2(2)(60 − 1) = 236 𝑀𝑆𝐸 = 273.88

First, test for an interaction between base diet and methionine supplement.

𝐻𝐴𝐵
0 ∶ (𝛼𝛽)11 = ⋯ = (𝛼𝛽)22 = 0

Test Statistic: 𝐹 ∗
𝐴𝐵 = 𝑀𝑆𝐴𝐵

𝑀𝑆𝐸 = 6445.58
273.88 = 23.534

Rejection Region: 𝐹 ∗
𝐴𝐵 ≥ 𝐹.95;1,236 = 3.881 𝑃 = 𝑃 (𝐹1,236 ≥ 23.534) < .0001
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As there is strong evidence of an interaction (adding methionine has a large negative effect when sorghum is used,
and has a large positive effect when corn is used), we will conduct the main effects test for completeness.

𝐻𝐴
0 ∶ 𝛼1 = 𝛼2 = 0 𝐻𝐴

𝐴 ∶ Not all 𝛼𝑖 = 0

Test Statistic: 𝐹 ∗
𝐴 = 𝑀𝑆𝐴

𝑀𝑆𝐸 = 1575.94
273.88 = 5.754

Rejection Region: 𝐹 ∗
𝐴 ≥ 𝐹.95;1,236 = 3.881 𝑃 = 𝑃 (𝐹1,236 ≥ 5.754) = .0172

𝐻𝐵
0 ∶ 𝛽1 = 𝛽2 = 0 𝐻𝐵

𝐴 ∶ Not all 𝛽𝑗 = 0

Test Statistic: 𝐹 ∗
𝐵 = 𝑀𝑆𝐵

𝑀𝑆𝐸 = 338.44
273.88 = 1.236

Rejection Region: 𝐹 ∗
𝐴 ≥ 𝐹.95;1,236 = 3.881 𝑃 = 𝑃 (𝐹1,236 ≥ 1.236) = .2674

The test for factor A is significant (Corn does better marginally than Sorghum). The test for factor B is not
significant (marginally Methionine Absent and Present give similar results). This last result is mis-leading as
Methionine has a large positve effect for Corn (7.66 gram increase) but a large negative effect for Sorghum (12.41
gram decrease), so marginally they “cancel out.”

The effect sizes and partial effect sizes for the base diet, methionine, and their interaction are obtained below, along
with the total sum of squares.

𝑆𝑆𝑇 𝑂 = 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 + 𝑆𝑆𝐸 = 1575.94 + 338.44 + 6445.58 + 64636.75 = 72996.71

𝜂2
𝐴 = 1575.94

72996.71 = 0.0216 𝜂2
𝐵 = 338.44

72996.71 = 0.0046 𝜂2
𝐴𝐵 = 6445.58

72996.71 = 0.0883

Partial-𝜂2
𝐴 = 1575.94

1575.94 + 64636.75 = 0.0238 Partial-𝜂2
𝐵 = 338.44

338.44 + 64636.75 = 0.0052

Partial-𝜂2
𝐴𝐵 = 6445.58

6445.58 + 64636.75 = 0.0907

The interaction has a much larger effect size than either of the main effects. Based on 𝜂2
𝐴𝐵, approximately 9% of

the total variance is attributable to the interaction.

The following R code uses the aov function. As before, we set the options to have the effects sum to zero.

## diet base meth ds.wt
## 1 1 1 1 116.33
## 2 1 1 1 99.43
## 3 1 1 1 106.58
## 4 1 1 1 109.64
## 5 1 1 1 78.58
## 6 1 1 1 93.18
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95
10

0
10

5

Base Diet

W
ei

gh
t

Sorghum Corn

   broiler$meth.f

Present
Absent

##
## Call:
## aov(formula = ds.wt ~ base.f * meth.f, data = broiler)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.16 -10.94 0.78 9.58 57.21
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 102.437 1.068 95.892 < 2e-16 ***
## base.f1 -2.562 1.068 -2.399 0.0172 *
## meth.f1 1.187 1.068 1.112 0.2674
## base.f1:meth.f1 5.017 1.068 4.697 4.49e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.55 on 236 degrees of freedom
## Multiple R-squared: 0.1096, Adjusted R-squared: 0.09828
## F-statistic: 9.683 on 3 and 236 DF, p-value: 4.731e-06

## Analysis of Variance Table
##
## Response: ds.wt
## Df Sum Sq Mean Sq F value Pr(>F)
## base.f 1 1576 1575.8 5.7535 0.01723 *
## meth.f 1 338 338.4 1.2356 0.26745
## base.f:meth.f 1 6042 6041.8 22.0596 4.488e-06 ***
## Residuals 236 64636 273.9
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 (partial) | 95% CI
## ---------------------------------------------
## base.f | 0.02 | [0.00, 1.00]
## meth.f | 5.21e-03 | [0.00, 1.00]
## base.f:meth.f | 0.09 | [0.04, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 | 95% CI
## ---------------------------------------
## base.f | 0.02 | [0.00, 1.00]
## meth.f | 4.66e-03 | [0.00, 1.00]
## base.f:meth.f | 0.08 | [0.04, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

∇

Example 5.3 - Reading Times on Electronic Readers

Next, consider a study that compared 𝑎 = 3 electronic reader models, each at 𝑏 = 4 illuminance levels [Chang et al.,
2013]. The three reader models are described as follows.

• Sony PRS 700 - 6” diagonal screen size (𝑖 = 1)
• Amazon Kindle DX - 9.7” diagonal screen size (𝑖 = 2)
• iRex 1000S - 10.2” diagonal screen size (𝑖 = 3)

The illuminance levels studied were 200 lx (𝑗 = 1), 500 lx (𝑗 = 2), 1000 lx (𝑗 = 3), and 1500 lx (𝑗 = 4). A total
study group of 𝑛𝑇 = 60 subjects was obtained with 𝑛 = 5 being measured on the 𝑎𝑏 = 3(4) = 12 combinations of
device and lighting level. The response variable 𝑌 is the reading time in seconds.

R code and output are given below.

## device light readtime
## 1 1 1 1656.26
## 2 1 1 1405.92
## 3 1 1 1797.21
## 4 1 1 1155.96
## 5 1 1 1295.44
## 6 1 2 1022.32
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90
0

11
00

13
00

Illuminination

R
ea

di
ng
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im

e

200 lx 500 lx 1000 lx 1500 lx

   ereader$device.f

Sony
Amazon
iRex

## 200 lx 500 lx 1000 lx 1500 lx
## Sony 1462.158 1385.960 1093.694 1069.49
## Amazon 1250.188 1096.594 914.006 868.01
## iRex 1208.350 1102.146 904.400 841.10

##
## Call:
## aov(formula = readtime ~ device.f * light.f, data = ereader)
##
## Residuals:
## Min 1Q Median 3Q Max
## -497.41 -187.20 -20.66 206.88 463.53
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1099.675 35.601 30.889 < 2e-16 ***
## device.f1 153.151 50.347 3.042 0.00380 **
## device.f2 -67.475 50.347 -1.340 0.18649
## light.f1 207.224 61.663 3.361 0.00153 **
## light.f2 95.225 61.663 1.544 0.12909
## light.f3 -128.975 61.663 -2.092 0.04179 *
## device.f1:light.f1 2.108 87.204 0.024 0.98081
## device.f2:light.f1 10.765 87.204 0.123 0.90227
## device.f1:light.f2 37.909 87.204 0.435 0.66572
## device.f2:light.f2 -30.831 87.204 -0.354 0.72523
## device.f1:light.f3 -30.157 87.204 -0.346 0.73099
## device.f2:light.f3 10.781 87.204 0.124 0.90212
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##
## Residual standard error: 275.8 on 48 degrees of freedom
## Multiple R-squared: 0.3771, Adjusted R-squared: 0.2343
## F-statistic: 2.641 on 11 and 48 DF, p-value: 0.01001

## Analysis of Variance Table
##
## Response: readtime
## Df Sum Sq Mean Sq F value Pr(>F)
## device.f 2 706968 353484 4.6483 0.0142790 *
## light.f 3 1481064 493688 6.4920 0.0008906 ***
## device.f:light.f 6 21543 3591 0.0472 0.9995253
## Residuals 48 3650203 76046
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = readtime ~ device.f * light.f, data = ereader)
##
## $device.f
## diff lwr upr p adj
## Amazon-Sony -220.6260 -431.5285 -9.723488 0.0384849
## iRex-Sony -238.8265 -449.7290 -27.923988 0.0230557
## iRex-Amazon -18.2005 -229.1030 192.702012 0.9762840

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = readtime ~ device.f * light.f, data = ereader)
##
## $light.f
## diff lwr upr p adj
## 500 lx-200 lx -111.9987 -379.9852 155.9878183 0.6838249
## 1000 lx-200 lx -336.1987 -604.1852 -68.2121817 0.0085849
## 1500 lx-200 lx -380.6987 -648.6852 -112.7121817 0.0023697
## 1000 lx-500 lx -224.2000 -492.1865 43.7864849 0.1306514
## 1500 lx-500 lx -268.7000 -536.6865 -0.7135151 0.0491639
## 1500 lx-1000 lx -44.5000 -312.4865 223.4864849 0.9708523

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 (partial) | 95% CI
## ------------------------------------------------
## device.f | 0.16 | [0.02, 1.00]
## light.f | 0.29 | [0.10, 1.00]
## device.f:light.f | 5.87e-03 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 | 95% CI
## ------------------------------------------
## device.f | 0.12 | [0.00, 1.00]
## light.f | 0.25 | [0.07, 1.00]
## device.f:light.f | 3.68e-03 | [0.00, 1.00]
##
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## - One-sided CIs: upper bound fixed at [1.00].

Unlike the chicken broilers example, there is no evidence (whatsoever) of a significant interaction between device
and light level 𝐹 ∗

𝐴𝐵 = 0.0472, 𝑃𝐴𝐵 = .9995. There is evidence of device differences 𝐹 ∗
𝐴 = 4.648, 𝑃𝐴 = .0143 and

lighting differences 𝐹 ∗
𝐵 = 6.492, 𝑃𝐵 = .0009.

The residual standard error, which estimates 𝜎, is 275.8 seconds, a little over 4.5 minutes. The variation in people’s
reading times (within treatments) is quite large. Based on 𝜂2, the illumination levels explains 25% of the total
variation in reading times, while device explains 12%.

Based on Tukey comparisons among devices and among lighting levels we obtain the following significant differences.
Formulas will be given in the next section.

• The larger Amazon and iRex readers have significantly lower reading times than the smaller Sony model.
• 1000 lx and 1500 lx have significantly lower reading times than 200 lx
• 1500 lx has significantly lower reading times than 500 lx

∇

Finally, some guidelines are given for testing and modelling strategy.

If the interaction is significant, and the goal was to demonstrate interactions (as is often the case in behavioral
studies), describe the interaction effects in terms of cell means, as in the Chicken Diet example. If the interaction
is significant, and the goal is to simplify the model, try some power (Box-Cox) transformations on 𝑌 and see if that
simplifies the model.

If the interaction isn’t significant or important, test for main effects for factors A and B. Also, make comparisons
among the marginal means of factors A and B, as in the E-reader example.

5.3 Factor Effect Contrasts
In this section, we consider contrasts among means when interaction is absent and when it is present.

5.3.1 Contrasts when there is No Interaction
This is the simpler case, where contrasts are made among levels of factors A and B, as was done previously for
single factor models.

For contrasts among levels for factor A, we summarize the results from the 1-Way ANOVA. Keep in mind that the
marginal means for the levels of factor A are based on 𝑎𝑛 levels.

Contrasts among Factor A Levels: 𝐿 =
𝑎

∑
𝑖=1

𝑐𝑖𝜇𝑖•
𝑎

∑
𝑖=1

𝑐𝑖 = 0

Estimator: 𝐿̂ =
𝑎

∑
𝑖=1

𝑐𝑖𝑌 𝑖•• Standard Error: 𝑠 {𝐿̂} = √𝑀𝑆𝐸
𝑏𝑛

𝑎
∑
𝑖=1

𝑐2
𝑖

(1 − 𝛼)100% Confidence Interval for 𝐿 ∶ 𝐿̂ ± 𝑡1−𝛼/2;𝑎𝑏(𝑛−1)𝑠 {𝐿̂}

Scheffe (all contrasts): 𝐿̂ ± (√(𝑎 − 1)𝐹1−𝛼;𝑎−1,𝑎𝑏(𝑛−1)) 𝑠 {𝐿̂}

Bonferroni (g pre-planned) contrasts: 𝐿̂ ± 𝑡1−𝛼/(2𝑔);𝑎𝑏(𝑛−1)𝑠 {𝐿̂}

Tukey (All pairs): 𝐿̂ ±
𝑞1−𝛼;𝑎,𝑎𝑏(𝑛−1)√

2
𝑠 {𝐿̂}
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Similar results for factor B occur, with the following adjustments, as well as critical values for Scheffe’s and Tukey’s
methods.

𝐿 =
𝑏

∑
𝑗=1

𝑐𝑗𝜇•𝑗
𝑏

∑
𝑗=1

𝑐𝑗 = 0 𝐿̂ =
𝑏

∑
𝑗=1

𝑐𝑗𝑌 •𝑗• 𝑠 {𝐿̂} =
√√√
⎷

𝑀𝑆𝐸
𝑎𝑛

𝑏
∑
𝑗=1

𝑐2
𝑗

5.3.2 Contrasts when Interaction is Present
In this case, contrasts are made among cell means as opposed to marginal means.

Contrasts: 𝐿 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐𝑖𝑗𝜇𝑖𝑗
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐𝑖𝑗 = 0

Estimator: 𝐿̂ =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐𝑖𝑗𝑌 𝑖𝑗• Std Error: 𝑠 {𝐿̂} =
√√√
⎷

𝑀𝑆𝐸
𝑛

𝑎
∑
𝑖=1

𝑏
∑
𝑗=1

𝑐2
𝑖𝑗

(1 − 𝛼)100% Confidence Interval for 𝐿 ∶ 𝐿̂ ± 𝑡1−𝛼/2;𝑎𝑏(𝑛−1)𝑠 {𝐿̂}

Scheffe (all contrasts): 𝐿̂ ± (√(𝑎𝑏 − 1)𝐹1−𝛼;𝑎𝑏−1,𝑎𝑏(𝑛−1)) 𝑠 {𝐿̂}

Bonferroni (g pre-planned) contrasts: 𝐿̂ ± 𝑡1−𝛼/(2𝑔);𝑎𝑏(𝑛−1)𝑠 {𝐿̂}

Tukey (All pairs): 𝐿̂ ±
𝑞1−𝛼;𝑎𝑏,𝑎𝑏(𝑛−1)√

2
𝑠 {𝐿̂}

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
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Chapter 6

Two-Factor Designs with 1 Observation
per Treatment

In some cases, there is only a single observation within each combination of factor levels. This causes a problem
when considering models with interaction effects. The error degrees of freedom are 𝑑𝑓𝐸 = 𝑎𝑏(𝑛 − 1) = 𝑎𝑏(1 − 1) = 0
and the error sum of squares is 𝑆𝑆𝐸 = 0. Several methods have been developed for testing for interaction under
particular restrictions. In this chapter, we describe Tukey’s One Degree of Freedom for Non-Additivity
Test (ODOFNA). For this test, the form of the interaction and the resulting test are given below.

(𝛼𝛽)𝑖𝑗 = 𝐷𝛼𝑖𝛽𝑗 𝐻0 ∶ 𝐷 = 0 𝐻𝐴 ∶ 𝐷 ≠ 0

Intuitively, the test involves estimating 𝜇, as well as 𝛼𝑖 and 𝛽𝑗 from the marginal means for factors A and B. Then
𝐷 is estimated by fitting a regression through the origin relating 𝑌 ∗ (𝑌 minus the sum of the mean and the main
effects) to 𝑋∗ where 𝑋∗ is the product of the estimates of 𝛼𝑖, and 𝛽𝑗.

̂𝜇 = 𝑌 •• ̂𝛼𝑖 = 𝑌 𝑖• − 𝑌 •• ̂𝛽𝑗 = 𝑌 •𝑗 − 𝑌 •• 𝑌 ∗
𝑖𝑗 = 𝑌𝑖𝑗 − ̂𝜇 − ̂𝛼𝑖 − ̂𝛽𝑗 𝑋∗

𝑖𝑗 = ̂𝛼𝑖 ̂𝛽𝑗

For regression through the origin, we obtain the estimate and test whether 𝐷 = 0 as follows, where the model with
𝐷 is the complete model.

𝐷̂ =
∑𝑎

𝑖=1 ∑𝑏
𝑗=1 𝑋∗

𝑖𝑗𝑌 ∗
𝑖𝑗

∑𝑎
𝑖=1 ∑𝑏

𝑗=1 𝑋∗2
𝑖𝑗

̂𝑌𝑖𝑗(𝐶) = ̂𝜇•• + ̂𝛼𝑖 + ̂𝛽𝑗 + 𝐷̂ ̂𝛼𝑖 ̂𝛽𝑗 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏

𝑆𝑆𝐸(𝐶) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗(𝐶))2 𝑑𝑓𝐸(𝐶) = 𝑎𝑏 − (𝑎 − 1) − (𝑏 − 1) − 1 = 𝑎𝑏 − 𝑎 − 𝑏 + 1

Under the reduced model, 𝐷 = 0, and we obtain the following fitted values and error sum of squares and degrees
of freedom.

̂𝑌𝑖𝑗(𝑅) = ̂𝜇 + ̂𝛼𝑖 + ̂𝛽𝑗 𝑆𝑆𝐸(𝑅) =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌𝑖𝑗 − ̂𝑌𝑖𝑗(𝑅))2 𝑑𝑓𝐸(𝑅) = 𝑎𝑏 − 𝑎 − 𝑏 + 2

Then Tukey’s ODOFNA test is a special case of the general linear test with 𝐻0 ∶ 𝐷 = 0 vs 𝐻𝐴 ∶ 𝐷 ≠ 0.

Test Statistic: 𝐹 ∗ =
[ 𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐶)

𝑑𝑓𝐸𝑅−𝑑𝑓𝐸(𝐶) ]
[ 𝑆𝑆𝐸(𝐶)

𝑑𝑓𝐸(𝐶) ]
Rejection Region: 𝐹 ∗ ≥ 𝐹1−𝛼;1,𝑎𝑏−𝑎−𝑏
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Example 6.1 - Economic Indices for 8 Sources Over 18 Years

A study considered U.S. economic indices for 𝑎 = 8 business news sources over a 𝑏 = 18 year period [Smith, 1969].
The sources were: DJIA, Poors, NYSE, GNP, CPI, Forbes, Business Week, and Money Magazine. The years were
1948-1965. There was one index per source per year. The following R code runs calculations directly, then structures
the data in matrix form and uses the additivityTests package. Note that we order the data frame first by source,
then by year within source, as tapply output is sorted by the alphanumeric levels of the grouping variable(s).
biz1 <- read.table("http://www.stat.ufl.edu/~winner/data/jb42.dat",header=F,

col.names=c("source","year","Y"))
head(biz1)

## source year Y
## 1 DJIA 1965 1.103
## 2 DJIA 1964 1.145
## 3 DJIA 1963 1.169
## 4 DJIA 1962 0.890
## 5 DJIA 1961 1.207
## 6 DJIA 1960 0.896
## Create a new data frame that orders first by source then year within source
biz <- biz1[order(biz1$source, biz1$year),]
head(biz)

## source year Y
## 126 BWEEK 1948 1.019
## 125 BWEEK 1949 0.995
## 124 BWEEK 1950 1.213
## 123 BWEEK 1951 1.012
## 122 BWEEK 1952 1.141
## 121 BWEEK 1953 0.952
tail(biz)

## source year Y
## 24 POOR 1960 0.953
## 23 POOR 1961 1.231
## 22 POOR 1962 0.872
## 21 POOR 1963 1.201
## 20 POOR 1964 1.131
## 19 POOR 1965 1.099
all.mean <- mean(biz$Y)
source.mean <- as.vector(tapply(biz$Y, biz$source, mean))
year.mean <- as.vector(tapply(biz$Y, biz$year, mean))
a <- length(source.mean)
b <- length(year.mean)

biz$mu <- rep(all.mean, a*b)
biz$alpha <- rep(source.mean-all.mean, each=b)
biz$beta <- rep(year.mean-all.mean, times=a)

biz$Ystar <- biz$Y - biz$mu - biz$alpha - biz$beta
biz$Xstar <- biz$alpha * biz$beta

(Dhat <- sum(biz$Xstar*biz$Ystar) / sum(biz$Xstar^2))

## [1] 23.6517
biz$Yhat.C <- biz$mu + biz$alpha + biz$beta + Dhat*biz$Xstar
biz$Yhat.R <- biz$mu + biz$alpha + biz$beta
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SSE.C <- sum((biz$Y-biz$Yhat.C)^2)
SSE.R <- sum((biz$Y-biz$Yhat.R)^2)
df_E.C <- a*b - a - b
df_E.R <- a*b - a - b + 1

Fstar <- ((SSE.R-SSE.C)/(df_E.R-df_E.C)) / (SSE.C/df_E.C)

odofna.out <- cbind(df_E.R, df_E.C, SSE.R, SSE.C, Fstar, qf(.95,1,df_E.C),
1-pf(Fstar,1,df_E.C))

colnames(odofna.out) <- c("df(R)", "df(C)", "SSE(R)", "SSE(C)", "F*", "F(.95)", "P(>F*)")
rownames(odofna.out) <- c("ODOFNA")
round(odofna.out, 4)

## df(R) df(C) SSE(R) SSE(C) F* F(.95) P(>F*)
## ODOFNA 119 118 0.9305 0.4075 151.4522 3.9215 0
plot(biz$Ystar ~ biz$Xstar, pch=16, xlab="X*=alpha*beta", ylab="Y*=Y-mu-alpha-beta")
abline(lm(Ystar ~ Xstar - 1,data=biz), col="blue3", lwd=1.5)
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### biz is sorted by index, then year (stacked COLUMNS from spreadsheet)
(Y.mat <- matrix(biz$Y,byrow=F,ncol=8))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1.019 1.077 0.972 1.041 1.110 0.985 0.972 0.996
## [2,] 0.995 0.990 1.114 0.945 0.996 0.994 1.102 1.091
## [3,] 1.213 1.009 1.179 1.157 1.102 1.057 1.211 1.247
## [4,] 1.012 1.080 1.174 1.085 1.156 1.055 1.132 1.178
## [5,] 1.141 1.022 1.074 1.037 1.055 1.038 1.065 1.109
## [6,] 0.952 1.008 0.965 1.083 1.053 1.010 0.938 0.925
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## [7,] 1.074 1.004 1.393 0.940 0.994 1.029 1.426 1.497
## [8,] 1.125 0.997 1.231 1.126 1.095 1.020 1.222 1.301
## [9,] 1.011 1.015 1.000 1.034 1.055 1.012 1.026 1.034
## [10,] 0.906 1.035 0.833 1.008 1.056 0.993 0.866 0.856
## [11,] 1.099 1.028 1.425 0.930 1.044 1.038 1.366 1.376
## [12,] 1.073 1.008 1.184 1.127 1.086 1.006 1.097 1.094
## [13,] 0.917 1.016 0.896 1.029 1.041 0.924 0.976 0.953
## [14,] 1.154 1.011 1.207 1.099 1.032 1.031 1.240 1.231
## [15,] 1.018 1.012 0.890 1.078 1.072 1.013 0.880 0.872
## [16,] 1.060 1.012 1.169 1.051 1.050 1.038 1.180 1.201
## [17,] 1.073 1.013 1.145 1.064 1.066 1.043 1.143 1.131
## [18,] 1.093 1.017 1.103 1.083 1.086 1.048 1.095 1.099
tukey.test(Y.mat)

##
## Tukey test on 5% alpha-level:
##
## Test statistic: 151.5
## Critival value: 3.921
## The additivity hypothesis was rejected.

There is strong evidence of an interaction between source and year, of this form.

(𝛼𝛽)𝑖𝑗 = 𝐷𝛼𝑖𝛽𝑗 with 𝐷̂ = 23.65

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)



Chapter 7

Unbalanced Two-Factor Analysis of
Variance

When sample sizes are not all equal, the sums of squares cannot be obtained simply among the cell, marginal, and
overall means. Even in well planned controlled experiments, observations may not be used due to malfunction or
subjects dropping out. In observational studies, it may not be feasible to get equal number of units from the various
sub-populations.

The model can be fit based on regression models in scalar and matrix form. In this chapter, we describe the process
based on the treatment effects model. The balanced case can be formed in this manner as well.

7.1 Statistical Model and the Analysis of Variance
𝑌𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛𝑖𝑗

𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

𝑛𝑖• =
𝑏

∑
𝑗=1

𝑛𝑖𝑗 𝑛•𝑗 =
𝑎

∑
𝑖=1

𝑛𝑖𝑗 𝑛𝑇 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛𝑖𝑗 𝑌𝑖𝑗• =
𝑛𝑖𝑗

∑
𝑘=1

𝑌𝑖𝑗𝑘 𝑌 𝑖𝑗• = 𝑌𝑖𝑗•
𝑛𝑖𝑗

𝑎
∑
𝑖=1

𝛼𝑖 =
𝑏

∑
𝑗=1

𝛽𝑗 =
𝑎

∑
𝑖=1

(𝛼𝛽)𝑖𝑗 =
𝑏

∑
𝑗=1

(𝛼𝛽)𝑖𝑗 = 0

𝛼𝑎 = −
𝑎−1
∑
𝑖=1

𝛼𝑖 𝛽𝑏 = −
𝑏−1
∑
𝑗=1

𝛽𝑗 (𝛼𝛽)𝑎𝑗 = −
𝑎−1
∑
𝑖=1

(𝛼𝛽)𝑖𝑗 𝑗 = 1, … , 𝑏 (𝛼𝛽)𝑖𝑏 = −
𝑏−1
∑
𝑗=1

(𝛼𝛽)𝑖𝑗 𝑖 = 1, … , 𝑎

To fit this model, construct 𝑎 − 1 𝑋 variables for the factor A effects, 𝑏 − 1 𝑋 variables for the factor B effects, and
then obtain the (𝑎 − 1)(𝑏 − 1) cross-products of these variables for the interaction effects.

𝑋𝐴
𝑖𝑗𝑘1 =

⎧{
⎨{⎩

1 ∶ 𝑖 = 1
0 ∶ 𝑖 = 2, … , 𝑎 − 1

−1 ∶ 𝑖 = 𝑎
⋯ 𝑋𝐴

𝑖𝑗𝑘,𝑎−1 =
⎧{
⎨{⎩

1 ∶ 𝑖 = 𝑎 − 1
0 ∶ 𝑖 = 1, … , 𝑎 − 2

−1 ∶ 𝑖 = 𝑎

𝑋𝐵
𝑖𝑗𝑘1 =

⎧{
⎨{⎩

1 ∶ 𝑗 = 1
0 ∶ 𝑗 = 2, … , 𝑏 − 1

−1 ∶ 𝑗 = 𝑏
⋯ 𝑋𝐵

𝑖𝑗𝑘,𝑏−1 =
⎧{
⎨{⎩

1 ∶ 𝑗 = 𝑏 − 1
0 ∶ 𝑗 = 1, … , 𝑏 − 2

−1 ∶ 𝑗 = 𝑏

𝑌𝑖𝑗𝑘 = 𝜇•• + 𝛼1𝑋𝐴
𝑖𝑗𝑘1 + ⋯ + 𝛼𝑎−1𝑋𝐴

𝑖𝑗𝑘,𝑎−1 + 𝛽1𝑋𝐵
𝑖𝑗𝑘1 + ⋯ + 𝛽𝑏−1𝑋𝐵

𝑖𝑗𝑘,𝑏−1+
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Table 7.1: Author Age at Peak Data

author Type Style ageDth cageDth agePeak
Eliot 0 0 77 8.57 23
Cummings 0 0 68 -0.43 26
Plath 0 0 31 -37.43 30
Pound 0 0 87 18.57 30
Wilber 0 0 86 17.57 34
Williams 0 1 80 11.57 40
Bishop 0 1 68 -0.43 29
Moore 0 1 85 16.57 32
Lowell 0 1 60 -8.43 41
Stevens 0 1 76 7.57 42
Frost 0 1 89 20.57 48
Fitzgerald 1 0 44 -24.43 29
Hemingway 1 0 62 -6.43 30
Melville 1 0 72 3.57 32
Lawrence 1 0 45 -23.43 35
Joyce 1 0 59 -9.43 40
James 1 1 73 4.57 38
Faulkner 1 1 65 -3.43 39
Dickens 1 1 58 -10.43 41
Woolf 1 1 59 -9.43 45
Conrad 1 1 67 -1.43 47
Twain 1 1 75 6.57 50
Hardy 1 1 88 19.57 51

+(𝛼𝛽)11𝑋𝐴
𝑖𝑗𝑘1𝑋𝐵

𝑖𝑗𝑘1 + ⋯ + (𝛼𝛽)𝑎−1,𝑏−1𝑋𝐴
𝑖𝑗𝑘,𝑎−1𝑋𝐵

𝑖𝑗𝑘,𝑏−1 + 𝜖𝑖𝑗𝑘

The testing strategy is done as it was in the balanced case. Fit various models and compare them using the general
linear test procedure.

• Model 1 - Include main effects for factors A and B as well as interaction effects.
• Model 2 - Include main effects for factors A and B, but no interaction effects
• Model 3 - Include main effects for factor B and interaction effects, but no factor A effects
• Model 4 - Include main effects for factor A and interaction effects, but no factor B effects

To test for interaction effects, controlling for main effects for factors A and B, we compare Model 1 (Complete) and
Model 2 (Reduced).

To test for factor A effects, controlling for factor B effects and interaction effects, we compare Model 1 (Complete)
and Model 3 (Reduced).

To test for factor B effects, controlling for factor A effects and interaction effects, we compare Model 1 (Complete)
and Model 4 (Reduced).

When the test for interaction is “very non-significant” (high 𝑃 -value), often tests for factor A and B effects use
Model 2 as the Complete Model.

Example 7.1 - Age at Peak for Famous Writers

A study considered the age at career peak for famous writers [Simonson, 2007]. The factors were Style (Factor A:
Conceptualists (𝑖 = 1), Experimentalists (𝑖 = 2)) and Writer Type (Factor B:Poets (𝑗 = 1), Novelists (𝑗 = 2)).
Thus, there are 𝑎 = 𝑏 = 2 levels for the factors, there will only be 𝑎 − 1 = 1 𝑋 variable for factor A and 𝑏 − 1 = 1
𝑋 variable for factor B, and (𝑎 − 1)(𝑏 − 1) = 1 cross-product term for the AB interaction. The numbers of writers
for the 𝑎𝑏 = 4 conditions are 𝑛11 = 𝑛12 = 5, 𝑛21 = 6, 𝑛22 = 7. The data and the generated X variables are given in
Table 7.1. The regression model is fit directly, then with the aov function.

##
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## Call:
## lm(formula = agePeak ~ X1A + X1B + X1AX1B, data = ap1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.667 -3.814 1.333 2.952 9.333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.2238 1.1402 31.769 < 2e-16 ***
## X1A 5.3238 1.1402 4.669 0.000167 ***
## X1B 2.5905 1.1402 2.272 0.034902 *
## X1AX1B 0.2905 1.1402 0.255 0.801652
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.415 on 19 degrees of freedom
## Multiple R-squared: 0.5978, Adjusted R-squared: 0.5343
## F-statistic: 9.413 on 3 and 19 DF, p-value: 0.0005033

##
## Call:
## aov(formula = agePeak ~ factor(Style) + factor(Type) + factor(Style) *
## factor(Type), data = ap1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.667 -3.814 1.333 2.952 9.333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.2238 1.1402 31.769 < 2e-16 ***
## factor(Style)1 -5.3238 1.1402 -4.669 0.000167 ***
## factor(Type)1 -2.5905 1.1402 -2.272 0.034902 *
## factor(Style)1:factor(Type)1 0.2905 1.1402 0.255 0.801652
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.415 on 19 degrees of freedom
## Multiple R-squared: 0.5978, Adjusted R-squared: 0.5343
## F-statistic: 9.413 on 3 and 19 DF, p-value: 0.0005033

## Analysis of Variance Table
##
## Response: agePeak
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Style) 1 667.75 667.75 22.7758 0.0001324 ***
## factor(Type) 1 158.26 158.26 5.3979 0.0314109 *
## factor(Style):factor(Type) 1 1.90 1.90 0.0649 0.8016516
## Residuals 19 557.05 29.32
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see from the regression coefficients (that control for all other factors) that there is no evidence of an interaction,
but there is evidence of main effects for Style and Writer Type. Formal tests are given below. Given that each test
has 1 degree of freedom, we use 𝑡-tests.
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𝐻𝐴𝐵
0 ∶ (𝛼𝛽)11 = (𝛼𝛽)12 = (𝛼𝛽)21 = (𝛼𝛽)22 = 0 𝑡∗

𝐴𝐵 = 0.2905
1.1402 = 0.255 𝑃𝐴𝐵 = .8017

𝐻𝐴
0 ∶ 𝛼1 = 𝛼2 = 0 𝑡∗

𝐴 = −5.3238
1.1402 = −4.669 𝑃𝐴 = .0002

𝐻𝐵
0 ∶ 𝛽1 = 𝛽2 = 0 𝑡∗

𝐵 = −2.5905
1.1402 = −2.272 𝑃𝐵 = .0349

As there are strong evidence of main effects and no suggestion of an interaction, we will fit Model 2 for making
comparisons, but not fit Models 3 or 4.

##
## Call:
## lm(formula = agePeak ~ X1A + X1B, data = ap1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.940 -4.027 1.060 2.933 9.060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.234 1.113 32.566 < 2e-16 ***
## X1A 5.334 1.113 4.794 0.000111 ***
## X1B 2.628 1.104 2.380 0.027397 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.287 on 20 degrees of freedom
## Multiple R-squared: 0.5964, Adjusted R-squared: 0.5561
## F-statistic: 14.78 on 2 and 20 DF, p-value: 0.0001146

##
## Call:
## aov(formula = agePeak ~ factor(Style) + factor(Type), data = ap1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.940 -4.027 1.060 2.933 9.060
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.234 1.113 32.566 < 2e-16 ***
## factor(Style)1 -5.334 1.113 -4.794 0.000111 ***
## factor(Type)1 -2.628 1.104 -2.380 0.027397 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.287 on 20 degrees of freedom
## Multiple R-squared: 0.5964, Adjusted R-squared: 0.5561
## F-statistic: 14.78 on 2 and 20 DF, p-value: 0.0001146

## Analysis of Variance Table
##
## Response: agePeak
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Style) 1 667.75 667.75 23.8930 8.894e-05 ***
## factor(Type) 1 158.26 158.26 5.6627 0.0274 *
## Residuals 20 558.95 27.95
## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the additive model (Model 2), we obtain the following estimates and predicted ages at peak.

̂𝜇•• = 36.234 ̂𝛼1 = −5.334 ̂𝛼2 = 5.334 ̂𝛽1 = −2.628 ̂𝛽2 = 2.628
Conceptualists/Poets: ̂𝑌11 = ̂𝜇•• + ̂𝛼1 + ̂𝛽1 = 36.234 − 5.334 − 2.628 = 28.272

Conceptualists/Novelists: ̂𝑌12 = ̂𝜇•• + ̂𝛼1 + ̂𝛽2 = 36.234 − 5.334 + 2.628 = 33.528

Experimantalists/Poets: ̂𝑌21 = ̂𝜇•• + ̂𝛼2 + ̂𝛽1 = 36.234 + 5.334 − 2.628 = 38.940

Experimantalists/Novelists: ̂𝑌21 = ̂𝜇•• + ̂𝛼2 + ̂𝛽2 = 36.234 + 5.334 + 2.628 = 44.196

Experimentalists take longer on average to reach their peak than conceptualists, and novelists take longer than
poets.

∇

A second example with more levels of factor B is included here.

Example 7.2 - Makiwara Punching Boards

An experiment was conducted to compare two types of karate boards, made from 4 wood types [Smith et al., 2010].
The board types were stacked (𝑖 = 1) and tapered (𝑖 = 2), the wood types were: cherry (𝑗 = 1), ash (𝑗 = 2),
fir (𝑗 = 3), and oak (𝑗 = 4). Apparently due to breakage, there were unequal numbers of replicates among the
𝑎𝑏 = 2(4) = 8 treatments. We use the aov function in R with the treatment effects form to fit Models 1 (Interaction)
and 2 (Additive) to test whether there is an interaction between board and wood types. The response 𝑌 is the
deflection (millimeters) for the Makiwara board, with a total of 𝑛𝑇 = 336 measurements.

## trt.id wood board id deflect
## 1 1 1 1 1 144.3
## 2 1 1 1 2 125.9
## 3 1 1 1 3 263.2
## 4 1 1 1 4 114.6
## 5 1 1 1 5 242.5
## 6 1 1 1 6 141.9

## trt.id wood board id deflect
## 331 8 4 2 40 56.6
## 332 8 4 2 41 123.5
## 333 8 4 2 42 12.0
## 334 8 4 2 43 62.0
## 335 8 4 2 44 73.3
## 336 8 4 2 45 44.9

## cherry ash fir oak
## stacked 118.00000 105.9944 93.99706 89.99556
## tapered 77.99556 76.0000 55.00000 49.99333

##
## Call:
## aov(formula = deflect ~ board.f * wood.f, data = mb1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -97.600 -35.775 -7.246 25.705 281.104
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##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.3720 3.0838 27.035 < 2e-16 ***
## board.f1 18.6248 3.0838 6.039 4.19e-09 ***
## wood.f1 14.6258 5.2834 2.768 0.00596 **
## wood.f2 7.6252 5.4085 1.410 0.15953
## wood.f3 -8.8735 5.4678 -1.623 0.10558
## board.f1:wood.f1 1.3775 5.2834 0.261 0.79448
## board.f1:wood.f2 -3.6275 5.4085 -0.671 0.50288
## board.f1:wood.f3 0.8738 5.4678 0.160 0.87314
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.2 on 328 degrees of freedom
## Multiple R-squared: 0.1359, Adjusted R-squared: 0.1174
## F-statistic: 7.366 on 7 and 328 DF, p-value: 3.178e-08

## Analysis of Variance Table
##
## Response: deflect
## Df Sum Sq Mean Sq F value Pr(>F)
## board.f 1 115479 115479 36.5595 4.03e-09 ***
## wood.f 3 45955 15318 4.8496 0.002575 **
## board.f:wood.f 3 1444 481 0.1524 0.928115
## Residuals 328 1036045 3159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Call:
## aov(formula = deflect ~ board.f + wood.f, data = mb1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -96.220 -35.852 -7.682 26.736 282.422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.431 3.067 27.205 < 2e-16 ***
## board.f1 18.683 3.067 6.092 3.09e-09 ***
## wood.f1 14.506 5.252 2.762 0.00607 **
## wood.f2 7.976 5.359 1.488 0.13757
## wood.f3 -9.046 5.407 -1.673 0.09525 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.99 on 331 degrees of freedom
## Multiple R-squared: 0.1346, Adjusted R-squared: 0.1242
## F-statistic: 12.88 on 4 and 331 DF, p-value: 9.383e-10

## Analysis of Variance Table
##
## Response: deflect
## Df Sum Sq Mean Sq F value Pr(>F)
## board.f 1 115479 115479 36.8425 3.506e-09 ***
## wood.f 3 45955 15318 4.8872 0.002445 **
## Residuals 331 1037489 3134
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When comparing the mean deflection differences (stacked-tapered) within the 4 wood types, based on the tapply
function, we observe: 40 (cherry), 30 (ash), 39 (fir), and 41 (oak). While these differences are not exactly the same,
they are very consistent. To test for interaction, we directly use the ANOVA table from Model 1.

𝐻0 ∶ (𝛼𝛽)11 = ⋯ = (𝛼𝛽)42 = 0 𝐻𝐴 ∶ Not all (𝛼𝛽)𝑖𝑗 = 0

Test Statistic: 𝐹 ∗
𝐴𝐵 = 𝑀𝑆𝐴𝐵

𝑀𝑆𝐸 = 481
3159 = 0.1524 Rejection Region: 𝐹 ∗

𝐴𝐵 ≥ 𝐹.95;3,328 = 2.632

The 𝑃 -value is large, 𝑃𝐴𝐵 = .9281, giving no evidence of any interaction effects.

Based on this, we test for main effects for Board and Wood Effects, based on Model 2, the additive model.

For Board effects, 𝐻𝐴
0 ∶ 𝛼1 = 𝛼2 = 0, we obtain the following test.

Test Statistic: 𝐹 ∗
𝐴 = 𝑀𝑆𝐴

𝑀𝑆𝐸 = 115479
3134 = 36.8425 Rejection Region: 𝐹 ∗

𝐴 ≥ 𝐹.95;1,331 = 3.870

For Wood effects, 𝐻𝐵
0 ∶ 𝛽1 = ⋯ = 𝛽4 = 0, we obtain the following test.

Test Statistic: 𝐹 ∗
𝐵 = 𝑀𝑆𝐵

𝑀𝑆𝐸 = 15318
3134 = 4.8872 Rejection Region: 𝐹 ∗

𝐵 ≥ 𝐹.95;3,331 = 2.632

Both results are significant, with 𝑃𝐴 < .0001 and 𝑃𝐵 = .0024.

∇

7.2 Least Squares Estimators and Contrasts/Linear Functions Among
Means

In this section, the formulas for estimators and estimated standard errors for means and linear functions are given.
For treatment (cell) means, we have the following results.

Parameter: 𝜇𝑖𝑗 Estimator: ̂𝜇𝑖𝑗 = ∑𝑛𝑖𝑗
𝑘=1 𝑌𝑖𝑗𝑘
𝑛𝑖𝑗

= 𝑌 𝑖𝑗•

Estimated Standard Error: 𝑠 { ̂𝜇𝑖𝑗} = √𝑀𝑆𝐸
𝑛𝑖𝑗

For factor A level means, we have the following results.

Parameter: 𝜇𝑖• =
∑𝑏

𝑗=1 𝜇𝑖𝑗
𝑏 Estimator: ̂𝜇𝑖• =

∑𝑏
𝑗=1 𝑌 𝑖𝑗•

𝑏

Estimated Standard Error: 𝑠 { ̂𝜇𝑖•} =
√√√
⎷

𝑀𝑆𝐸
𝑏2

𝑏
∑
𝑗=1

1
𝑛𝑖𝑗

For factor B level means, we have the following results.

Parameter: 𝜇•𝑗 = ∑𝑎
𝑖=1 𝜇𝑖𝑗

𝑎 Estimator: ̂𝜇•𝑗 = ∑𝑎
𝑖=1 𝑌 𝑖𝑗•

𝑎

Estimated Standard Error: 𝑠 { ̂𝜇•𝑗} = √𝑀𝑆𝐸
𝑎2

𝑎
∑
𝑖=1

1
𝑛𝑖𝑗
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For contrasts or linear functions among factor A and B levels, we have the following parameters, estimators, and
estimated standard errors.

𝐿𝐴 =
𝑎

∑
𝑖=1

𝑐𝑖𝜇𝑖• 𝐿̂𝐴 =
𝑎

∑
𝑖=1

𝑐𝑖 ̂𝜇𝑖• 𝑠 {𝐿̂𝐴} =
√√√
⎷

𝑀𝑆𝐸
𝑏2

𝑎
∑
𝑖=1

𝑐2
𝑖

𝑏
∑
𝑗=1

1
𝑛𝑖𝑗

𝐿𝐵 =
𝑏

∑
𝑗=1

𝑐𝑗𝜇•𝑗 𝐿̂𝐵 =
𝑏

∑
𝑗=1

𝑐𝑗 ̂𝜇•𝑗 𝑠 {𝐿̂𝐵} =
√√√
⎷

𝑀𝑆𝐸
𝑎2

𝑏
∑
𝑗=1

𝑐2
𝑗

𝑎
∑
𝑖=1

1
𝑛𝑖𝑗

Finally, the results are given for contrasts and linear functions among treatment (cell) means.

𝐿𝐴𝐵 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐𝑖𝑗𝜇𝑖𝑗 𝐿̂𝐴𝐵 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐𝑖𝑗 ̂𝜇𝑖𝑗 𝑠 {𝐿̂𝐴𝐵} =
√√√
⎷

𝑀𝑆𝐸
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐2
𝑖𝑗

𝑛𝑖𝑗

The standard error multipliers for contrasts/linear functions based on the Scheffe (all comparisons), Bonferroni (𝑔
pre-planned comparisons), and Tukey (all pairwise comparisons) methods are given here.

For single comparisons, use 𝑡1−𝛼/2;𝑛𝑇 −𝑎𝑏.

For comparisons among treatment (cell) means, use the following multipliers.

Scheffe: 𝑆 = √(𝑎𝑏 − 1)𝐹1−𝛼;𝑎𝑏−1,𝑛𝑇 −𝑎𝑏

Bonferroni: 𝐵 = 𝑡1−𝛼/(2𝑔);𝑛𝑇 −𝑎𝑏

Tukey: 𝑇 = 1√
2

𝑞1−𝛼;𝑎𝑏,𝑛𝑇 −𝑎𝑏

Standard error multipliers for contrasts and linear functions among levels of factors A and B are given here.

Scheffe: A: 𝑆𝐴 = √(𝑎 − 1)𝐹1−𝛼;𝑎−1,𝑛𝑇 −𝑎𝑏 B: 𝑆𝐵 = √(𝑏 − 1)𝐹1−𝛼;𝑏−1,𝑛𝑇 −𝑎𝑏

Bonferroni (Factors A and B): 𝐵 = 𝑡1−𝛼/(2𝑔);𝑛𝑇 −𝑎𝑏

Tukey: A: 𝑇𝐴 = 1√
2

𝑞1−𝛼;𝑎,𝑛𝑇 −𝑎𝑏 B: 𝑇𝐵 = 1√
2

𝑞1−𝛼;𝑏,𝑛𝑇 −𝑎𝑏

Example 7.3 - Age at Peak for Famous Writers

Although the interaction was not significant for the Age at Peak of the writers, we will use the Tukey method to
compare all pairs of Style/Type means. The Mean Square Error for the interaction model was 𝑀𝑆𝐸 = 29.32 with
degrees of freedom 𝑛𝑇 − 𝑎𝑏 = 23 − 2(2) = 19.

𝑦11• = 28.60 𝑛11 = 5 𝑠 {𝑌 11•} = √𝑀𝑆𝐸
𝑛11

= √29.32
5 = 2.42

𝑦12• = 33.20 𝑛12 = 5 𝑠 {𝑌 12•} = √𝑀𝑆𝐸
𝑛12

= √29.32
5 = 2.42

𝑦21• = 38.67 𝑛21 = 6 𝑠 {𝑌 21•} = √𝑀𝑆𝐸
𝑛21

= √29.32
6 = 2.21

𝑦22• = 44.43 𝑛22 = 7 𝑠 {𝑌 22•} = √𝑀𝑆𝐸
𝑛22

= √29.32
7 = 2.05
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𝑇 = 1√
2

𝑞.95;4,19 = 1√
2

(3.977) = 2.812 𝑠 {𝑌 𝑖𝑗• − 𝑌 𝑖′𝑗′•} = √𝑀𝑆𝐸 ( 1
𝑛𝑖𝑗

+ 1
𝑛𝑖′𝑗′

)

𝑦11• − 𝑦12• = 28.60 − 33.20 = −4.60 𝑠 {𝑌 11• − 𝑌 12•} = √29.32 (1
5 + 1

5) = 3.43

𝑦11• − 𝑦21• = 28.60 − 38.67 = −10.07 𝑠 {𝑌 11• − 𝑌 21•} = √29.32 (1
5 + 1

6) = 3.28

𝑦11• − 𝑦22• = 28.60 − 44.43 = −15.83 𝑠 {𝑌 11• − 𝑌 22•} = √29.32 (1
5 + 1

7) = 3.17

𝑦12• − 𝑦21• = 33.20 − 38.67 = −5.47 𝑠 {𝑌 12• − 𝑌 21•} = √29.32 (1
5 + 1

6) = 3.28

𝑦12• − 𝑦22• = 33.20 − 44.43 = −11.23 𝑠 {𝑌 12• − 𝑌 22•} = √29.32 (1
5 + 1

7) = 3.17

𝑦21• − 𝑦22• = 38.67 − 44.43 = −5.76 𝑠 {𝑌 21• − 𝑌 22•} = √29.32 (1
6 + 1

7) = 3.01

Conc/Poet-Conc/Novel: 𝐻𝑆𝐷 = 2.812(3.43) = 9.65 𝑦11• − 𝑦12• = −4.60
Conc/Poet-Exp/Poet: 𝐻𝑆𝐷 = 2.812(3.28) = 9.22 𝑦11• − 𝑦21• = 28.60 − 38.67 = −10.07

Conc/Poet-Exp/Novel: 𝐻𝑆𝐷 = 2.812(3.17) = 8.92 𝑦11• − 𝑦22• = −15.83
Conc/Nov-Exp/Poet: 𝐻𝑆𝐷 = 2.812(3.28) = 9.22 𝑦12• − 𝑦21• = −5.47
Conc/Nov-Exp/Nov: 𝐻𝑆𝐷 = 2.812(3.17) = 8.92 𝑦12• − 𝑦22• = −11.23
Exp/Poet-Exp/Nov: 𝐻𝑆𝐷 = 2.812(3.01) = 8.47 𝑦21• − 𝑦22• = −5.76

The groups that are significantly different, based on Tukey’s HSD are as follow.

• Conceptualist/Poet is significantly lower than Experimentalist/Poet
• Conceptualist/Poet is significantly lower than Experimentalist/Novelist
• Conceptualist/Novelist is significantly lower than Experimentalist/Novelist

The following R program runs Tukey’s HSD on the marginal means for factors A and B, and on the cell means as
well.

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = agePeak ~ factor(Style) + factor(Type) + factor(Style) * factor(Type), data = ap1)
##
## $`factor(Style)`
## diff lwr upr p adj
## 1-0 10.86923 6.102333 15.63613 0.0001324
##
## $`factor(Type)`
## diff lwr upr p adj
## 1-0 5.247378 0.5167309 9.978024 0.0315205
##
## $`factor(Style):factor(Type)`
## diff lwr upr p adj
## 1:0-0:0 10.066667 0.8473951 19.285938 0.0293965
## 0:1-0:0 4.600000 -5.0292152 14.229215 0.5481270
## 1:1-0:0 15.828571 6.9136505 24.743492 0.0004327
## 0:1-1:0 -5.466667 -14.6859383 3.752605 0.3672669
## 1:1-1:0 5.761905 -2.7085734 14.232383 0.2559999
## 1:1-0:1 11.228571 2.3136505 20.143492 0.0107243
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∇

Example 7.4 - Makiwara Punching Boards

For the Karate board experiment, we will conduct tests among levels of factors A and B, respectively. The Mean
Square Error was 𝑀𝑆𝐸 = 3159 with degrees of freedom 𝑛𝑇 − 𝑎𝑏 = 336 − 2(4) = 328 for Model 1 (with interaction).

For comparing the Board Types (Stacked-Tapered), we obtain the following cell means from the tapply function
previously.

𝑦11• = 118 𝑦12• = 106 𝑦13• = 94 𝑦14• = 90 ⇒ ̂𝜇1• = 118 + 106 + 94 + 90
4 = 102

𝑦21• = 78 𝑦22• = 76 𝑦23• = 55 𝑦24• = 50 ⇒ ̂𝜇2• = 78 + 76 + 55 + 50
4 = 64.75

The standard errors are computed here, where the sample sizes for each cell are given first.

𝑛11 = 41 𝑛12 = 36 𝑛13 = 34 𝑛14 = 𝑛21 = 𝑛22 = 𝑛23 = 𝑛24 = 45

𝑠 { ̂𝜇1•} = √3159
42 ( 1

41 + 1
36 + 1

34 + 1
45) = 4.53

𝑠 { ̂𝜇2•} = √3159
42 ( 1

45 + 1
45 + 1

45 + 1
45) = 4.19

The standard error of the difference ̂𝜇1•− ̂𝜇2• is the square root of the sum of their variances, as these are independent
samples. Also, we obtain the critical 𝑡-value, and the 95% Confidence Interval for 𝜇1• − 𝜇2•.

𝑠 { ̂𝜇1• − ̂𝜇2•} = √(4.53)2 + (4.19)2 = 6.17 𝑡.975;328 = 1.967

95% Confidence Interval: (102 − 64.75) ± 1.967(6.17) ≡ 37.25 ± 12.14 ≡ (25.11, 49.39)

Thus, the mean deflection is higher for the stacked board than the tapered on average (likely by somewhere between
25-50 millimeters). We could also compare all pairs of Wood Types. The computations are similar, but there are
4(3)/2 = 6 possible pairs. We will use the TukeyHSD function along with the aov object in R below.

## trt.id wood board id deflect
## 1 1 1 1 1 144.3
## 2 1 1 1 2 125.9
## 3 1 1 1 3 263.2
## 4 1 1 1 4 114.6
## 5 1 1 1 5 242.5
## 6 1 1 1 6 141.9

## trt.id wood board id deflect
## 331 8 4 2 40 56.6
## 332 8 4 2 41 123.5
## 333 8 4 2 42 12.0
## 334 8 4 2 43 62.0
## 335 8 4 2 44 73.3
## 336 8 4 2 45 44.9

## cherry ash fir oak
## stacked 118.00000 105.9944 93.99706 89.99556
## tapered 77.99556 76.0000 55.00000 49.99333
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## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = deflect ~ board.f * wood.f, data = mb1)
##
## $board.f
## diff lwr upr p adj
## tapered-stacked -37.17265 -49.26685 -25.07845 0

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = deflect ~ board.f * wood.f, data = mb1)
##
## $wood.f
## diff lwr upr p adj
## ash-cherry -6.535911 -29.00664 15.9348190 0.8761668
## fir-cherry -23.560409 -46.17714 -0.9436753 0.0375052
## oak-cherry -27.937478 -49.82197 -6.0529827 0.0059563
## fir-ash -17.024498 -39.97301 5.9240184 0.2234297
## oak-ash -21.401567 -43.62878 0.8256437 0.0639197
## oak-fir -4.377069 -26.75187 17.9977342 0.9578232

In terms of the Wood Types, fir has significantly lower deflection than cherry, and oak has significantly lower
deflection than cherry.

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
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Chapter 8

Multi-Factor Studies

Many experiments include three or more factors. Main effects and two-way interactions have the same interpretations
as in two factor studies. A three-way interaction is when the patterns of the two-way interactions between two
factors differ at different levels of the other factor(s).

In screening experiments, there can be any number of factors, typically with two or three levels each. The goal in
these experiments is to determine which factors have the larger effects, then conduct new experiments focusing on
these factors.

8.1 Three Factor Models - Mean Structure
In this section, we consider balanced three factor models, with labels A, B, and C, and with numbers of levels 𝑎,
𝑏, and 𝑐, respectively. The number of replicates per treatment is 𝑛, with an overall sample size of 𝑛𝑇 = 𝑎𝑏𝑐𝑛. The
same adjustments can be made for unbalanced data as was described in the previous chapter.

The population mean when factor A is at level 𝑖, B is at level 𝑗, and C is at level 𝑘 is 𝜇𝑖𝑗𝑘. The marginal and overall
means are given below.

𝜇𝑖𝑗• = ∑𝑐
𝑘=1 𝜇𝑖𝑗𝑘

𝑐 𝜇𝑖•𝑘 =
∑𝑏

𝑗=1 𝜇𝑖𝑗𝑘
𝑏 𝜇•𝑗𝑘 = ∑𝑎

𝑖=1 𝜇𝑖𝑗𝑘
𝑎

𝜇𝑖•• =
∑𝑏

𝑗=1 ∑𝑐
𝑘=1 𝜇𝑖𝑗𝑘

𝑏𝑐 𝜇•𝑗• = ∑𝑎
𝑖=1 ∑𝑐

𝑘=1 𝜇𝑖𝑗𝑘
𝑎𝑐 𝜇••𝑘 =

∑𝑎
𝑖=1 ∑𝑏

𝑗=1 𝜇𝑖𝑗𝑘
𝑎𝑏

𝜇••• =
∑𝑎

𝑖=1 ∑𝑏
𝑗=1 ∑𝑐

𝑘=1 𝜇𝑖𝑗𝑘
𝑎𝑏𝑐

Main effects and interactions are defined below.

𝛼𝑖 = 𝜇𝑖•• − 𝜇••• 𝛽𝑗 = 𝜇•𝑗• − 𝜇••• 𝛾𝑘 = 𝜇••𝑘 − 𝜇•••

(𝛼𝛽)𝑖𝑗 = 𝜇𝑖𝑗• − 𝜇𝑖•• − 𝜇•𝑗• + 𝜇••• (𝛼𝛾)𝑖𝑘 = 𝜇𝑖•𝑘 − 𝜇𝑖•• − 𝜇••𝑘 + 𝜇•••

(𝛽𝛾)𝑗𝑘 = 𝜇•𝑗𝑘 − 𝜇•𝑗• − 𝜇••𝑘 + 𝜇•••

(𝛼𝛽𝛾)𝑖𝑗𝑘 = 𝜇𝑖𝑗𝑘 − 𝜇𝑖𝑗• − 𝜇𝑖•𝑘 − 𝜇•𝑗𝑘 + 𝜇𝑖•• + 𝜇•𝑗• + 𝜇••𝑘 − 𝜇•••

The algorithm for obtaining the main effects and interaction effects goes as follows.

• Begin with the mean corresponding to the effect.
• Cover each subscript, one-at-a-time and multiply by (−1)1 = −1.
• Cover subscripts two-at-a-time and multiply by (−1)2 = 1.
• Continue until all subscripts have been covered.
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• Coefficients ±1 will sum to 0.

The following constraints are obtained for the effects and their estimators.

𝑎
∑
𝑖=1

𝛼𝑖 =
𝑏

∑
𝑗=1

𝛽𝑗 =
𝑐

∑
𝑘=1

𝛾𝑘 = 0

𝑎
∑
𝑖=1

(𝛼𝛽)𝑖𝑗 =
𝑏

∑
𝑗=1

(𝛼𝛽)𝑖𝑗 =
𝑎

∑
𝑖=1

(𝛼𝛾)𝑖𝑘 =
𝑐

∑
𝑘=1

(𝛼𝛾)𝑖𝑗 =
𝑏

∑
𝑗=1

(𝛽𝛾)𝑗𝑘 =
𝑐

∑
𝑘=1

(𝛽𝛾)𝑗𝑘 = 0

𝑎
∑
𝑖=1

(𝛼𝛽𝛾)𝑖𝑗𝑘 =
𝑏

∑
𝑗=1

(𝛼𝛽𝛾)𝑖𝑗𝑘 =
𝑐

∑
𝑘=1

(𝛼𝛽𝛾)𝑖𝑗𝑘 = 0

Example 8.1 - Flavonoids in Wine

The following “population means” are based on observed experimental values to apply the formulas above and have
been adjusted to have integer values for all effects [Genova et al., 2012]. There were three factors, each at two levels,
described below and the response was total flavonoids.

• Factor A - Grape Type Sangiovese (Red, 𝑖 = 1) and Muscat (White, 𝑖 = 2)
• Factor B - Storage Temperature 4C (𝑗 = 1) and -20C (𝑗 = 2)
• Factor C - Storage Time 24 hours (1 day, 𝑘 = 1) and 2 weeks (14 days, 𝑘 = 2)

The means are given below.

Sangiovese: 𝜇111 = 78 𝜇112 = 68 𝜇121 = 84 𝜇122 = 90
Muscat: 𝜇211 = 22 𝜇212 = 12 𝜇221 = 24 𝜇222 = 22

𝜇11• = 78 + 68
2 = 73 𝜇12• = 84 + 90

2 = 87

𝜇1•1 = 78 + 84
2 = 81 𝜇1•2 = 68 + 90

2 = 79

𝜇21• = 22 + 12
2 = 17 𝜇22• = 24 + 22

2 = 23

𝜇2•1 = 22 + 24
2 = 23 𝜇2•2 = 12 + 22

2 = 17

𝜇•11 = 78 + 22
2 = 50 𝜇•12 = 68 + 12

2 = 40

𝜇•21 = 84 + 24
2 = 54 𝜇•22 = 90 + 22

2 = 56

𝜇1•• = 78 + 68 + 84 + 90
4 = 80 𝜇2•• = 22 + 12 + 24 + 22

4 = 20

𝜇•1• = 78 + 68 + 22 + 12
4 = 45 𝜇•2• = 84 + 90 + 24 + 22

4 = 55

𝜇••1 = 78 + 84 + 22 + 24
4 = 52 𝜇••2 = 68 + 90 + 12 + 22

4 = 48

𝜇••• = 78 + 68 + 84 + 90 + 22 + 12 + 24 + 22
8 = 50

The main effects and interaction effects are obtained below.

Grape: 𝛼1 = 𝜇1•• − 𝜇••• = 80 − 50 = 30 𝛼2 = 20 − 50 = −30
Temperature: 𝛽1 = 𝜇•1• − 𝜇••• = 45 − 50 = −5 𝛽2 = 55 − 50 = 5

Time: 𝛾1 = 𝜇••1 − 𝜇••• = 52 − 50 = 2 𝛾2 = 48 − 50 = −2
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Grape/Temp: (𝛼𝛽)11 = 𝜇11• − 𝜇1•• − 𝜇•1• + 𝜇••• = 73 − 80 − 45 + 50 = −2
(𝛼𝛽)12 = 2 (𝛼𝛽)21 = 2 (𝛼𝛽)22 = −2

Grape/Time: (𝛼𝛾)11 = 𝜇1•1 − 𝜇1•• − 𝜇••1 + 𝜇••• = 81 − 80 − 52 + 50 = −1
(𝛼𝛾)12 = 1 (𝛼𝛾)21 = 1 (𝛼𝛾)22 = −1

Temp/Time: (𝛽𝛾)11 = 𝜇•11 − 𝜇•1• − 𝜇••1 + 𝜇••• = 50 − 45 − 52 + 50 = 3
(𝛽𝛾)12 = −3 (𝛽𝛾)21 = −3 (𝛽𝛾)22 = 3

(𝛼𝛽𝛾)111 = 78 − 73 − 81 − 50 + 80 + 45 + 52 − 50 = 1
(𝛼𝛽𝛾)112 = (𝛼𝛽𝛾)121 = (𝛼𝛽𝛾)211 = (𝛼𝛽𝛾)222 = −1 (𝛼𝛽𝛾)122 = (𝛼𝛽𝛾)212 = (𝛼𝛽𝛾)221 = 1

Interaction plots are given in Figure 8.1.
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Figure 8.1: Interaction plots for flavonoid mean structure

The interactions are very small. By far the largest effects are red versus white grapes.

∇

8.2 Statistical Model and the Analysis of Variance
In this section, the model is defined, least squares estimators are given, as well as the sums of squares and 𝐹 -tests.

The model for 𝑌𝑖𝑗𝑘𝑙 is given below in terms of the parameters described in the previous section.

𝑌𝑖𝑗𝑘𝑙 = 𝜇••• + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝛼𝛽)𝑖𝑗 + (𝛼𝛾)𝑖𝑘 + (𝛽𝛾)𝑗𝑘 + (𝛼𝛽𝛾)𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘𝑙

𝜖𝑖𝑗𝑘𝑙 ∼ 𝑁 (0, 𝜎2) 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑐; 𝑙 = 1, … , 𝑛
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The parameters and their least squares estimators are given here.

Overall Mean: 𝜇••• ̂𝜇••• = 𝑌 ••••

Factor A Effects: 𝛼𝑖 ̂𝛼𝑖 = 𝑌 𝑖••• − 𝑌 •••• 𝑖 = 1, … , 𝑎

Factor B Effects: 𝛽𝑗 ̂𝛽𝑗 = 𝑌 •𝑗•• − 𝑌 •••• 𝑗 = 1, … , 𝑏

Factor C Effects: 𝛾𝑘 ̂𝛾𝑘 = 𝑌 ••𝑘• − 𝑌 •••• 𝑘 = 1, … , 𝑐

AB Interactions: (𝛼𝛽)𝑖𝑗 ̂(𝛼𝛽)𝑖𝑗 = 𝑌 𝑖𝑗•• − 𝑌 𝑖••• − 𝑌 •𝑗•• + 𝑌 ••••

AC Interactions: (𝛼𝛾)𝑖𝑘 ̂(𝛼𝛾)𝑖𝑘 = 𝑌 𝑖•𝑘• − 𝑌 𝑖••• − 𝑌 ••𝑘• + 𝑌 ••••

BC Interactions: (𝛽𝛾)𝑗𝑘 ̂(𝛽𝛾)𝑖𝑗 = 𝑌 •𝑗𝑘• − 𝑌 •𝑗•• − 𝑌 ••𝑘• + 𝑌 ••••

ABC Interactions: (𝛼𝛽𝛾)𝑖𝑗𝑘

̂(𝛼𝛽𝛾)𝑖𝑗𝑘 = 𝑌 𝑖𝑗𝑘• − 𝑌 𝑖𝑗•• − 𝑌 𝑖•𝑘• − 𝑌 •𝑗𝑘• + 𝑌 𝑖••• + 𝑌 •𝑗•• + 𝑌 ••𝑘• − 𝑌 ••••

The predicted values simplify to the following values when the estimated overall mean and corresponding main
effects and interactions are added together.

̂𝑌𝑖𝑗𝑘𝑙 = ̂𝜇••• + ̂𝛼𝑖 + ̂𝛽𝑗 + ̂𝛾𝑘 + ̂(𝛼𝛽)𝑖𝑗 + ̂(𝛼𝛾)𝑖𝑘 + ̂(𝛽𝛾)𝑗𝑘 + ̂(𝛼𝛽𝛾)𝑖𝑗𝑘 = 𝑌 𝑖𝑗𝑘•

The residuals are 𝑒𝑖𝑗𝑘𝑙 = 𝑌𝑖𝑗𝑘𝑙 − 𝑌 𝑖𝑗𝑘•.

The sums of squares, degrees of freedom and expected mean squares are given below. To save space they will be
given in terms of effects estimates.

Total: 𝑆𝑆𝑇 𝑂 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐
∑
𝑘=1

𝑛
∑
𝑙=1

(𝑌𝑖𝑗𝑘𝑙 − 𝑌 ••••)2 𝑑𝑓𝑇 𝑂 = 𝑎𝑏𝑐𝑛 − 1

A: 𝑆𝑆𝐴 = 𝑏𝑐𝑛
𝑎

∑
𝑖=1

̂𝛼2
𝑖 𝑑𝑓𝐴 = 𝑎 − 1 𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑏𝑐𝑛 ∑𝑎

𝑖=1 𝛼2
𝑖

𝑎 − 1

B: 𝑆𝑆𝐵 = 𝑎𝑐𝑛
𝑏

∑
𝑗=1

̂𝛽2
𝑗 𝑑𝑓𝐵 = 𝑏 − 1 𝐸{𝑀𝑆𝐵} = 𝜎2 +

𝑎𝑐𝑛 ∑𝑏
𝑗=1 𝛽2

𝑗
𝑏 − 1

C: 𝑆𝑆𝐶 = 𝑎𝑏𝑛
𝑐

∑
𝑘=1

̂𝛾2
𝑘 𝑑𝑓𝐶 = 𝑐 − 1 𝐸{𝑀𝑆𝐶} = 𝜎2 + 𝑎𝑏𝑛 ∑𝑐

𝑘=1 𝛾2
𝑘

𝑐 − 1

AB: 𝑆𝑆𝐴𝐵 = 𝑐𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

̂(𝛼𝛽)
2
𝑖𝑗 𝑑𝑓𝐴𝐵 = (𝑎 − 1)(𝑏 − 1)

𝐸{𝑀𝑆𝐴𝐵} = 𝜎2 +
𝑐𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝛼𝛽)2

𝑖𝑗
(𝑎 − 1)(𝑏 − 1)
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AC: 𝑆𝑆𝐴𝐶 = 𝑏𝑛
𝑎

∑
𝑖=1

𝑐
∑
𝑘=1

̂(𝛼𝛾)
2
𝑖𝑘 𝑑𝑓𝐴𝐶 = (𝑎 − 1)(𝑐 − 1)

𝐸{𝑀𝑆𝐴𝐶} = 𝜎2 + 𝑏𝑛 ∑𝑎
𝑖=1 ∑𝑐

𝑘=1(𝛼𝛾)2
𝑖𝑘

(𝑎 − 1)(𝑐 − 1)

BC: 𝑆𝑆𝐵𝐶 = 𝑎𝑛
𝑏

∑
𝑗=1

𝑐
∑
𝑘=1

̂(𝛽𝛾)
2
𝑗𝑘 𝑑𝑓𝐵𝐶 = (𝑏 − 1)(𝑐 − 1)

𝐸{𝑀𝑆𝐵𝐶} = 𝜎2 +
𝑎𝑛 ∑𝑏

𝑗=1 ∑𝑐
𝑘=1(𝛽𝛾)2

𝑗𝑘
(𝑏 − 1)(𝑐 − 1)

ABC: 𝑆𝑆𝐴𝐵𝐶 = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐
∑
𝑘=1

̂(𝛼𝛽𝛾)
2
𝑖𝑗𝑘 𝑑𝑓𝐴𝐵𝐶 = (𝑎 − 1)(𝑏 − 1)(𝑐 − 1)

𝐸{𝑀𝑆𝐴𝐵𝐶} = 𝜎2 +
𝑛 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1 ∑𝑐

𝑘=1(𝛼𝛽𝛾)2
𝑖𝑗𝑘

(𝑎 − 1)(𝑏 − 1)(𝑐 − 1)

Error: 𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐
∑
𝑘=1

𝑛
∑
𝑙=1

(𝑌𝑖𝑗𝑘𝑙 − 𝑌 𝑖𝑗𝑘•)2 𝑑𝑓𝐸 = 𝑎𝑏𝑐(𝑛 − 1) 𝐸{𝑀𝑆𝐸} = 𝜎2

To test for main effects and interactions, the following 𝐹 -tests are obtained (where TS is test statistic and RR is
rejection region).

𝐻𝐴𝐵𝐶
0 ∶ (𝛼𝛽𝛾)𝑖𝑗𝑘 = 0 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑐

𝑇 𝑆 ∶ 𝐹 ∗
𝐴𝐵𝐶 = 𝑀𝑆𝐴𝐵𝐶

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐴𝐵𝐶 ≥ 𝐹1−𝛼;(𝑎−1)(𝑏−1)(𝑐−1),𝑎𝑏𝑐(𝑛−1)

𝐻𝐴𝐵
0 ∶ (𝛼𝛽)𝑖𝑗 = 0 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏;

𝑇 𝑆 ∶ 𝐹 ∗
𝐴𝐵 = 𝑀𝑆𝐴𝐵

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐴𝐵 ≥ 𝐹1−𝛼;(𝑎−1)(𝑏−1),𝑎𝑏𝑐(𝑛−1)

𝐻𝐴𝐶
0 ∶ (𝛼𝛾)𝑖𝑘 = 0 𝑖 = 1, … , 𝑎; 𝑘 = 1, … , 𝑐

𝑇 𝑆 ∶ 𝐹 ∗
𝐴𝐶 = 𝑀𝑆𝐴𝐶

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐴𝐶 ≥ 𝐹1−𝛼;(𝑎−1)(𝑐−1),𝑎𝑏𝑐(𝑛−1)

𝐻𝐵𝐶
0 ∶ (𝛽𝛾)𝑗𝑘 = 0 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑐

𝑇 𝑆 ∶ 𝐹 ∗
𝐵𝐶 = 𝑀𝑆𝐵𝐶

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐵𝐶 ≥ 𝐹1−𝛼;(𝑏−1)(𝑐−1),𝑎𝑏𝑐(𝑛−1)

𝐻𝐴
0 ∶ 𝛼𝑖 = 0 𝑖 = 1, … , 𝑎

𝑇 𝑆 ∶ 𝐹 ∗
𝐴 = 𝑀𝑆𝐴

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎𝑏𝑐(𝑛−1)

𝐻𝐵
0 ∶ 𝛽𝑗 = 0 𝑗 = 1, … , 𝑏

𝑇 𝑆 ∶ 𝐹 ∗
𝐵 = 𝑀𝑆𝐵

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐵 ≥ 𝐹1−𝛼;𝑏−1,𝑎𝑏𝑐(𝑛−1)

𝐻𝐶
0 ∶ 𝛾𝑘 = 0 𝑘 = 1, … , 𝑐
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𝑇 𝑆 ∶ 𝐹 ∗
𝐶 = 𝑀𝑆𝐶

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐶 ≥ 𝐹1−𝛼;𝑐−1,𝑎𝑏𝑐(𝑛−1)

Example 8.2 - Finishing Treatments for Chef Jackets

A study was conducted to observe the effects of three factors for protecting chef jackets from scald injuries [Deverajan
et al., 2017]. Three responses were measured: absorbed energy (kj/m^2) at 3 sensors (upper, middle, and lower).
This example will analyze the upper sensor measurements. The three factors are as follow, there were 𝑛 = 5
replicates per treatment combination.

• Factor A (𝑎 = 4) - Finish: Regular (𝑖 = 1), Water (𝑖 = 2), Soil (𝑖 = 3), Teflon (𝑖 = 4)
• Factor B (𝑏 = 2) - Structure: Plain (𝑗 = 1), Twill (𝑗 = 2)
• Factor C (𝑐 = 3) - Number of Layers: 1 (𝑘 = 1), 2 (𝑘 = 2), 3 (𝑘 = 3)

The R code and output are given below and the interaction plot is given in Figure 8.2.

## finish structure layers trt absEnrgU absEnrgM absEnrgL
## 1 1 1 1 1 239.846 202.176 204.611
## 2 1 1 1 1 267.275 205.320 231.043
## 3 1 1 1 1 249.861 213.090 215.680
## 4 1 1 1 1 233.576 203.884 206.538
## 5 1 1 1 1 256.942 239.030 230.627
## 6 1 1 2 2 262.962 198.276 182.644

## finish structure layers trt absEnrgU absEnrgM absEnrgL
## 115 4 2 2 23 162.693 134.630 117.672
## 116 4 2 3 24 99.663 104.037 107.369
## 117 4 2 3 24 127.183 94.204 107.297
## 118 4 2 3 24 107.016 108.169 98.877
## 119 4 2 3 24 107.863 90.537 80.929
## 120 4 2 3 24 117.774 109.554 104.529
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Figure 8.2: Interaction plots for chef jacket study
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##
## Call:
## aov(formula = absEnrgU ~ finish.f * structure.f * layers.f, data = cjb)
##
## Residuals:
## Min 1Q Median 3Q Max
## -59.117 -7.176 -0.843 7.294 84.653
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 224.4625 1.5753 142.486 < 2e-16 ***
## finish.f1 25.7041 2.7285 9.420 2.62e-15 ***
## finish.f2 19.0374 2.7285 6.977 3.87e-10 ***
## finish.f3 28.8042 2.7285 10.557 < 2e-16 ***
## structure.f1 -2.3958 1.5753 -1.521 0.131593
## layers.f1 7.8250 2.2278 3.512 0.000679 ***
## layers.f2 2.6250 2.2278 1.178 0.241607
## finish.f1:structure.f1 12.4625 2.7285 4.567 1.47e-05 ***
## finish.f2:structure.f1 2.3958 2.7285 0.878 0.382105
## finish.f3:structure.f1 -22.5709 2.7285 -8.272 7.52e-13 ***
## finish.f1:layers.f1 -8.0917 3.8587 -2.097 0.038624 *
## finish.f2:layers.f1 -7.6250 3.8587 -1.976 0.051021 .
## finish.f3:layers.f1 -13.0416 3.8587 -3.380 0.001050 **
## finish.f1:layers.f2 -1.6415 3.8587 -0.425 0.671491
## finish.f2:layers.f2 4.5249 3.8587 1.173 0.243841
## finish.f3:layers.f2 4.0582 3.8587 1.052 0.295579
## structure.f1:layers.f1 -0.7666 2.2278 -0.344 0.731527
## structure.f1:layers.f2 -0.7667 2.2278 -0.344 0.731477
## finish.f1:structure.f1:layers.f1 -9.7000 3.8587 -2.514 0.013609 *
## finish.f2:structure.f1:layers.f1 -3.9333 3.8587 -1.019 0.310607
## finish.f3:structure.f1:layers.f1 15.5833 3.8587 4.038 0.000108 ***
## finish.f1:structure.f1:layers.f2 -0.5500 3.8587 -0.143 0.886966
## finish.f2:structure.f1:layers.f2 -2.0833 3.8587 -0.540 0.590524
## finish.f3:structure.f1:layers.f2 0.5833 3.8587 0.151 0.880169
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.26 on 96 degrees of freedom
## Multiple R-squared: 0.9055, Adjusted R-squared: 0.8829
## F-statistic: 40.01 on 23 and 96 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: absEnrgU
## Df Sum Sq Mean Sq F value Pr(>F)
## finish.f 3 217854 72618 243.8496 < 2.2e-16 ***
## structure.f 1 689 689 2.3129 0.1315926
## layers.f 2 7093 3546 11.9090 2.399e-05 ***
## finish.f:structure.f 3 21899 7300 24.5126 7.328e-12 ***
## finish.f:layers.f 6 18696 3116 10.4634 6.608e-09 ***
## structure.f:layers.f 2 141 71 0.2368 0.7895699
## finish.f:structure.f:layers.f 6 7680 1280 4.2983 0.0007001 ***
## Residuals 96 28589 298
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] "diff" "lwr" "upr" "p.adj"
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## [1] 137

With the exception of the Structure main effects and Structure/Layers interaction effects, all terms are significant.
Since the 3-way interaction is significant, Structure and Structure/Layers should be kept in the model. For any pair
of treatment means, Tukey’s HSD is computed as follows (there are 4(2)(3)=24 means).

𝑀𝑆𝐸 = 298 𝑑𝑓𝐸 = 24(5 − 1) = 96 𝐻𝑆𝐷 = 𝑞.95;24,96√298
5 = 5.297(7.720) = 40.893

There are 137 (out of 24(23)/2=276) pairs of treatments that differ by more than 40.893.
library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)



Chapter 9

Block Designs

In many experimental settings, it is possible to group experimental units into homogeneous groups or blocks,
allowing each treatment to be assigned to individual units within each block. It is often possible to evaluate each
treatment on the same individual unit or subject. The goal is to remove block-to-block variation and obtain more
powerful tests for treatment effects. When individual units receive each treatment (preferably in random order),
these are often referred to as Repeated Measures.

In other situations, it may be necessary to block on two or three factors to obtain better precision for studying
treatment effects. These designs are Latin Squares for two blocking factors and Graeco-Latin Squares for three
blocking factors. In many situations, these designs are used to obtain “fair” comparisons of treatments, even if the
factors are not concluded in the analysis. This helps remove biases that can occur in the implementation of the
experiment, particularly when individual subjects receive each treatment.

Some examples containing a single blocking factor are given below.

• Agriculture - An experiment to compare 𝑟 varieties of fertilizer is conducted on 𝑏 blocks of land. Within
each block, 𝑟 plots are obtained and one variety of fertilizer is applied to each plot.

• Industrial - An experiment to compare 𝑟 methods (or machines) to manufacture a product is conducted
on 𝑏 batches of raw material. Each batch is broken into 𝑟 sub-batches and each treatment is applied to one
sub-batch within the batch.

• Pharmaceutical - An experiment is conducted to compare bioavailability among 𝑟 formulations of a drug
product, by having each product measured on 𝑏 subjects. Subjects are given a particular sequence, and
availability is measured for each formulation.

In many cases, blocks are simply individual replications of an experiment on different days or at different locations.
In other cases, individuals may be ordered based on an external measurement (e.g. severity, ability) and blocks may
be formed by that criteria and the various treatments may be assigned to the group of individuals within these
blocks.

Block designs can have a single treatment factor or combinations of multiple treatment factors. The larger the
number of treatment levels, the less homogeneous will be the units within a block. In these cases Incomplete
Block Designs can be utilized.

So far, when considering treatment factors, we have implicitly treated them as fixed factors, the levels observed in
the experiment being the specific treatments of interest to researchers. In block designs, the blocks are very often
random factors, representing a sample of all levels that could have been selected. These include: plots of land,
batches of raw material, subjects in bioequivalence studies, and in virtually all repeated measures settings. The
primary goal in all of these experiments is to compare the treatment effects as we have done in previous chapters.
Fortunately, the 𝐹 -test and methods for making contrasts among treatments are the same whether blocks are fixed
or random.
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9.1 Randomized Block and Repeated Measures Designs
In this section we introduce the model for the Randomized Complete Block Design. This same model is used for
the Repeated Measures Design, when each subject receives each treatment. This is not the same as a Repeated
Measures Design, where each subject receives only one treatment, but is measured longitudinally at multiple time
points.

For this model, each of 𝑟 treatments are observed, once within each of 𝑏 blocks or subjects, for a total of 𝑛𝑇 = 𝑟𝑏
observations. For this model, when treatments are applied to subjects in some time order, we are assuming there
are no order or carryover effects. More complex designs can be used when this is the case. In this section, we will
use blocks and subjects interchangeably. In virtually all cases, subjects are treated as random, except in settings
where the only subjects of interest are included in the experiment.

Note: This notation is NOT consistent with Kutner, et al.

9.1.1 Model Structure and Estimators
𝑌𝑖𝑗 = 𝜇•• + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑏 𝜖𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

We assume fixed treatment effects as before, and allow for either fixed or random block effects.

Overall Mean: 𝜇•• ̂𝜇•• =
∑𝑟

𝑖=1 ∑𝑏
𝑗=1 𝑌𝑖𝑗

𝑟𝑏 = 𝑌 ••

Treatment Effects: 𝜏𝑖 = 𝜇𝑖• − 𝜇•• ̂𝜏𝑖 = 𝑌 𝑖• − 𝑌 ••
𝑟

∑
𝑖=1

𝜏𝑖 =
𝑟

∑
𝑖=1

̂𝜏𝑖 = 0

We consider the block effects separately, considering the fixed and random effects cases.

Fixed Blocks: 𝛽𝑗 = 𝜇•𝑗 − 𝜇•• ̂𝛽𝑗 = 𝑌 •𝑗 − 𝑌 ••
𝑏

∑
𝑗=1

𝛽𝑗 =
𝑏

∑
𝑗=1

̂𝛽𝑗 = 0

For the fixed block case, we obtain the following model for 𝑌𝑖𝑗.

𝐸 {𝑌𝑖𝑗} = 𝜇 + 𝜏𝑖 + 𝛽𝑗 𝜎2 {𝑌𝑖𝑗} = 𝜎2 𝜎 {𝑌𝑖𝑗, 𝑌𝑖′𝑗′} = 0 ∀𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑗′

Random Blocks: 𝛽𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2
𝑏 ) 𝜎 {𝛽𝑗, 𝜖𝑖𝑗} = 0 ̂𝛽𝑗 = 𝑌 •𝑗 − 𝑌 ••

𝑏
∑
𝑗=1

̂𝛽𝑗 = 0

The fitted values and residuals are similar to other models described previously.

̂𝑌𝑖𝑗 = ̂𝜇•• + ̂𝜏𝑖 + ̂𝛽𝑗 = 𝑌 𝑖• + 𝑌 •𝑗 − 𝑌 •• 𝑒𝑖𝑗 = 𝑌𝑖𝑗 − ̂𝑌𝑖𝑗 = 𝑌𝑖𝑗 − 𝑌 𝑖• − 𝑌 •𝑗 + 𝑌 ••

The random block effects and the random errors are assumed independent. By the structure of the estimators the
estimated 𝛽𝑗 sum to zero, but it’s the population of 𝛽𝑗 that has mean 0. For the random block case, we obtain the
following model for 𝑌𝑖𝑗.

𝐸 {𝑌𝑖𝑗} = 𝜇 + 𝜏𝑖 𝜎2 {𝑌𝑖𝑗} = 𝜎2
𝑏 + 𝜎2 𝜎 {𝑌𝑖𝑗, 𝑌𝑖′𝑗′} =

⎧{
⎨{⎩

𝜎2
𝑏 + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′

𝜎2
𝑏 ∶ 𝑖 ≠ 𝑖′, 𝑗 = 𝑗′

0 ∶ ∀𝑖, 𝑖′, 𝑗 ≠ 𝑗′

Two measurements (for different treatments) within the same block are correlated. Measurements across different
blocks are independent.

Before setting up the Analysis of Variance, we state the mean and variance structure for the treatment means for
fixed and random blocks. In each case 𝐸 {𝑌 𝑖•} = 𝜇 + 𝜏𝑖.
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Fixed Blocks: 𝜎2 {𝑌 𝑖•} = 𝜎2

𝑏 𝑖 ≠ 𝑖′ ∶ 𝜎 {𝑌 𝑖•, 𝑌 𝑖′•} = 0 𝜎2 {𝑌 𝑖• − 𝑌 𝑖′•} = 2𝜎2

𝑏

Random Blocks: 𝜎2 {𝑌 𝑖•} = 𝜎2
𝑏 + 𝜎2

𝑏 𝑖 ≠ 𝑖′ ∶ 𝜎 {𝑌 𝑖•, 𝑌 𝑖′•} = 𝜎2
𝑏
𝑏 𝜎2 {𝑌 𝑖• − 𝑌 𝑖′•} = 2𝜎2

𝑏
Thus, while the variances of the treatment means differ depending on whether blocks are fixed or random, the
variances of the difference in the treatment means is the same.

Example 9.1 - Sensory Analysis of Soy Sauce Recipes

A study compared 𝑟 = 4 soy sauce recipes, each judged by a panel of 𝑏 = 8 trained raters [Fidaleo et al., 2012]. The
𝑟 = 4 soy sauce recipes are given below, this being treated as a fixed factor (only recipes of interest).

• Recipe 1 - Original Soy Sauce
• Recipe 2 - Electrodialyzed desalted Soy Sauce
• Recipe 3 - Recipe 1 diluted at electric conductivity = 2.3 S/m
• Recipe 4 - Recipe 2 re-salted to original level

In sensory studies such as this, there is a debate among researchers whether raters (blocks) should be treated as a
fixed or random factor.

• Fixed Blocks - These are the only raters of interest to the researchers (possibly the only raters employed by
this company).

• Random Blocks - The researchers are interested in generalizing these findings to a population of trained
raters (these 8 raters being a sample from that population).

Based on the sample values reported in this paper, we will construct population models for the fixed and random
blocks cases. These were ratings on a 4-point scale (all numbers have been multiplied by 10 to keep variances from
being so small). The response these are based on was appearance/color. Parameter values used are given here.

𝜇•• = 32 𝜏1 = 4 𝜏2 = 3 𝜏3 = −13 𝜏4 = 6 𝜎2 = 11.56 𝜎 = 3.4
Fixed Blocks: 𝛽1, … , 𝛽8 = -5.30 to 5.30 by 1.514 Random Blocks: 𝜎2

𝑏 = 13.76 𝜎𝑏 = 3.71
The variance among block effects was chosen so that the following equality holds. This makes the models comparable
with respect to variability in the block effects (see 𝐸{𝑀𝑆𝐵𝐿} in the next sub-section).

𝜎2
𝑏 =

∑8
𝑗=1 𝛽2

𝑗
8 − 1 = (−5.300)2 + ⋯ + (5.300)2

7 = 13.76

We will generate 100000 samples from this model (one for fixed block effects, one for random block effects). The
algorithms are described here.

Fixed Effects

• Generate pseudo 𝜖11, … , 𝜖48 ∼ 𝑁𝐼𝐷(0, 3.42)
• Assign 𝑌 𝐹

𝑖𝑗 = 𝜇•• + 𝜏𝑖 + 𝛽𝐹
𝑗 + 𝜖𝑖𝑗 𝑖 = 1, … , 4; 𝑗 = 1, … , 8

• Compute and save 𝑌 𝐹
1•, … , 𝑌 𝐹

4•
• Obtain (across samples) the mean and variance of 𝑌 𝐹

1•, … , 𝑌 𝐹
4•

• Obtain (across samples) the mean and variance of the differences among 𝑌 𝐹
1•, … , 𝑌 𝐹

4•

Random Effects

• Generate pseudo 𝜖11, … , 𝜖48 ∼ 𝑁𝐼𝐷 (0, 3.42)
• Generate pseudo 𝛽𝑅

1 , … , 𝛽𝑅
8 ∼ 𝑁𝐼𝐷 (0, 3.712)

• Assign 𝑌 𝑅
𝑖𝑗 = 𝜇•• + 𝜏𝑖 + 𝛽𝑅

𝑗 + 𝜖𝑖𝑗 𝑖 = 1, … , 4; 𝑗 = 1, … , 8
• Compute and save 𝑌 𝑅

1•, … , 𝑌 𝑅
4•

• Obtain (across samples) the mean and variance of 𝑌 𝑅
1•, … , 𝑌 𝑅

4•
• Obtain (across samples) the mean and variance of the differences among 𝑌 𝑅

1•, … , 𝑌 𝑅
4•
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For each model (fixed and random blocks), the theoretical means for the recipe means and for differences among
the means are given below.

𝐸{𝑌 𝑖•} = 𝜇𝑖 = 𝜇•• + 𝜏𝑖 𝐸{𝑌 𝑖• − 𝑌 𝑖′•} = 𝜇𝑖 − 𝜇𝑖′ = 𝜏𝑖 − 𝜏𝑖′

For fixed block effects, the theoretical variances of the recipe means and for the differences among the means are
given below.

𝜎2{𝑌 𝑖•} = 𝜎2

𝑏 = 11.56
8 = 1.445 𝜎2{𝑌 𝑖• − 𝑌 𝑖′•} = 2𝜎2

𝑏 = 2(11.56)
8 = 2.90

For random block effects, the theoretical variances of the recipe means and for the differences among the means are
given below.

𝜎2{𝑌 𝑖•} = 𝜎2
𝑏 + 𝜎2

𝑏 = 13.76 + 11.56
8 = 3.165 𝜎2{𝑌 𝑖• − 𝑌 𝑖′•} = 2𝜎2

𝑏 = 2(11.56)
8 = 2.90

## [1] -5.3000000 -3.7857143 -2.2714286 -0.7571429 0.7571429 2.2714286
## [7] 3.7857143 5.3000000

## [1] 13.75837

## [1] 3.709227

## Mean(Fixed) Mean(Random) Var(Fixed) Var(Random)
## Ybar1 36.006 36.006 1.438 3.167
## Ybar2 34.998 34.997 1.439 3.154
## Ybar3 19.001 19.001 1.441 3.148
## Ybar4 37.997 37.997 1.446 3.157
## Ybar2-Ybar1 -1.009 -1.009 2.867 2.867
## Ybar3-Ybar1 -17.005 -17.005 2.892 2.892
## Ybar3-Ybar2 -15.997 -15.997 2.888 2.888
## Ybar4-Ybar1 1.990 1.990 2.878 2.878
## Ybar4-Ybar2 2.999 2.999 2.874 2.874
## Ybar4-Ybar3 18.996 18.996 2.889 2.889

All of the empirical results are very close to the theoretical results (as they should be). The difference arises when
considering 𝜎2 {𝑌 𝑖•} when block effects are generated as fixed effects versus when they are generated as random
effects.

∇

9.2 Analysis of Variance and the 𝐹 -test
We use the sums of squares as previously set up, with the Sum of Squares Error 𝑆𝑆𝐸, technically being the Sum
of Squares for the Treatment by Block Interaction as there is only one replicate per combination of Treatment and
Block. The sums of squares, degrees of freedom, and expected mean squares are given here. In this model, we
assume that there is no Treatment/Block interaction. Tukey’s One-Degree of Freedom Test for Non-Additivity can
be used to check this assumption.

Total: 𝑆𝑆𝑇 𝑂 =
𝑟

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 ••)2 𝑑𝑓𝑇 𝑂 = 𝑟𝑏 − 1

Treatments: 𝑆𝑆𝑇 𝑅 = 𝑏
𝑟

∑
𝑖=1

(𝑌𝑖• − 𝑌 ••)2 𝑑𝑓𝑇 𝑅 = 𝑟 − 1

𝐸 {𝑀𝑆𝑇 𝑅} = 𝜎2 + 𝑏 ∑𝑟
𝑖=1 𝜏2

𝑖
𝑟 − 1
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Blocks: 𝑆𝑆𝐵𝐿 = 𝑟
𝑏

∑
𝑗=1

(𝑌•𝑗 − 𝑌 ••)2 𝑑𝑓𝐵𝐿 = 𝑏 − 1

Fixed Blocks: 𝐸 {𝑀𝑆𝐵𝐿} = 𝜎2 +
𝑟 ∑𝑏

𝑗=1 𝛽2
𝑗

𝑏 − 1 Random Blocks: 𝐸 {𝑀𝑆𝐵𝐿} = 𝜎2 + 𝑟𝜎2
𝑏

Error (TRxBL): 𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 𝑖• − 𝑌 •𝑗 + 𝑌 ••)2 𝑑𝑓𝐸 = (𝑟 − 1)(𝑏 − 1) 𝐸 {𝑀𝑆𝐸} = 𝜎2

To test for treatment effects, we compute the ratio of 𝑀𝑆𝑇 𝑅 to 𝑀𝑆𝐸 with the 𝐹 -test. Software will automatically
compute the 𝐹 -statistic for blocks as well, but the primary interest is typically treatment effects. However, when
blocks are random it may be of interest to estimate 𝜎2

𝑏 , the variance of the block effects.

𝐻0 ∶ 𝜏1 = … = 𝜏𝑟 = 0 𝑇 𝑆 ∶ 𝐹 ∗
𝑇 𝑅 = 𝑀𝑆𝑇 𝑅

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝑇 𝑅 ≥ 𝐹1−𝛼;𝑟−1,(𝑟−1)(𝑏−1)

Any contrasts or pairwise comparisons can be carried out as in the Completely Randomized Design. For Tukey’s
HSD for all possible comparisons, we compute HSD, which will be the same for all pairs (𝑛𝑖 = 𝑏), and can obtain
simultaneous (1 − 𝛼)100 Confidence Intervals for 𝜏𝑖 − 𝜏𝑖‵ as follows.

𝐻𝑆𝐷 = 𝑞1−𝛼;𝑟,(𝑟−1)(𝑏−1)√
𝑀𝑆𝐸

𝑏

(1 − 𝛼)100% CI for 𝜏𝑖 − 𝜏𝑖′ ∶ (𝑌 𝑖• − 𝑌 𝑖′•) ± 𝐻𝑆𝐷

Example 9.2 - Methods of Presenting Weather Information to Pilots A study compared 𝑟 = 3 cockpit
weather displays (treatments) for pilots in terms of information recall [O’Hare and Stenhouse, 2009] There were
𝑏 = 23 pilots (blocks) who were exposed to each display on a flight simulator. The three displays are described
below. The response 𝑌 , is the percent of information correctly recalled by the pilot.

• Ordinary text - English phrases (𝑖 = 1)
• Redesigned graphical display (𝑖 = 2)
• Old graphical display (𝑖 = 3)

Using R, we will set up the Analysis of Variance directly, then use the aov function along with TukeyHSD function
to confirm results.

## trt.y blk.y corrRecall
## 1 1 1 45.68415
## 2 1 2 63.76311
## 3 1 3 92.90009
## 4 1 4 76.22723
## 5 1 5 54.33312
## 6 1 6 24.66595



108 CHAPTER 9. BLOCK DESIGNS

0
20

40
60

80
10

0

subject

co
rr

ec
t v

al
ue

s

1 3 5 7 9 11 13 15 17 19 21 23

   pwd$trt.y

1
2
3

## df SS MS F* F(.95) P(>F*)
## Treatments 2 1582.86 791.430 3.330 3.209 0.045
## Blocks 22 42814.57 1946.117 8.188 1.116 0.000
## Error 44 10457.33 237.667 NA NA NA
## Total 68 54854.76 NA NA NA NA

## i i' ybar_i ybar_i' diff LB UB p adj
## [1,] 2 1 63.7 52.3 11.4 0.374 22.426 0.041
## [2,] 3 1 55.6 52.3 3.3 -7.726 14.326 0.750
## [3,] 3 2 55.6 63.7 -8.1 -19.126 2.926 0.187

## Analysis of Variance Table
##
## Response: corrRecall
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(trt.y) 2 1583 791.43 3.3300 0.04501 *
## factor(blk.y) 22 42815 1946.12 8.1884 2.253e-09 ***
## Residuals 44 10457 237.67
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = corrRecall ~ factor(trt.y) + factor(blk.y), data = pwd)
##
## $`factor(trt.y)`
## diff lwr upr p adj
## 2-1 11.4 0.3736119 22.426388 0.0413298
## 3-1 3.3 -7.7263883 14.326388 0.7495471
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## 3-2 -8.1 -19.1263883 2.926388 0.1874886

Thus, there are differences among the three cockpit weather displays. In particular, pilots had higher recall with
the redesigned graphical display (𝑖 = 2) than the ordinary text display (𝑖 = 1).

∇

9.2.1 Checking Model Assumptions
Some methods for checking model assumptions are given in this sub-section, involving the error terms for the model.

• Stripchart of residuals versus blocks to visually observe whether the variance of errors is constant across blocks
(each block received each treatment)

• Plots of residuals versus fitted values to observe whether residual variance is related to mean
• Plot of residuals versus time order when experiment is conducted sequentially or when blocks are days to

observe whether serial correlation is present
• Block x Treatment Interactions - Can be tested using Tukey’s ODOFNA test. If significant, the remainder

𝑀𝑆𝐸∗ can be used after removing the 1 degree of freedom 𝑆𝑆 for interaction

Example 9.3 - Methods of Presenting Weather Information to Pilots

Here we give examples of the model checks, with the exception of residuals versus time order, as that does not
pertain to this study.

## trt.y blk.y corrRecall
## 1 1 1 45.68415
## 2 1 2 63.76311
## 3 1 3 92.90009
## 4 1 4 76.22723
## 5 1 5 54.33312
## 6 1 6 24.66595
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##
## Tukey test on 5% alpha-level:
##
## Test statistic: 0.009099
## Critival value: 4.067
## The additivity hypothesis cannot be rejected.

While a few blocks (pilots) have little spread in his/her residuals based on the stripchart, the spread is reasonably
equal across the 𝑏 = 23 pilots. Plus, there are only 𝑟 = 3 residuals per pilot.

The plot of the residuals versus predicted values does not show and evidence of “funneling” out as the fitted values
increase, so constant variance seems reasonable.

Tukey’s ODOFNA test gives a very small test statistic, well below its critical value. This provides no evidence of
an interaction between treatment (display of weather information) by block (pilot) interaction.

∇

9.2.2 Relative Efficiency and Within-Subject Variance-Covariance Matrix
In this sub-section, we consider two measures that come up in Randomized Block and Repeated Measures Designs.

• Relative Efficiency - A measure of the ratio of the error variance of the Completely Randomized Design
(CRD) to the Randomized Block Design (RBD)

• Within Subject Variance-Covariance Matrix - When blocks/subjects are random, the measurements
within subjects are correlated. The assumptions are of equal variances for the 𝑟 treatments and equal covari-
ances among the 𝑟(𝑟 − 1)/2 pairs of treatments.

For Relative Efficiency, we label 𝜎2
𝐶𝑅𝐷 to be the error variance for a model based on a Completely Randomized

Design and 𝜎2
𝑅𝐵𝐷 the error variance for the Randomized Block Design. Recall that the goal of the RBD is to reduce

the error variance, thus making more precise estimates of contrasts (smaller standard errors).
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We define the following ratios in terms of true (unknown) variances and estimated variances from the RBD.

𝐸 = 𝜎2
𝐶𝑅𝐷

𝜎2
𝑅𝐵𝐷

̂𝐸 = 𝑠2
𝐶𝑅𝐷

𝑠2
𝑅𝐵𝐷

= (𝑏 − 1)𝑀𝑆𝐵𝐿 + 𝑏(𝑟 − 1)𝑀𝑆𝐸
(𝑏𝑟 − 1)𝑀𝑆𝐸

Note that (𝑏 − 1) + 𝑏(𝑟 − 1) = 𝑏𝑟 − 1, so that ̂𝐸 is a weighted average of 𝑀𝑆𝐵𝐿/𝑀𝑆𝐸 and 1. The larger the
ratio of 𝑀𝑆𝐵𝐿/𝑀𝑆𝐸, the larger will be ̂𝐸. Then, experiments with large variability among blocks relative to error
variability are more efficient.

The Relative Efficiency measures the multiple of the number of blocks from the RBD that would need to be the
treatment sample size in a CRD to have comparable standard errors for contrasts.

Suppose that an experiment run as a RBD had 𝑏 = 5 blocks had a Relative Efficiency of ̂𝐸 = 2. Then an experiment
run as a CRD would need 𝑛 = 2(5) = 10 units per treatments to have comparable standard errors for treatment
contrasts.

Some authors describe a degrees of freedom adjustment for the estimated Relative Efficiency. In many cases, it
makes little difference, the formula is given below, with 𝑟 being the number of treatments and 𝑏 being the number
of blocks.

𝑑𝑓𝐶𝑅𝐷 = 𝑟(𝑏 − 1) 𝑑𝑓𝑅𝐵𝐷 = (𝑟 − 1)(𝑏 − 1) ̂𝐸∗ = (𝑑𝑓𝑅𝐵𝐷 + 1) (𝑑𝑓𝐶𝑅𝐷 + 3)
(𝑑𝑓𝑅𝐵𝐷 + 3) (𝑑𝑓𝐶𝑅𝐷 + 1)

̂𝐸

When blocks/subjects are random, then the responses 𝑌 within blocks are correlated as described at the beginning
of the chapter.

𝜎2 {𝑌𝑖𝑗} = 𝜎2
𝑏 + 𝜎2 = 𝜎2

𝑖 𝑖 ≠ 𝑖′ ∶ 𝜎 {𝑌𝑖𝑗, 𝑌𝑖′𝑗} = 𝜎2
𝑏 = 𝜎𝑖𝑖′

For this model to be appropriate we need the following assumptions.

𝜎2
1 = ⋯ = 𝜎2

𝑟 𝜎12 = ⋯ = 𝜎𝑟−1,𝑟

In matrix form, the within-subject Variance-Covariance matrix can be written as follows, with a similar set of
assumptions.

Σ =
⎡
⎢⎢
⎣

𝜎2
1 𝜎12 ⋯ 𝜎1𝑟

𝜎21 𝜎2
2 ⋯ 𝜎2𝑟

⋮ ⋮ ⋱ ⋮
𝜎𝑟1 𝜎𝑟2 ⋯ 𝜎2

𝑟

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝜎2 𝜎𝑖𝑖′ ⋯ 𝜎𝑖𝑖′

𝜎𝑖𝑖′ 𝜎2 ⋯ 𝜎𝑖𝑖′

⋮ ⋮ ⋱ ⋮
𝜎𝑖𝑖′ 𝜎𝑖𝑖′ ⋯ 𝜎2

⎤
⎥⎥
⎦

The sample version of the Variance-Covariance matrix is computed as follows.

𝑆 =
⎡
⎢⎢
⎣

𝑠2
1 𝑠12 ⋯ 𝑠1𝑟

𝑠21 𝑠2
2 ⋯ 𝑠2𝑟

⋮ ⋮ ⋱ ⋮
𝑠𝑟1 𝑠𝑟2 ⋯ 𝑠2

𝑟

⎤
⎥⎥
⎦

𝑠2
𝑖 =

∑𝑏
𝑗=1 (𝑌𝑖𝑗 − 𝑌 𝑖•)2

𝑏 − 1 𝑠𝑖𝑖′ =
∑𝑏

𝑗=1 (𝑌𝑖𝑗 − 𝑌 𝑖•) (𝑌𝑖′𝑗 − 𝑌 𝑖′•)
𝑏 − 1

There are tests of whether the Population Variance-Covariance meets this assumption based on the Sample Variance-
Covariance matrix, but are beyond the scope of this course. A visual inspection of 𝑆 should be able to detect large
discrepancies. Other structures (including an unstructured form) can be implemented using mixed model software
packages. Also, transformations on 𝑌 can be implemented (such as the Box-Cox transformation).

We will use the cov function by looping through the treatments to obtain the Variance-Covariance matrix, keeping
in mind that 𝑠{𝑌𝑖𝑗, 𝑌𝑖𝑗} = 𝑠2{𝑌𝑖𝑗}.
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Table 9.1: Latin Square Design (r=6)

Row\Col 1 2 3 4 5 6
1 A B C D E F
2 B C D E F A
3 C D E F A B
4 D E F A B C
5 E F A B C D
6 F A B C D E

Example 9.4 - Methods of Presenting Weather Information to Pilots Here we compute the Relative
Efficiency and the Sample Variance-Covariance matrix for the pilot weather information study based on direct
calculations.

## trt.y blk.y corrRecall
## 1 1 1 45.68415
## 2 1 2 63.76311
## 3 1 3 92.90009
## 4 1 4 76.22723
## 5 1 5 54.33312
## 6 1 6 24.66595

## b r MSBL MSE E-hat df_CRD df_RBD E-hat*
## [1,] 23 3 1946.117 237.667 3.326 46 44 3.32

## [,1] [,2] [,3]
## [1,] 975.803 607.759 532.015
## [2,] 607.759 764.172 568.676
## [3,] 532.015 568.676 681.475

The Relative Efficiency is ̂𝐸 = 3.32, which can be interpreted as, if this had been run as a Completely Randomized
Design, with each pilot being only observed in one condition, there would need to be 𝑏 ̂𝐸 = 23(3.32) = 76.4 ≈ 77
pilots per treatment (𝑛𝑇 = 3(77) = 231 total) to have comparable standard errors for contrasts. This is an efficient
design.

While the variances range from 681 to 976, and the covariances range from 532 to 607, there is no strong evidence
that the Variance-Covariance is far from the assumed model (standard deviations range from 26 to 31).

∇

9.3 Latin Square Designs
When there are two blocking factors, a Latin Square Design can be used. There will be a row blocking factor, a
column blocking factor, and the treatment factor. In a “true” Latin Square, each factor will have the same number
of levels (𝑟). When 𝑟 is small, this will cause very low error degrees of freedom (𝑑𝑓𝐸 = (𝑟 − 1)(𝑟 − 2)), so typically
either the row and/or column blocking factor may be replicated and have 𝑘𝑟 levels, where 𝑘 is an integer value.

The key idea in the Latin Square is that each treatment appears once in each row, and once in each column. This
way, we can directly remove row and column effects to get more precise estimates of the treatment effects and
contrasts among them. An example of a Latin Square is given below with 𝑟 = 6, where rows and columns are
blocking factors and labels 𝐴, … , 𝐹 are the treatments.

Keep in mind that while there are three factors, each with 𝑟 levels, there are only 𝑟2 observations. Once the row and
columns have been indexed, there is only one treatment that appears. This can make writing the model confusing
with an observation being 𝑌𝑖𝑗𝑘, because you cannot cycle through all three subscripts.

However, there are still 𝑟 means for each treatment, row, and column, each based on 𝑟 observations. Let 𝑇𝑘𝑙
represent the measurement for the 𝑙𝑡ℎ replicate when treatment 𝑘 is assigned, 𝑅𝑖𝑙 represent the 𝑙𝑡ℎ replicate in row
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𝑖, and 𝐶𝑗𝑙 represent the 𝑙𝑡ℎ replicate in column 𝑗. Further let 𝑌 represent the overall mean and 𝑆𝑆𝑇 𝑂 be the usual
total sum of squares. We obtain the Analysis of Variance as follows (note that when using software packages, this
is a trivial extension of the Randomized Block Design).

Total: 𝑆𝑆𝑇 𝑂 = ∑
all data

(𝑌 − 𝑌 )2 𝑑𝑓𝑇 𝑂 = 𝑟2 − 1

Treatments: 𝑇 𝑘 = ∑𝑟
𝑙=1 𝑇𝑘𝑙

𝑟 𝑆𝑆𝑇 𝑅 = 𝑟
𝑟

∑
𝑘=1

(𝑇 𝑘 − 𝑌 )2 𝑑𝑓𝑇 𝑅 = 𝑟 − 1

Rows: 𝑅𝑖 = ∑𝑟
𝑙=1 𝑅𝑖𝑙

𝑟 𝑆𝑆𝑅 = 𝑟
𝑟

∑
𝑖=1

(𝑅𝑖 − 𝑌 )2 𝑑𝑓𝑅 = 𝑟 − 1

Columns: 𝐶𝑗 = ∑𝑟
𝑙=1 𝐶𝑗𝑙

𝑟 𝑆𝑆𝐶 = 𝑟
𝑟

∑
𝑗=1

(𝐶𝑗 − 𝑌 )2 𝑑𝑓𝐶 = 𝑟 − 1

Error: 𝑆𝑆𝐸 = 𝑆𝑆𝑇 𝑂 − 𝑆𝑆𝑇 𝑅 − 𝑆𝑆𝑅 − 𝑆𝑆𝐶
𝑑𝑓𝐸 = (𝑟2 − 1) − 3(𝑟 − 1) = (𝑟 + 1)(𝑟 − 1) − 3(𝑟 − 1) = (𝑟 − 1)[(𝑟 + 1) − 3] = (𝑟 − 1)(𝑟 − 2)

The usual 𝐹 -test for treatment effects and contrasts among treatment levels can be conducted as before. For
instance, for Tukey’s HSD, we would compute the following values for the Honest Significant Difference and for
simultaneous (1 − 𝛼)100% Confidence Intervals. As in the RBD, these will all be based on common sample sizes
(𝑟), and 𝜏𝑘 is the treatment effect for treatment 𝑘.

𝐻𝑆𝐷 = 𝑞(1 − 𝛼; 𝑟, (𝑟 − 1)(𝑟 − 2))√𝑀𝑆𝐸
𝑟

(1 − 𝛼)100% Confidence Interval for 𝜏𝑘 − 𝜏𝑘′ ∶ (𝑇 𝑘 − 𝑇 𝑘′) ± 𝐻𝑆𝐷

Example 9.5 - Comparison of Medium (Psychic) Readings A study compared 𝑟 = 5 Psychic Mediums
(treatments) in a Latin Square experiment [O’Keeffe and Wiseman, 2005]. We will treat Medium as a fixed factor
(only interest is comparing these specific ones). There were 5 Sitters (row factor) and 5 Sessions (column factor).
Each Medium read each Sitter once, and each Medium read in each Session once. This design would look like the
previous example, with one less row, one less column, and “F” removed. We will do computations directly, then
use the aov and TukeyHSD functions for the analysis. The response was 𝑌 , the number of statements by the
Medium on the Sitter.

## session medium sitter statements rating
## 1 1 1 1 55 3.33
## 2 2 2 1 92 3.72
## 3 3 3 1 6 1.52
## 4 4 4 1 24 3.67
## 5 5 5 1 80 5.24
## 6 2 1 2 62 2.88

## df SS MS F* F(.95) P(>F*)
## Medium 4 17280.56 4320.14 55.006 3.259 0.000
## Sitter 4 205.76 51.44 0.655 3.259 0.635
## Session 4 231.76 57.94 0.738 3.259 0.584
## Error 12 942.48 57.94 NA NA NA
## Total 24 18660.56 NA NA NA NA

## k k' ybar_i ybar_i' diff LB UB p adj
## [1,] 2 1 75.4 59.8 15.6 -2.2656 33.4656 0.0983
## [2,] 3 1 8.0 59.8 -51.8 -69.6656 -33.9344 0.0000
## [3,] 3 2 8.0 75.4 -67.4 -85.2656 -49.5344 0.0000
## [4,] 4 1 23.4 59.8 -36.4 -54.2656 -18.5344 0.0002
## [5,] 4 2 23.4 75.4 -52.0 -69.8656 -34.1344 0.0000
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## [6,] 4 3 23.4 8.0 15.4 -2.4656 33.2656 0.1042
## [7,] 5 1 67.2 59.8 7.4 -10.4656 25.2656 0.6848
## [8,] 5 2 67.2 75.4 -8.2 -26.0656 9.6656 0.6026
## [9,] 5 3 67.2 8.0 59.2 41.3344 77.0656 0.0000
## [10,] 5 4 67.2 23.4 43.8 25.9344 61.6656 0.0000

## Analysis of Variance Table
##
## Response: statements
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(medium) 4 17280.6 4320.1 55.0056 1.28e-07 ***
## factor(sitter) 4 205.8 51.4 0.6550 0.6346
## factor(session) 4 231.8 57.9 0.7377 0.5840
## Residuals 12 942.5 78.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = statements ~ factor(medium) + factor(sitter) + factor(session), data = mr)
##
## $`factor(medium)`
## diff lwr upr p adj
## 2-1 15.6 -2.265551 33.465551 0.0983090
## 3-1 -51.8 -69.665551 -33.934449 0.0000069
## 4-1 -36.4 -54.265551 -18.534449 0.0002343
## 5-1 7.4 -10.465551 25.265551 0.6847850
## 3-2 -67.4 -85.265551 -49.534449 0.0000004
## 4-2 -52.0 -69.865551 -34.134449 0.0000066
## 5-2 -8.2 -26.065551 9.665551 0.6026044
## 4-3 15.4 -2.465551 33.265551 0.1042146
## 5-3 59.2 41.334449 77.065551 0.0000016
## 5-4 43.8 25.934449 61.665551 0.0000387

There are highly significant differences among the mediums in terms of mean number of statements made. Of the
5(4)/2=10 pairs, six are significantly different based on Tukey’s HSD.

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
library(lmerTest)

## Loading required package: lme4

## Loading required package: Matrix

##
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
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##
## Attaching package: 'lmerTest'

## The following object is masked from 'package:lme4':
##
## lmer

## The following object is masked from 'package:stats':
##
## step
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Chapter 10

Random and Mixed Effects Models

In some situations, experiments include random treatment factors. In these cases, the treatment/group levels
observed in the study represent a sample from a larger population of such levels. Interest is in the overall mean
response, as well as in variation in responses across and within treatments/groups.

In this chapter, we consider the 1-Way Random Effects, the 2-Way Random Effects and the 2-Way Mixed
Effects Models.

10.1 1-Way Random Effects Model
This model has a single factor, with levels that represent a sample from a population of such levels. The goal is to
make inferences regarding the overall mean and variances between groups and within groups. The statistical model
for the balanced case is given below.

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 𝑖 = 1, … , 𝑟; 𝑗 = 1, … , 𝑛
𝜇𝑖 ∼ 𝑁 (𝜇•, 𝜎2

𝜇) independent 𝜖𝑖𝑗 ∼ 𝑁 (𝜇, 𝜎2) independent {𝜇𝑖}, {𝜖𝑖𝑗} independent

For this model, 𝜇• is the overall population mean response, 𝜎2
𝜇 is the between group variance, and 𝜎2 is the within

group variance. The experiment is conducted as follows.

• Sample 𝑟 groups from a population of groups.
• Sample 𝑛 units from within each group.
• Observe the 𝑛𝑇 = 𝑟𝑛 responses.

The mean and variance-covariance structure of the observations are given below.

𝐸 {𝑌𝑖𝑗} = 𝐸 {𝜇𝑖 + 𝜖𝑖𝑗} = 𝜇• + 0 = 𝜇•

𝜎2 {𝑌𝑖𝑗} = 𝜎2 {𝜇𝑖 + 𝜖𝑖𝑗} = 𝜎2 {𝜇𝑖} + 𝜎2 {𝜖𝑖𝑗} + 2𝜎 {𝜇𝑖, 𝜖𝑖𝑗} =
= 𝜎2

𝜇 + 𝜎2 + 2(0) = 𝜎2
𝜇 + 𝜎2 = 𝜎2

𝑌

For two measurements within the same group (𝑗 ≠ 𝑗′), we have the following covariance, which differs from the
fixed effects case (where the observations are independent).

𝜎 {𝑌𝑖𝑗, 𝑌𝑖𝑗′} = 𝜎 {𝜇𝑖 + 𝜖𝑖𝑗, 𝜇𝑖 + 𝜖𝑖𝑗′} =

𝜎 {𝜇𝑖, 𝜇𝑖} + 𝜎 {𝜇𝑖, 𝜖𝑖𝑗′} + 𝜎 {𝜖𝑖𝑗, 𝜇𝑖} + 𝜎 {𝜖𝑖𝑗, 𝜖𝑖𝑗′} = 𝜎2
𝜇 + 0 + 0 + 0 = 𝜎2

𝜇

𝜎 {𝑌𝑖𝑗, 𝑌𝑖′𝑗′} = 0 𝑖 ≠ 𝑖′ ∀𝑗, 𝑗′

117
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For the case, with 𝑟 = 𝑛 = 2, the mean and variance-covariance structure for 𝑌 are given in the following matrix
forms.

𝑌 =
⎡
⎢⎢
⎣

𝑌11
𝑌12
𝑌21
𝑌22

⎤
⎥⎥
⎦

𝐸{𝑌 } =
⎡
⎢⎢
⎣

𝜇•
𝜇•
𝜇•
𝜇•

⎤
⎥⎥
⎦

𝜎2{𝑌 } =
⎡
⎢⎢
⎣

𝜎2
𝑌 𝜎2

𝜇 0 0
𝜎2

𝜇 𝜎2
𝑌 0 0

0 0 𝜎2
𝑌 𝜎2

𝜇
0 0 𝜎2

𝜇 𝜎2
𝑌

⎤
⎥⎥
⎦

The Intraclass Correlation Coefficient measures the proportion of the total variation in responses that is due
to variation in group means.

𝜌𝐼 = 𝜎 {𝑌𝑖𝑗, 𝑌𝑖𝑗′}
𝜎 {𝑌𝑖𝑗} 𝜎 {𝑌𝑖𝑗′} = 𝜎2

𝜇
𝜎2

𝑌

10.1.1 Analysis of Variance
In this section, we set up the Analysis of Variance and derive the expected mean squares for 𝑀𝑆𝑇 𝑅 and 𝑀𝑆𝐸. Note
that the quantities are the same for the random effects model as for the fixed effects model, but the expectations
differ for the two models.

𝑆𝑆𝑇 𝑅 = 𝑛
𝑟

∑
𝑖=1

(𝑌 𝑖• − 𝑌 ••)2 = 𝑛
𝑟

∑
𝑖=1

𝑌 2
𝑖• − 𝑛𝑟𝑌 2

••

𝑆𝑆𝐸 =
𝑟

∑
𝑖=1

𝑛
∑
𝑗=1

(𝑌𝑖𝑗 − 𝑌 𝑖•)2 =
𝑟

∑
𝑖=1

𝑛
∑
𝑗=1

𝑌 2
𝑖𝑗 − 𝑛

𝑟
∑
𝑖=1

𝑌 2
𝑖•

𝐸 {𝑌𝑖𝑗} = 𝐸 {𝑌 𝑖•} = 𝐸 {𝑌 ••} = 𝜇•

𝜎2 {𝑌𝑖𝑗} = 𝜎2
𝜇 + 𝜎2 = 𝜎2

𝑌

𝜎2 {𝑌 𝑖•} = 1
𝑛2 [

𝑛
∑
𝑗=1

𝜎2 {𝑌𝑖𝑗} + 2
𝑛−1
∑
𝑗=1

𝑛
∑
𝑗′=2

𝜎 {𝑌𝑖𝑗, 𝑌𝑖𝑗′}] =

= 1
𝑛2 [𝑛 (𝜎2

𝜇 + 𝜎2) + 2𝑛(𝑛 − 1)
2 𝜎2

𝜇] = 𝑛𝜎2
𝜇 + 𝜎2

𝑛

Note that the sample means for the various groups are independent, which is helpful in deriving the variance of the
overall mean.

𝜎2 {𝑌 ••} = 𝜎2 {1
𝑟

𝑟
∑
𝑖=1

𝑌 𝑖•} = 1
𝑟2 𝑟𝑛𝜎2

𝜇 + 𝜎2

𝑛 = 𝑛𝜎2
𝜇 + 𝜎2

𝑟𝑛

Now, we obtain the expected sums of squares and mean squares.

𝐸 {𝑌 2
𝑖𝑗} = 𝜎2

𝜇 + 𝜎2 + 𝜇2
• ⇒

𝑟
∑
𝑖=1

𝑛
∑
𝑗=1

𝐸 {𝑌 2
𝑖𝑗} = 𝑟𝑛 (𝜎2

𝜇 + 𝜎2 + 𝜇2
•)

𝐸 {𝑌 2
𝑖•} = 𝑛𝜎2

𝜇 + 𝜎2

𝑛 + 𝜇2
• ⇒ 𝑛

𝑟
∑
𝑖=1

𝐸 {𝑌 2
𝑖•} = 𝑛𝑟𝜎2

𝜇 + 𝑟𝜎2 + 𝑛𝑟𝜇2
•
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𝐸 {𝑌 2
••} = 𝑛𝜎2

𝜇 + 𝜎2

𝑟𝑛 + 𝜇2
• ⇒ 𝑟𝑛𝐸 {𝑌 2

••} = 𝑛𝜎2
𝜇 + 𝜎2 + 𝑟𝑛𝜇2

•

𝐸{𝑆𝑆𝑇 𝑅} = (𝑛𝑟𝜎2
𝜇 + 𝑟𝜎2 + 𝑛𝑟𝜇2

•) − (𝑛𝜎2
𝜇 + 𝜎2 + 𝑟𝑛𝜇2

•) = 𝑛(𝑟 − 1)𝜎2
𝜇 + (𝑟 − 1)𝜎2

𝐸{𝑆𝑆𝐸} = (𝑟𝑛 (𝜎2
𝜇 + 𝜎2 + 𝜇2

•)) − (𝑛𝑟𝜎2
𝜇 + 𝑟𝜎2 + 𝑛𝑟𝜇2

•) = 𝑟(𝑛 − 1)𝜎2

The expected mean squares are the expected sums of squares divided by the degrees of freedom with 𝑑𝑓𝑇 𝑅 = 𝑟 − 1
and 𝑑𝑓𝐸 = 𝑟(𝑛 − 1).

𝐸{𝑀𝑆𝑇 𝑅} = 𝐸 {𝑆𝑆𝑇 𝑅
𝑑𝑓𝑇 𝑅

} = 𝜎2 + 𝑛𝜎2
𝜇 𝐸{𝑀𝑆𝐸} = 𝐸 {𝑆𝑆𝐸

𝑑𝑓𝐸
} = 𝜎2

The 𝐹 -test is used to test whether the variance of the population of group means is 0.

𝐻0 ∶ 𝜎2
𝜇 = 0 𝐻𝐴 ∶ 𝜎2

𝜇 > 0 𝑇 𝑆 ∶ 𝐹 ∗ = 𝑀𝑆𝑇 𝑅
𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗ ≥ 𝐹1−𝛼;𝑟−1,𝑟(𝑛−1)

Example 10.1 - Alpha Acids in Varieties of Beer

A study was conducted to measure alpha acids in a sample of 𝑟 = 10 varieties of beer [Meilgaard, 1960]. There were
𝑛 = 10 replicates per variety. The following R code obtains the ANOVA based on direct computations and a plot
of the measurements is given in Figure 10.1.

1 2 3 4 5 6 7 8 9 10

40
0

50
0

60
0

70
0

80
0

factor(variety)

a_
ac

id

Figure 10.1: Interaction plots for chef jacket study

## df SS MS F* F(.95) P(>F*)
## Variety 9 1463915.9 162657.3211 235.728 1.9856 0
## Error 90 62101.9 690.0211 NA NA NA
## Total 99 1526017.8 NA NA NA NA
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There is strong evidence that the population means (of all varieties) are not all equal, that is 𝜎2
𝜇 > 0.

∇

10.1.2 Estimating the Population Mean 𝜇•
In this section, we consider estimating the population mean response. The expectations of the individual measure-
ments, group means, and overall mean are all 𝜇•. However, the overall mean has the smallest variance. Note also
that 𝐸{𝑀𝑆𝑇 𝑅} = 𝜎2 + 𝑛𝜎2

𝜇.

̂𝜇• = 𝑌 •• 𝜎2 {𝑌 ••} = 𝑛𝜎2
𝜇 + 𝜎2

𝑟𝑛 𝑠2 {𝑌 ••} = 𝑀𝑆𝑇 𝑅
𝑟𝑛 𝑠 {𝑌 ••} = √𝑀𝑆𝑇 𝑅

𝑟𝑛

𝑡 = 𝑌 •• − 𝜇•
𝑠 {𝑌 ••} ∼ 𝑡𝑟−1 ⇒ (1 − 𝛼)100% CI for 𝜇• ≡ 𝑌 •• ± 𝑡1−𝛼/2;𝑟−1√𝑀𝑆𝑇 𝑅

𝑟𝑛

Example 10.2 - Alpha Acids in Varieties of Beer The following R code obtains the point estimate of the
overall mean and 95% Confidence Interval for 𝜇• based on direct computations.

## Estimate Std Err df t(.975) LB UB
## Mean 579.61 40.3308 9 2.2622 488.3754 670.8446

The point estimate is about 580, with a 95% Confidence Interval of 488 to 671. Even though there were 𝑟𝑛 =
10(10) = 100 observations, the between treatment mean square is very large, yielding a wide confidence interval.

∇

10.1.3 Estimating the Intraclass Correlation Coefficient
The Intraclass Correlation Coefficient is 𝜌𝐼 = 𝜎2

𝜇/𝜎2
𝑌 , the ratio of the between group variance to the total variance.

To obtain a Confidence Interval for 𝜌𝐼 , we make use of the following distributional results and the fact that 𝑆𝑆𝐸
and 𝑆𝑆𝑇 𝑅 are independent.

𝐸{𝑀𝑆𝐸} = 𝜎2 𝑆𝑆𝐸
𝜎2 = 𝑟(𝑛 − 1)𝑀𝑆𝐸

𝜎2 ∼ 𝜒2
𝑟(𝑛−1)

𝐸{𝑀𝑆𝑇 𝑅} = 𝜎2 + 𝑛𝜎2
𝜇

𝑆𝑆𝑇 𝑅
𝜎2 + 𝑛𝜎2𝜇

= (𝑟 − 1)𝑀𝑆𝑇 𝑅
𝜎2 + 𝑛𝜎2𝜇

∼ 𝜒2
𝑟−1

[
𝑆𝑆𝑇𝑅

𝜎2+𝑛𝜎2𝜇
𝑟−1 ]

[
𝑆𝑆𝐸

𝜎2
𝑟(𝑛−1) ]

=
[ 𝑀𝑆𝑇 𝑅

𝜎2+𝑛𝜎2𝜇
]

[ 𝑀𝑆𝐸
𝜎2 ] = 𝐹 ∗ ( 𝜎2

𝜎2 + 𝑛𝜎2𝜇
) ∼ 𝐹𝑟−1,𝑟(𝑛−1)

⇒ 𝑃 (𝐹𝛼/2;𝑟−1,𝑟(𝑛−1) ≤ 𝐹 ∗ ( 𝜎2

𝜎2 + 𝑛𝜎2𝜇
) ≤ 𝐹1−𝛼/2;𝑟−1,𝑟(𝑛−1))

The goal is to isolate 𝜌𝐼 = 𝜎2
𝜇/𝜎2

𝑌 in the middle of the probability statement. Define 𝐿 and 𝑈 as follow.

𝐿 = 1
𝑛 [ 𝐹 ∗

𝐹1−𝛼/2;𝑟−1,𝑟(𝑛−1)
− 1] 𝑈 = 1

𝑛 [ 𝐹 ∗

𝐹𝛼/2;𝑟−1,𝑟(𝑛−1)
− 1]

Then the (1 − 𝛼)100% Confidence Interval for 𝜌𝐼 is obtained as follows.
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(1 − 𝛼)100% Confidence Interval for 𝜌𝐼 = 𝜎2
𝜇

𝜎2𝜇 + 𝜎2 ∶ [𝐿∗ = 𝐿
1 + 𝐿, 𝑈 ∗ = 𝑈

1 + 𝑈 ]

Example 10.3 - Alpha Acids in Varieties of Beer The following R code obtains the 95% Confidence Interval
for 𝜌𝐼 based on direct computations.

## F* F(.025) F(.975) L U LB UB
## rho_I 235.728 0.2932 2.2588 10.3361 80.3097 0.9118 0.9877

∇

10.1.4 Estimating the Within Group Variance
The withing group variance, 𝜎2 can be estimated by the mean square error, 𝑀𝑆𝐸, as it is an unbiased estimator.
Further, a (1 − 𝛼)100% Confidence Interval can be obtained as 𝑆𝑆𝐸/𝜎2 is distributed as Chi-square with 𝑟(𝑛 − 1)
degrees of freedom.

𝐸{𝑀𝑆𝐸} = 𝜎2 𝑆𝑆𝐸
𝜎2 = 𝑟(𝑛 − 1)𝑀𝑆𝐸

𝜎2 ∼ 𝜒2
𝑟(𝑛−1)

⇒ 𝑃 (𝜒2
𝛼/2;𝑟(𝑛−1) ≤ 𝑆𝑆𝐸

𝜎2 ≤ 𝜒2
1−𝛼/2;𝑟(𝑛−1)) = 1 − 𝛼

⇒ 𝑃 (
𝜒2

𝛼/2;𝑟(𝑛−1)
𝑆𝑆𝐸 ≤ 1

𝜎2 ≤
𝜒2

1−𝛼/2;𝑟(𝑛−1)
𝑆𝑆𝐸 ) = 1 − 𝛼

⇒ 𝑃 ( 𝑆𝑆𝐸
𝜒2

1−𝛼/2;𝑟(𝑛−1)
≤ 𝜎2 ≤ 𝑆𝑆𝐸

𝜒2
𝛼/2;𝑟(𝑛−1)

) = 𝑃 (𝑟(𝑛 − 1)𝑀𝑆𝐸
𝜒2

1−𝛼/2;𝑟(𝑛−1)
≤ 𝜎2 ≤ 𝑟(𝑛 − 1)𝑀𝑆𝐸

𝜒2
𝛼/2;𝑟(𝑛−1)

) = 1 − 𝛼

The Confidence Interval is simply from 𝑆𝑆𝐸 divided by the upper critical value to 𝑆𝑆𝐸 divided by the lower critical
value.

Example 10.4 - Alpha Acids in Varieties of Beer The following R code obtains the 95% Confidence Interval
for 𝜎2 based on direct computations.

## MSE X2(.025) X2(.975) LB UB
## sigma^2 690.0211 65.6466 118.1359 525.6819 946.003

The point estimate is 690, while the 95% Confidence Interval ranges from 525 to 946. In terms of the within group
standard deviation, the 95% Confidence Interval ranges from 23 to 31.

∇

10.1.5 Estimating the Between Group Variance
Recall the expected mean squares derived previously.

𝐸{𝑀𝑆𝑇 𝑅} = 𝜎2 + 𝑛𝜎2
𝜇 𝐸{𝑀𝑆𝐸} = 𝜎2

⇒ 𝐸 {𝑀𝑆𝑇 𝑅 − 𝑀𝑆𝐸
𝑛 } = ( 1

𝑛) 𝐸{𝑀𝑆𝑇 𝑅} + (− 1
𝑛) 𝐸{𝑀𝑆𝐸} = 𝜎2

𝜇

This represents a linear combination of mean squares, each with a known degrees of freedom. Satterthwaite’s
Approximation is based on obtaining an approximation to a chi-square distribution based on linear combinations
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of mean squares. The approximation is for the degrees of freedom for the (approximate) chi-square distribution.
Note that this estimator can be negative, and is usually treated as if it is 0 in practice.

Let 𝑀𝑆1, … , 𝑀𝑆ℎ be ℎ mean squares, with degrees of freedom 𝑑𝑓1, … , 𝑑𝑓ℎ, respectively. Further, let 𝑐1, … , 𝑐ℎ, be
fixed constants. Consider the following quantities.

𝐿 =
ℎ

∑
𝑖=1

𝑐𝑖𝐸{𝑀𝑆𝑖} 𝐿̂ =
ℎ

∑
𝑖=1

𝑐𝑖𝑀𝑆𝑖
(𝑑𝑓) 𝐿̂

𝐿
•∼ 𝜒2

𝑑𝑓

This method matches the first two moments of the approximate chi-square distribution to solve for the approximate
degrees of freedom. For the chi-square distribution with 𝜈 degrees of freedom, the mean is 𝜈 and the variance is 2𝜈.
Also, the mean squares are independent.

𝐸 {𝐿̂} = 𝐿 ⇒ 𝐸 {(𝑑𝑓) 𝐿̂
𝐿 } = 𝑑𝑓

(𝑑𝑓𝑖) 𝑀𝑆𝑖
𝐸 {𝑀𝑆𝑖}

∼ 𝜒2
𝑑𝑓𝑖

⇒ 𝐸 {(𝑑𝑓𝑖) 𝑀𝑆𝑖
𝐸 {𝑀𝑆𝑖}

} = 𝑑𝑓𝑖 𝜎2 {(𝑑𝑓𝑖) 𝑀𝑆𝑖
𝐸 {𝑀𝑆𝑖}

} = 2𝑑𝑓𝑖

⇒ 𝜎2 {𝑀𝑆𝑖} = 2 (𝑑𝑓𝑖) (𝐸 {𝑀𝑆𝑖})2

(𝑑𝑓𝑖)
2 ⇒ 𝜎2 {𝐿̂} = 2

ℎ
∑
𝑖=1

𝑐2
𝑖

(𝐸 {𝑀𝑆𝑖})2

𝑑𝑓𝑖

𝜎2 {(𝑑𝑓) 𝐿̂
𝐿 } = 2𝑑𝑓 ⇒ 𝜎2 {𝐿̂} = 2(𝑑𝑓)𝐿2

(𝑑𝑓)2 = 2𝐿2

𝑑𝑓

Now, equating the two versions of 𝜎2 {𝐿̂} and solving for 𝑑𝑓 gives the following result. The unknown expected
mean squares in 𝐿 are replaced with the observed mean squares.

2𝐿2

𝑑𝑓 = 2
ℎ

∑
𝑖=1

𝑐2
𝑖

(𝐸 {𝑀𝑆𝑖})2

𝑑𝑓𝑖
⇒ 𝑑𝑓 = 𝐿̂2

∑ℎ
𝑖=1 𝑐2

𝑖
(𝑀𝑆𝑖)2

𝑑𝑓𝑖

=
(∑ℎ

𝑖=1 𝑐𝑖𝑀𝑆𝑖)
2

∑ℎ
𝑖=1 𝑐2

𝑖
(𝑀𝑆𝑖)2

𝑑𝑓𝑖

The approximate (1 − 𝛼)100% Confidence Interval is computed as follows.

(1 − 𝛼)100% Confidence Interval for 𝜎2
𝜇 ∶ [ (𝑑𝑓)𝐿̂

𝜒1−𝛼/2;𝑑𝑓
, (𝑑𝑓)𝐿̂

𝜒𝛼/2;𝑑𝑓
]

Example 10.5 - Alpha Acids in Varieties of Beer The following R code obtains the approximate 95% Confi-
dence Interval for 𝜎2

𝜇 based on direct computations. Note that 𝑐1 = 1/𝑛 and 𝑐2 = −1/𝑛.

## s2_mu df X2(.025) X2(.975) LB UB
## sigma2_mu 16196.73 8.9238 2.6597 18.9104 7643.216 54342.17

The point estimate is 16197, and the approximate 95% Confidence Interval goes from 7643 to 54342. In terms of
the between group standard deviation, the range is approximately from 87 to 233.

We will use the lmerTest package and the lmer function to fit the model. With this function, we must include a
“1” for the fixed mean, and we include “(1|factor(variety))” to include random effects for varieties.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: a_acid ~ 1 + (1 | variety.f)
## Data: hops
##
## REML criterion at convergence: 981.9
##
## Scaled residuals:
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## Min 1Q Median 3Q Max
## -2.63193 -0.46012 0.00626 0.56199 3.06408
##
## Random effects:
## Groups Name Variance Std.Dev.
## variety.f (Intercept) 16197 127.27
## Residual 690 26.27
## Number of obs: 100, groups: variety.f, 10
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 579.61 40.33 9.00 14.37 1.64e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

∇

10.2 Two-Way Random Effects Model
Some studies include two (or more) random factors. In these cases we want to generalize across populations of
units for the two factors and their interactions. In Measurement Systems Analysis variation in parts and
operators who measure the parts are studied. The experiments are often referred to as Gage Repeatability
& Reproducibility (R&R) studies. Each of 𝑎 parts are measured by 𝑏 operators 𝑛 times in random order.
The variation in part sizes, operator measurements, and interactions between parts and operators are of interest.
Repeatability refers to the variation when the same part is measured by the same operator multiple times.

The statistical model for the balanced case is given below.

𝑌𝑖𝑗𝑘 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛

It is assumed that {𝛼𝑖}, {𝛽𝑗}, {(𝛼𝛽)𝑖𝑗}, and {𝜖𝑖𝑗𝑘} are independent and normally distributed with means 0 and
variances 𝜎2

𝛼, 𝜎2
𝛽, 𝜎2

𝛼𝛽, and 𝜎2, respectively. The mean, variance and covariance structure are given below.

𝐸 {𝑌𝑖𝑗𝑘} = 𝐸 {𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘} = 𝜇•• + 0 + 0 + 0 + 0 = 𝜇••

𝜎2 {𝑌𝑖𝑗𝑘} = 𝜎2 {𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘} = 𝜎2
𝛼 + 𝜎2

𝛽 + 𝜎2
𝛼𝛽 + 𝜎2

𝜎 {𝑌𝑖𝑗𝑘, 𝑌𝑖′𝑗′𝑘′} =

⎧{{
⎨{{⎩

𝜎2
𝛼 + 𝜎2

𝛽 + 𝜎2
𝛼𝛽 + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 = 𝑘′

𝜎2
𝛼 + 𝜎2

𝛽 + 𝜎2
𝛼𝛽 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 ≠ 𝑘′

𝜎2
𝛼 ∶ 𝑖 = 𝑖′, 𝑗 ≠ 𝑗′, ∀𝑘, 𝑘′

𝜎2
𝛽 ∶ 𝑖 ≠ 𝑖′, 𝑗 = 𝑗′, ∀𝑘, 𝑘′

0 ∶ 𝑖 ≠ 𝑖′, 𝑗 ≠ 𝑗′, ∀𝑘, 𝑘′

The expected mean squares for each source of variation can be derived from this covariance structure. The results
are given here.

Factor A: 𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑏𝑛𝜎2
𝛼 + 𝑛𝜎2

𝛼𝛽 Factor B: 𝐸{𝑀𝑆𝐵} = 𝜎2 + 𝑎𝑛𝜎2
𝛽 + 𝑛𝜎2

𝛼𝛽

AB Interaction: 𝐸{𝑀𝑆𝐴𝐵} = 𝜎2 + 𝑛𝜎2
𝛼𝛽 Error: 𝐸{𝑀𝑆𝐸} = 𝜎2

The tests for interaction and main effects are obtained from the expected mean squares. Note that the “error” terms
for factors A and B are the AB interaction, unlike the fixed effects model, which uses 𝑀𝑆𝐸 for the error term.

𝐻𝐴𝐵
0 ∶ 𝜎2

𝛼𝛽 = 0 𝐻𝐴𝐵
𝐴 ∶ 𝜎2

𝛼𝛽 > 0 𝑇 𝑆 ∶ 𝐹𝐴𝐵 = 𝑀𝑆𝐴𝐵
𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹𝐴𝐵 ≥ 𝐹1−𝛼;(𝑎−1)(𝑏−1),𝑎𝑏(𝑛−1)
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𝐻𝐴
0 ∶ 𝜎2

𝛼 = 0 𝐻𝐴
𝐴 ∶ 𝜎2

𝛼 > 0 𝑇 𝑆 ∶ 𝐹𝐴 = 𝑀𝑆𝐴
𝑀𝑆𝐴𝐵 𝑅𝑅 ∶ 𝐹𝐴 ≥ 𝐹1−𝛼;𝑎−1,(𝑎−1)(𝑏−1)

𝐻𝐵
0 ∶ 𝜎2

𝛽 = 0 𝐻𝐵
𝐴 ∶ 𝜎2

𝛽 > 0 𝑇 𝑆 ∶ 𝐹𝐵 = 𝑀𝑆𝐵
𝑀𝑆𝐴𝐵 𝑅𝑅 ∶ 𝐹𝐵 ≥ 𝐹1−𝛼;𝑏−1,(𝑎−1)(𝑏−1)

Point estimates for the variance components are obtained from the expected mean squares. In practice, some of
these can be negative, and in practice are typically replaced by 0.

𝑠2 = 𝑀𝑆𝐸 𝑠2
𝛼𝛽 = 𝑀𝑆𝐴𝐵 − 𝑀𝑆𝐸

𝑛 𝑠2
𝛼 = 𝑀𝑆𝐴 − 𝑀𝑆𝐴𝐵

𝑏𝑛 𝑠2
𝛽 = 𝑀𝑆𝐵 − 𝑀𝑆𝐴𝐵

𝑎𝑛
As these are all linear functions of mean squares, Satterthwaite’s approximation can be used to obtain approximate
degrees’ of freedom and Confidence Intervals for 𝜎2

𝛼𝛽, 𝜎2
𝛼, and 𝜎2

𝛽.

𝑑𝑓𝐴𝐵 = ( 1
𝑛 𝑀𝑆𝐴𝐵 + −1

𝑛 𝑀𝑆𝐸)2

( 1
𝑛 𝑀𝑆𝐴𝐵)2

(𝑎−1)(𝑏−1) + ( −1
𝑛 𝑀𝑆𝐸)2

𝑎𝑏(𝑛−1)

𝑑𝑓𝐴 = ( 1
𝑏𝑛 𝑀𝑆𝐴 + −1

𝑏𝑛 𝑀𝑆𝐴𝐵)2

( 1
𝑏𝑛 𝑀𝑆𝐴)2

𝑎−1 + ( −1
𝑏𝑛 𝑀𝑆𝐴𝐵)2

(𝑎−1)(𝑏−1)

𝑑𝑓𝐵 = ( 1
𝑎𝑛 𝑀𝑆𝐵 + −1

𝑎𝑛 𝑀𝑆𝐴𝐵)2

( 1
𝑎𝑛 𝑀𝑆𝐵)2

𝑏−1 + ( −1
𝑎𝑛 𝑀𝑆𝐴𝐵)2

(𝑎−1)(𝑏−1)

Example 10.6 - Measurements of Skulls by Observers

An anthropological study was conducted to measure variation in frontal chord measurements of skulls by various
observers [Hanihara et al., 1999]. There were 𝑎 = 10 skulls, 𝑏 = 6 observers, and 𝑛 = 2 replicates per skull/observer.
The R code for the analysis and output are included here.

## observer skull time chord
## 1 1 1 1 100.9
## 2 1 1 2 100.8
## 3 1 2 1 91.1
## 4 1 2 2 91.2
## 5 1 3 1 102.5
## 6 1 3 2 102.7

## observer skull time chord
## 115 6 8 1 99.0
## 116 6 8 2 99.0
## 117 6 9 1 91.7
## 118 6 9 2 91.8
## 119 6 10 1 93.7
## 120 6 10 2 93.8

## Analysis of Variance Table
##
## Response: chord
## Df Sum Sq Mean Sq F value Pr(>F)
## skull.f 9 1612.01 179.112 3074.8786 < 2.2e-16 ***
## observer.f 5 7.32 1.463 25.1207 1.449e-13 ***
## skull.f:observer.f 45 5.26 0.117 2.0065 0.005956 **
## Residuals 60 3.49 0.058
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## MS F* F(.95) P(>F*) s^2 Satt df LB UB
## sigma_a^2 179.1117 1532.4942 2.0958 0.000 14.9162 8.9883 7.0543 49.7643
## sigma_b^2 1.4633 12.5200 2.4221 0.000 0.0673 4.2302 0.0247 0.5102
## sigma_ab^2 0.1169 2.0065 1.5749 0.006 0.0293 9.5444 0.0141 0.0934
## sigma^2 0.0582 NA NA NA 0.0582 60.0000 0.0420 0.0863
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## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## chord ~ 1 + (1 | skull.f) + (1 | observer.f) + (1 | skull.f:observer.f)
## Data: sm
##
## REML criterion at convergence: 123.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.90775 -0.49619 0.01282 0.41430 2.21863
##
## Random effects:
## Groups Name Variance Std.Dev.
## skull.f:observer.f (Intercept) 0.02931 0.1712
## skull.f (Intercept) 14.91283 3.8617
## observer.f (Intercept) 0.06732 0.2595
## Residual 0.05825 0.2414
## Number of obs: 120, groups:
## skull.f:observer.f, 60; skull.f, 10; observer.f, 6
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 96.464 1.226 9.138 78.67 2.97e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The variance of the skulls is by far the largest (not surprising) while the variances among observers, interactions
and error are much smaller.

In the measurement systems analysis, the variances are broken into various components.

• Repeatability - Variation within same part/operator (skull/observer): 𝜎2

• Reproducibility - Variation across parts/operators: 𝜎2
𝛽 + 𝜎2

𝛼𝛽
• Parts - Variation across parts: 𝜎2

𝛼
• Gage - Repeatability + Reproducibility
• Total - Parts + Gage
• % R&R - 100 ∗ 𝜎Gage/𝜎Total in terms of standard deviations, not variances.

For this example (based on the lmer results), we get the following estimates.

𝑠2
Repeatability = 𝑠2 = 0.05825 𝑠2

Reproducibility = 𝑠2
𝛽 + 𝑠2

𝛼𝛽 = 0.06732 + 0.02931 = 0.09663

𝑠2
Parts = 14.92183 𝑠2

Gage = 0.05825 + 0.09963 = 0.015488

𝑠2
Total = 14.92183 + 0.015488 = 15.07671 % R&R: 100√0.015488

15.07671 = 3.21%

Only about 3.2% of the total variation (standard deviation) is due to measurement error.

∇

10.3 Two-Way Mixed Effects Model
Models can include both fixed and random effects. In this section, we describe the unrestricted two-way mixed
model, with factor A fixed and factor B random. The restricted model has the two-factor interactions sum to 0
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over the fixed factor. Statistical software packages typically fit the unrestricted model that allows for unbalanced
data. The model is given below.

𝑌𝑖𝑗𝑘 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛

𝑎
∑
𝑖=1

𝛼𝑖 = 0 𝛽𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2
𝛽) (𝛼𝛽)𝑖𝑗 ∼ 𝑁𝐼𝐷 (0, 𝜎2

𝛼𝛽) 𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2)

The random effects {𝛽𝑗}, {(𝛼𝛽)𝑖𝑗}, and error terms {𝜖𝑖𝑗𝑘} are assumed pairwise independent.

The mean, covariance structure, expected mean squares and estimators for the unrestricted mixed model are given
below.

𝐸 {𝑌𝑖𝑗𝑘} = 𝜇•• + 𝛼𝑖 𝜎 {𝑌𝑖𝑗𝑘, 𝑌𝑖′𝑗′𝑘′} =
⎧{{
⎨{{⎩

𝜎2
𝛽 + 𝜎2

𝛼𝛽 + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 = 𝑘′

𝜎2
𝛽 + 𝜎2

𝛼𝛽 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 ≠ 𝑘′

𝜎2
𝛽 ∶ 𝑖 ≠ 𝑖′, 𝑗 = 𝑗′, ∀𝑘, 𝑘′

0 ∶ ∀𝑖, 𝑖′, 𝑗 ≠ 𝑗′, ∀𝑘, 𝑘′

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑛𝜎2
𝛼𝛽 + 𝑏𝑛 ∑𝑎

𝑖=1 𝛼2
𝑖

𝑎 − 1 𝐸{𝑀𝑆𝐵} = 𝜎2 + 𝑛𝜎2
𝛼𝛽 + 𝑎𝑛𝜎2

𝛽

𝐸{𝑀𝑆𝐴𝐵} = 𝜎2 + 𝑛𝜎2
𝛼𝛽 𝐸{𝑀𝑆𝐸} = 𝜎2

𝑠2 = 𝑀𝑆𝐸 𝑠2
𝛼𝛽 = 𝑀𝑆𝐴𝐵 − 𝑀𝑆𝐸

𝑛 𝑠2
𝛽 = 𝑀𝑆𝐵 − 𝑀𝑆𝐴𝐵

𝑎𝑛

𝜎2 {𝑌 𝑖••} =
𝜎2 + 𝑛𝜎2

𝛼𝛽
𝑏𝑛 ⇒ 𝑠 {𝑌 𝑖••} = √𝑀𝑆𝐴𝐵

𝑏𝑛 𝑠 {𝑌 𝑖•• − 𝑌 𝑖′••} = √2𝑀𝑆𝐴𝐵
𝑏𝑛

𝜎2 {𝑌 •••} =
𝜎2 + 𝑛𝜎2

𝛼𝛽
𝑎𝑏𝑛 ⇒ 𝑠 {𝑌 •••} = √𝑀𝑆𝐴𝐵

𝑎𝑏𝑛

Tukey’s method can be used to compare all levels of factor A.

𝐻𝑆𝐷 = 𝑞1−𝛼;𝑎,(𝑎−1)(𝑏−1)√
𝑀𝑆𝐴𝐵

𝑏𝑛
(1 − 𝛼)100% Confidence Interval for 𝛼𝑖 − 𝛼𝑖′ ∶ (𝑌 𝑖•• − 𝑌 𝑖′••) ± 𝐻𝑆𝐷

Example 10.7 - Breath Alcohol Concentration Measurement Comparison

A study compared 𝑎 = 6 (fixed) instruments among 𝑏 = 3 (random) subjects in measuring breath alcohol levels
[Gullberg, 2008]. Each subject was measured by each machine 𝑛 = 10 times. Scores have been multiplied by 100
to avoid very small variances.

R code for direct calculations and the lmer function are used for the analysis. The confidence level for the
difflsmeans has been adjusted by the Bonferroni method to construct simultaneous 95% Confidence Intervals
among the 6(6 − 1)/2 = 15 pairs of instruments.

𝑠 {𝑌 𝑖•• − 𝑌 𝑖′••} = √2𝑀𝑆𝐴𝐵
𝑏𝑛 = √2(0.3083)

3(10) = 0.1434 𝑡1−.05/(2(15));10 = 3.827

95% CI for 𝛼𝑖 − 𝛼𝑖′ ∶ (𝑌 𝑖•• − 𝑌 𝑖′••) ± 3.827(0.1434)
≡ 95% CI for 𝛼𝑖 − 𝛼𝑖′ ∶ (𝑌 𝑖•• − 𝑌 𝑖′••) ± 0.549

Note that the 𝑃 -values are not adjusted for the multiple tests.
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## instrument subject rep breathAlc
## 1 1 1 1 0.0938
## 2 1 1 2 0.0946
## 3 1 1 3 0.0944
## 4 1 1 4 0.0943
## 5 1 1 5 0.0922
## 6 1 1 6 0.0924

## instrument subject rep breathAlc
## 175 6 2 5 0.0612
## 176 6 2 6 0.0616
## 177 6 2 7 0.0603
## 178 6 2 8 0.0597
## 179 6 2 9 0.0599
## 180 6 2 10 0.0590

## instrument subject rep breathAlc
## 1 1 1 1 0.0938
## 2 1 1 2 0.0946
## 3 1 1 3 0.0944
## 4 1 1 4 0.0943
## 5 1 1 5 0.0922
## 6 1 1 6 0.0924

## instrument subject rep breathAlc
## 165 6 3 5 0.0738
## 166 6 3 6 0.0717
## 167 6 3 7 0.0713
## 168 6 3 8 0.0703
## 169 6 3 9 0.0697
## 170 6 3 10 0.0745

## df SS MS F* F(.95) P(>F*)
## Instrument 5 19.0059 3.8012 12.3290 3.3258 5e-04
## Subject 2 219.0440 109.5220 355.2307 4.1028 0e+00
## InstxSubj 10 3.0831 0.3083 5.5595 1.8896 0e+00
## Error 162 8.9840 0.0555 NA NA NA
## Total 179 250.1171 NA NA NA NA

## s^2 Satt df LB UB
## Subject 1.8202 1.9888 0.4922 73.1909
## InstxSubj 0.0253 6.7127 0.0109 0.1091
## Error 0.0555 162.0000 0.0451 0.0698

## i i' Ybar_i Ybar_i' Diff LB UB p adj
## [1,] 2 1 7.3547 7.8340 -0.4793 -0.9773 0.0186 0.0609
## [2,] 3 1 7.6247 7.8340 -0.2093 -0.7073 0.2886 0.6941
## [3,] 3 2 7.6247 7.3547 0.2700 -0.2280 0.7680 0.4621
## [4,] 4 1 6.8353 7.8340 -0.9987 -1.4966 -0.5007 0.0004
## [5,] 4 2 6.8353 7.3547 -0.5193 -1.0173 -0.0214 0.0399
## [6,] 4 3 6.8353 7.6247 -0.7893 -1.2873 -0.2914 0.0026
## [7,] 5 1 7.5943 7.8340 -0.2397 -0.7376 0.2583 0.5760
## [8,] 5 2 7.5943 7.3547 0.2397 -0.2583 0.7376 0.5760
## [9,] 5 3 7.5943 7.6247 -0.0303 -0.5283 0.4676 0.9999
## [10,] 5 4 7.5943 6.8353 0.7590 0.2610 1.2570 0.0034
## [11,] 6 1 7.2090 7.8340 -0.6250 -1.1230 -0.1270 0.0131
## [12,] 6 2 7.2090 7.3547 -0.1457 -0.6436 0.3523 0.9023
## [13,] 6 3 7.2090 7.6247 -0.4157 -0.9136 0.0823 0.1188
## [14,] 6 4 7.2090 6.8353 0.3737 -0.1243 0.8716 0.1818



128 CHAPTER 10. RANDOM AND MIXED EFFECTS MODELS

## [15,] 6 5 7.2090 7.5943 -0.3853 -0.8833 0.1126 0.1618

## Analysis of Variance Table
##
## Response: 100 * breathAlc
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(instrument) 5 19.006 3.801 68.5430 < 2.2e-16
## factor(subject) 2 219.044 109.522 1974.9028 < 2.2e-16
## factor(instrument):factor(subject) 10 3.083 0.308 5.5595 4.177e-07
## Residuals 162 8.984 0.055
##
## factor(instrument) ***
## factor(subject) ***
## factor(instrument):factor(subject) ***
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## 100 * breathAlc ~ instrument.f + (1 | subject.f) + (1 | instrument.f:subject.f)
## Data: ba
##
## REML criterion at convergence: 46.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7063 -0.5975 0.0655 0.5337 3.5359
##
## Random effects:
## Groups Name Variance Std.Dev.
## instrument.f:subject.f (Intercept) 0.02529 0.1590
## subject.f (Intercept) 1.82025 1.3492
## Residual 0.05546 0.2355
## Number of obs: 180, groups: instrument.f:subject.f, 18; subject.f, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 7.40867 0.78004 1.99996 9.498 0.010905 *
## instrument.f1 0.42533 0.09254 9.99985 4.596 0.000986 ***
## instrument.f2 -0.05400 0.09254 9.99985 -0.584 0.572476
## instrument.f3 0.21600 0.09254 9.99985 2.334 0.041762 *
## instrument.f4 -0.57333 0.09254 9.99985 -6.195 0.000102 ***
## instrument.f5 0.18567 0.09254 9.99985 2.006 0.072627 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) inst.1 inst.2 inst.3 inst.4
## instrmnt.f1 0.000
## instrmnt.f2 0.000 -0.200
## instrmnt.f3 0.000 -0.200 -0.200
## instrmnt.f4 0.000 -0.200 -0.200 -0.200
## instrmnt.f5 0.000 -0.200 -0.200 -0.200 -0.200

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
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## instrument.f 3.4186 0.68372 5 9.9999 12.329 0.0005164 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Least Squares Means table:
##
## Estimate Std. Error df t value lower
## instrument.f1 - instrument.f2 0.479333 0.143368 10 3.3434 -0.069387
## instrument.f1 - instrument.f3 0.209333 0.143368 10 1.4601 -0.339387
## instrument.f1 - instrument.f4 0.998667 0.143368 10 6.9658 0.449947
## instrument.f1 - instrument.f5 0.239667 0.143368 10 1.6717 -0.309053
## instrument.f1 - instrument.f6 0.625000 0.143368 10 4.3594 0.076280
## instrument.f2 - instrument.f3 -0.270000 0.143368 10 -1.8833 -0.818720
## instrument.f2 - instrument.f4 0.519333 0.143368 10 3.6224 -0.029387
## instrument.f2 - instrument.f5 -0.239667 0.143368 10 -1.6717 -0.788387
## instrument.f2 - instrument.f6 0.145667 0.143368 10 1.0160 -0.403053
## instrument.f3 - instrument.f4 0.789333 0.143368 10 5.5056 0.240613
## instrument.f3 - instrument.f5 0.030333 0.143368 10 0.2116 -0.518387
## instrument.f3 - instrument.f6 0.415667 0.143368 10 2.8993 -0.133053
## instrument.f4 - instrument.f5 -0.759000 0.143368 10 -5.2941 -1.307720
## instrument.f4 - instrument.f6 -0.373667 0.143368 10 -2.6063 -0.922387
## instrument.f5 - instrument.f6 0.385333 0.143368 10 2.6877 -0.163387
## upper Pr(>|t|)
## instrument.f1 - instrument.f2 1.028053 0.0074481 **
## instrument.f1 - instrument.f3 0.758053 0.1749512
## instrument.f1 - instrument.f4 1.547387 3.873e-05 ***
## instrument.f1 - instrument.f5 0.788387 0.1255364
## instrument.f1 - instrument.f6 1.173720 0.0014225 **
## instrument.f2 - instrument.f3 0.278720 0.0890443 .
## instrument.f2 - instrument.f4 1.068053 0.0046713 **
## instrument.f2 - instrument.f5 0.309053 0.1255364
## instrument.f2 - instrument.f6 0.694387 0.3335656
## instrument.f3 - instrument.f4 1.338053 0.0002597 ***
## instrument.f3 - instrument.f5 0.579053 0.8366871
## instrument.f3 - instrument.f6 0.964387 0.0158528 *
## instrument.f4 - instrument.f5 -0.210280 0.0003505 ***
## instrument.f4 - instrument.f6 0.175053 0.0262049 *
## instrument.f5 - instrument.f6 0.934053 0.0227889 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Confidence level: 100%
## Degrees of freedom method: Satterthwaite

∇

10.4 Three-Way Mixed Effects Models
In this section, the Three-Way mixed model with two fixed factors and a single random factor (typically subjects)
is described. In many cases, there is a single replicate per combination of factors (𝑛 = 1) and this can be thought
of as an extension of a Randomized Block/Repeated Measures Design. Here is the case when 𝑛 = 1, factors A and
B are fixed, and factor C is random (Subject).

𝑆𝑆𝐴 = 𝑏𝑐
𝑎

∑
𝑖=1

(𝑌 𝑖•• − 𝑌 •••)2 𝑑𝑓𝐴 = 𝑎 − 1
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𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝜎2
𝛼𝛽𝛾 + 𝑏𝜎2

𝛼𝛾 + 𝑏𝑐 ∑𝑎
𝑖=1 𝛼2

𝑖
𝑎 − 1 = 𝐸{𝑀𝑆𝐴𝐶} + 𝑏𝑐 ∑𝑎

𝑖=1 𝛼2
𝑖

𝑎 − 1

𝑆𝑆𝐵 = 𝑎𝑐
𝑏

∑
𝑗=1

(𝑌 •𝑗• − 𝑌 •••)2 𝑑𝑓𝐵 = 𝑏 − 1

𝐸{𝑀𝑆𝐵} = 𝜎2 + 𝜎2
𝛼𝛽𝛾 + 𝑎𝜎2

𝛽𝛾 +
𝑎𝑐 ∑𝑏

𝑗=1 𝛽2
𝑗

𝑏 − 1 = 𝐸{𝑀𝑆𝐵𝐶} +
𝑎𝑐 ∑𝑏

𝑗=1 𝛽2
𝑗

𝑏 − 1

𝑆𝑆𝐴𝐵 = 𝑐
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌 𝑖𝑗• − 𝑌 𝑖•• − 𝑌 •𝑗• + 𝑌 •••)2 𝑑𝑓𝐴𝐵 = (𝑎 − 1)(𝑏 − 1)

𝐸{𝑀𝑆𝐴𝐵} = 𝜎2 + 𝜎2
𝛼𝛽𝛾 +

𝑐 ∑𝑎
𝑖=1 ∑𝑏

𝑗=1(𝛼𝛽)2
𝑖𝑗

(𝑎 − 1)(𝑏 − 1) = 𝐸{𝑀𝑆𝐴𝐵𝐶} +
𝑐 ∑𝑎

𝑖=1 ∑𝑏
𝑗=1(𝛼𝛽)2

𝑖𝑗
(𝑎 − 1)(𝑏 − 1)

The error terms for the fixed main effects and their 2-way interaction are the interactions between each term and
the random factor C.

Tukey’s HSD or the Bonferroni method can be used to compare the levels of factors A and B, or the 𝑎𝑏 treatment
means if the interaction is important.

Example 10.8 - Navigational Techniques for Web Maps A study was conducted to measure effects of two
factors on subjects’ skill on reading web maps [Wu et al., 2011]. The factors included are given below.

• Navigational Technique - Combined Panning Buttons (CPB, 𝑖 = 1), Distributed Panning Buttons (DPB,
𝑖 = 2), Enhanced Navigaor with Continuous Control (ENCC, 𝑖 = 3), and Grab & Drag (GD, 𝑖 = 4)

• Input Method - Touch Screen (DT, 𝑗 = 1), Mouse (M, 𝑗 = 2)
• Subject - 36 subjects who each performed once on the 8 combinations of Input Method and Navigational

Technique

One response was task completion time (seconds). We will analyze the data directly and with the lmer function
below.

## navTech inputMetg subject taskTime
## 1 1 1 1 163.30
## 2 1 1 2 214.95
## 3 1 1 3 179.73
## 4 1 1 4 164.35
## 5 1 1 5 184.68
## 6 1 1 6 165.21

## navTech inputMetg subject taskTime
## 283 4 2 31 155.26
## 284 4 2 32 172.36
## 285 4 2 33 147.22
## 286 4 2 34 105.90
## 287 4 2 35 73.22
## 288 4 2 36 78.10

## df SS MS Err df Err MS F* F(.95) P(>F*)
## Navigation 3 66995.51 22331.838 105 1417.1179 15.7586 2.6911 0e+00
## Input 1 30635.76 30635.757 35 1960.1337 15.6294 4.1213 4e-04
## Inp/Nav 3 18710.29 6236.762 105 926.4971 6.7316 2.6911 3e-04

## Analysis of Variance Table
##
## Response: taskTime
## Df Sum Sq Mean Sq F value Pr(>F)
## navTech.f 3 66996 22331.8 24.1035 6.033e-12 ***
## inputMet.f 1 30636 30635.8 33.0662 8.840e-08 ***
## subject.f 35 84008 2400.2 2.5906 0.0001025 ***
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## navTech.f:inputMet.f 3 18710 6236.8 6.7316 0.0003376 ***
## navTech.f:subject.f 105 148797 1417.1 1.5295 0.0152294 *
## inputMet.f:subject.f 35 68605 1960.1 2.1156 0.0018646 **
## Residuals 105 97282 926.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this case the main effects and the interaction are all very significant, so we will use Tukey’s HSD and the
Bonferroni minimum significant difference method to compare the 8 treatments (8(8-1)/2=28 comparisons). These
will use 𝑀𝑆𝐴𝐵𝐶 as the “error term” with 𝑑𝑓 = (4 − 1)(2 − 1)(36 − 1) = 105.

Tukey: 𝐻𝑆𝐷 = 𝑞.95,8,105√𝑀𝑆𝐴𝐵𝐶
𝑐 = 4.374√926.4971

36 = 22.19

Bonferroni: 𝑀𝑆𝐷 = 𝑡1−.05/(2(28));105√2𝑀𝑆𝐴𝐵𝐶
𝑐 = 3.206√2(926.4971)

36 = 23.00

## navTech inputMetg subject taskTime
## 1 1 1 1 163.30
## 2 1 1 2 214.95
## 3 1 1 3 179.73
## 4 1 1 4 164.35
## 5 1 1 5 184.68
## 6 1 1 6 165.21

## navTech inputMetg subject taskTime
## 283 4 2 31 155.26
## 284 4 2 32 172.36
## 285 4 2 33 147.22
## 286 4 2 34 105.90
## 287 4 2 35 73.22
## 288 4 2 36 78.10

## boundary (singular) fit: see ?isSingular

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula:
## taskTime ~ navTech.f * inputMet.f + (1 | subject.f) + (1 | navTech.f:subject.f) +
## (1 | inputMet.f:subject.f)
## Data: ntm
##
## REML criterion at convergence: 2851.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.14082 -0.60108 0.01166 0.59746 2.75578
##
## Random effects:
## Groups Name Variance Std.Dev.
## navTech.f:subject.f (Intercept) 243.0 15.59
## inputMet.f:subject.f (Intercept) 253.6 15.92
## subject.f (Intercept) 0.0 0.00
## Residual 927.9 30.46
## Number of obs: 288, groups:
## navTech.f:subject.f, 144; inputMet.f:subject.f, 72; subject.f, 36
##
## Fixed effects:
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## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 147.964 2.904 78.527 50.957 < 2e-16 ***
## navTech.f1 15.511 3.838 112.449 4.042 9.75e-05 ***
## navTech.f2 14.616 3.838 112.449 3.809 0.000228 ***
## navTech.f3 -18.413 3.838 112.449 -4.798 4.96e-06 ***
## inputMet.f1 10.314 2.597 54.542 3.972 0.000211 ***
## navTech.f1:inputMet.f1 9.371 3.109 107.587 3.014 0.003214 **
## navTech.f2:inputMet.f1 5.476 3.109 107.587 1.762 0.080985 .
## navTech.f3:inputMet.f1 -11.414 3.109 107.587 -3.671 0.000378 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) nvTc.1 nvTc.2 nvTc.3 inpM.1 nT.1:M nT.2:M
## navTech.f1 0.000
## navTech.f2 0.000 -0.333
## navTech.f3 0.000 -0.333 -0.333
## inputMet.f1 0.000 0.000 0.000 0.000
## nvTch.1:M.1 0.000 0.000 0.000 0.000 0.000
## nvTch.2:M.1 0.000 0.000 0.000 0.000 0.000 -0.333
## nvTch.3:M.1 0.000 0.000 0.000 0.000 0.000 -0.333 -0.333
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## navTech.f 43964 14654.6 3 112.449 15.7940 1.228e-08 ***
## inputMet.f 14636 14635.9 1 54.542 15.7738 0.0002109 ***
## navTech.f:inputMet.f 18710 6236.8 3 107.587 6.7216 0.0003360 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
library(lmerTest)
library(nlme)

##
## Attaching package: 'nlme'

## The following object is masked from 'package:lme4':
##
## lmList

## The following object is masked from 'package:dplyr':
##
## collapse



Chapter 11

Nested Designs

So far, factorial designs have contained crossed factors. The levels of factor B were the same within the levels of
factor A, and vice versa. In this chapter the levels of factor B will be different under the various levels of factor A,
and are said to be nested. These models are often referred to as hierarchical or multilevel.

In a nested model, with factor A at the “top,” the levels of factor B will differ within the levels of factor A. Consider
a study to compare NCAA conferences, with the conference as factor A, and schools are factor B, with different
schools being in the different conferences (although they are changing constantly).

11.1 Estimators and the Analysis of Variance
The factors can be fixed (all levels included), random (levels are sampled), or mixed (one factor fixed, the other
random). We will write out the general model, and whether effects are fixed or random should be clear from the
setting of the experiment. In the two-factor balanced design, factor A will have 𝑎 levels, within each level of A,
factor B will have 𝑏 levels, and there will be 𝑛 replicates within each of the 𝑎𝑏 treatments. The model is given here.

Factor A: 𝜇𝑖• = 𝜇•• + 𝛼𝑖 𝑖 = 1, … , 𝑎
Factor B within A: 𝜇𝑖𝑗 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗(𝑖) 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏

⇒ 𝛽𝑗(𝑖) = 𝜇𝑖𝑗 − (𝜇•• + 𝛼𝑖) = 𝜇𝑖𝑗 − 𝜇𝑖•

When A and B are both fixed factors, all levels of interest are included and {𝛼𝑖} and {𝛽𝑗(𝑖)} are all fixed (unknown)
parameters and we can use the following restrictions and model.

𝑎
∑
𝑖=1

𝛼𝑖 = 0
𝑏

∑
𝑗=1

𝛽𝑗(𝑖) = 0 𝑖 = 1, … , 𝑎

𝑌𝑖𝑗𝑘 = 𝜇•• + 𝛼𝑖 + 𝛽𝑗(𝑖) + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑛
𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2) 𝐸 {𝑌𝑖𝑗𝑘} = 𝜇•• + 𝛼𝑖 + 𝛽𝑗(𝑖) 𝜎2 {𝑌𝑖𝑗𝑘} = 𝜎2

When factor A is fixed and factor B is random, the model changes as follows.

𝑎
∑
𝑖=1

𝛼𝑖 = 0 𝛽𝑗(𝑖) ∼ 𝑁𝐼𝐷 (0, 𝜎2
𝛽) {𝛽𝑗(𝑖)} ⊥ {𝜖𝑖𝑗𝑘}

𝐸 {𝑌𝑖𝑗𝑘} = 𝜇•• + 𝛼𝑖 𝜎2 {𝑌𝑖𝑗𝑘} = 𝜎2
𝛽 + 𝜎2

𝜎 {𝑌𝑖𝑗𝑘, 𝑌𝑖′𝑗′𝑘′} =
⎧{
⎨{⎩

𝜎2
𝛽 + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 = 𝑘′

𝜎2
𝛽 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 ≠ 𝑘′

0 ∶ otherwise

133
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When factors A and B are both random, the model changes as follows.

𝛼𝑖 ∼ 𝑁𝐼𝐷 (0, 𝜎2
𝛼) 𝛽𝑗(𝑖) ∼ 𝑁𝐼𝐷 (0, 𝜎2

𝛽) {𝛼𝑖} ⊥ {𝛽𝑗(𝑖)} ⊥ {𝜖𝑖𝑗𝑘}

𝐸 {𝑌𝑖𝑗𝑘} = 𝜇•• 𝜎2 {𝑌𝑖𝑗𝑘} = 𝜎2
𝛼 + 𝜎2

𝛽 + 𝜎2

𝜎 {𝑌𝑖𝑗𝑘, 𝑌𝑖′𝑗′𝑘′} =
⎧{{
⎨{{⎩

𝜎2
𝛼 + 𝜎2

𝛽 + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 = 𝑘′

𝜎2
𝛼 + 𝜎2

𝛽 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 ≠ 𝑘′

𝜎2
𝛼 ∶ 𝑖 = 𝑖′, 𝑗 ≠ 𝑗′, ∀𝑘, 𝑘′

0 ∶ 𝑖 ≠ 𝑖′, ∀𝑗, 𝑗′, ∀𝑘, 𝑘′

Estimators, fitted values, residuals, sums of squares and expected mean squares are given below.

̂𝜇•• = 𝑌 ••• ̂𝛼𝑖 = 𝑌 𝑖•• − 𝑌 ••• ̂𝛽𝑗(𝑖) = 𝑌 𝑖𝑗• − 𝑌 𝑖••

̂𝑌𝑖𝑗𝑘 = ̂𝜇•• + ̂𝛼𝑖 + ̂𝛽𝑗(𝑖) = 𝑌 𝑖𝑗• 𝑒𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − ̂𝑌𝑖𝑗𝑘 = 𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•

Error: 𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑛
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗•)2 𝑑𝑓𝐸 = 𝑎𝑏(𝑛 − 1)

Factor A: 𝑆𝑆𝐴 = 𝑏𝑛
𝑎

∑
𝑖=1

(𝑌𝑖•• − 𝑌•••)2 𝑑𝑓𝐴 = 𝑎 − 1

Factor B within A: 𝑆𝑆𝐵(𝐴) = 𝑛
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌𝑖𝑗• − 𝑌𝑖••)2 𝑑𝑓𝐵(𝐴) = 𝑎(𝑏 − 1)

The expected mean squares depend on whether the factors are fixed or random. In all cases, 𝐸{𝑀𝑆𝐸} = 𝜎2. When
both A and B are fixed, we obtain the following results.

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑏𝑛 ∑𝑎
𝑖=1 𝛼2

𝑖
𝑎 − 1 𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 +

𝑛 ∑𝑎
𝑖=1 ∑𝑏

𝑗=1 𝛽2
𝑗(𝑖)

𝑎(𝑏 − 1)

The denominator for the 𝐹 -tests for factors A and B in the fixed case is 𝑀𝑆𝐸.

When factor A is fixed and factor B is random, the following expected mean squares are obtained.

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼) + 𝑏𝑛 ∑𝑎

𝑖=1 𝛼2
𝑖

𝑎 − 1 𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼)

In this mixed case, the error term for factor B is 𝑀𝑆𝐸, but the error term for factor A is 𝑀𝑆𝐵(𝐴) due to the
covariance structure.

When factors A and B are both random, we obtain the following expected mean squares.

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑛𝜎2
𝛽 + 𝑏𝑛𝜎2

𝛼 𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼)

The error terms are the same in the random effects case are the same as in the mixed effects case. Variance
components can be estimated as in the previous chapter.
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11.2 Tests, Contrasts, and Pairwise Comparisons
When both factors are fixed, 𝑀𝑆𝐸 is an unbiased estimator of 𝜎2 {𝑌𝑖𝑗𝑘} and we can make estimate contrasts among
levels of factor A and B within A.

First, we can test for effects among the levels of factor A.

𝐻𝐴
0 ∶ 𝛼1 = ⋯ = 𝛼𝑎 = 0 𝑇 𝑆 ∶ 𝐹 ∗

𝐴 = 𝑀𝑆𝐴
𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗

𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎𝑏(𝑛−1)

The estimators of the population means for levels of factor A and their properties are given below.

𝐸 {𝑌 𝑖••} = 𝜇𝑖 = 𝜇•• + 𝛼𝑖 𝜎2 {𝑌 𝑖••} = 𝜎2

𝑏𝑛 𝑠2 {𝑌 𝑖••} = 𝑀𝑆𝐸
𝑏𝑛

Any contrast among the levels of factor A can be written as follows, with ∑𝑎
𝑖=1 𝑐𝑖 = 0.

𝐿𝐴 =
𝑎

∑
𝑖=1

𝑐𝑖𝜇𝑖 𝐿̂𝐴 =
𝑎

∑
𝑖=1

𝑐𝑖𝑌 𝑖•• 𝑠2 {𝐿̂𝐴} = 𝑀𝑆𝐸
𝑏𝑛

𝑎
∑
𝑖=1

𝑐2
𝑖

(1 − 𝛼)100% Confidence Interval for 𝐿𝐴 ∶ 𝐿̂𝐴 ± 𝑡1−𝛼/2;𝑎𝑏(𝑛−1)√
𝑀𝑆𝐸

𝑏𝑛
𝑎

∑
𝑖=1

𝑐2
𝑖

Tukey’s: 𝐻𝑆𝐷 = 𝑞1−𝛼;𝑎,𝑎𝑏(𝑛−1)√
𝑀𝑆𝐸

𝑏𝑛 Simultaneous CI’s: (𝑌 𝑖•• − 𝑌 𝑖′••) ± 𝐻𝑆𝐷

Next, consider inference for factor B when both factors are fixed.

𝐻𝐵
0 (𝐴) ∶ 𝛽1(1) = ⋯ = 𝛽𝑏(𝑎) = 0 𝑇 𝑆 ∶ 𝐹 ∗

𝐵(𝐴) = 𝑀𝑆𝐵(𝐴)
𝑀𝑆𝐸

𝑅𝑅 ∶ 𝐹 ∗
𝐵(𝐴) ≥ 𝐹1−𝛼;𝑎(𝑏−1),𝑎𝑏(𝑛−1)

𝐸 {𝑌 𝑖𝑗•} = 𝜇•• + 𝛼𝑖 + 𝛽𝑗(𝑖) 𝜎2 {𝑌 𝑖𝑗•} = 𝜎2

𝑛 𝑠2 {𝑌 𝑖𝑗•} = 𝑀𝑆𝐸
𝑛

Tukey’s method can be applied to compare the 𝑏 means within each level of factor A as well.

𝐻𝑆𝐷𝐵 = 𝑞1−𝛼;𝑏,𝑎𝑏(𝑛−1)√
𝑀𝑆𝐸

𝑛 Simultaneous CI’s: (𝑌 𝑖𝑗• − 𝑌 𝑖𝑗′•) ± 𝐻𝑆𝐷𝐵

Example 11.1 - Determination of Alcohol Content in Liquor A study was conducted to measure alcohol
content in 3 types of spirits [Oliveira et al., 2017]. The researchers bought 3 brands each of Vodka, Whisky, and
Cachaca. Factor A with 𝑎 = 3 is the spirit type (Vodka, Whisky, Cachaca). The brands are nested within the spirit
types with 𝑏 = 3. Each of the brands (𝑎𝑏 = 3(3) = 9) was measured 𝑛 = 24 times. The response is 𝑌 , the difference
between the measured alcohol content and the content provided on the bottle’s label. We will treat both factors as
fixed in this analysis. Note that the TukeyHSD function does not work well with the nested (brand) factor.

## spiritType brandSprt labelAC alcCntnt
## 1 1 1 37.5 36.81
## 2 1 1 37.5 36.43
## 3 1 1 37.5 37.02
## 4 1 1 37.5 37.38
## 5 1 1 37.5 36.70
## 6 1 1 37.5 36.97
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## spiritType brandSprt labelAC alcCntnt
## 211 3 9 39 38.89
## 212 3 9 39 38.78
## 213 3 9 39 38.41
## 214 3 9 39 39.27
## 215 3 9 39 39.03
## 216 3 9 39 38.94

1.0 1.5 2.0 2.5 3.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

sac$spiritType

sa
c$

Y

## df SS MS F* F(.95) P(>F*) eta^2 Part eta^2
## Type 2 3.1967 1.5983 13.2669 3.0395 0 0.0992 0.1136
## Brand(Type) 6 4.0872 0.6812 5.6543 2.1426 0 0.1268 0.1408
## Error 207 24.9385 0.1205 NA NA NA NA NA
## Total 215 32.2224 NA NA NA NA NA NA

## i i' Ybar_i Ybar_i' Diff LB UB p adj
## [1,] 2 1 -0.3062 -0.3037 -0.0025 -0.1391 0.1341 0.999
## [2,] 3 1 -0.0469 -0.3037 0.2568 0.1202 0.3934 0.000
## [3,] 3 2 -0.0469 -0.3062 0.2593 0.1227 0.3959 0.000

## i j j' Ybar_j(i) Ybar_j'(i) Diff LB UB p adj
## [1,] 1 2 1 -0.2400 -0.4308 0.1908 -0.0457 0.4274 0.1399
## [2,] 1 3 1 -0.2404 -0.4308 0.1904 -0.0461 0.4270 0.1411
## [3,] 1 3 2 -0.2404 -0.2400 -0.0004 -0.2370 0.2361 1.0000
## [4,] 2 5 4 -0.1388 -0.5892 0.4504 0.2139 0.6870 0.0000
## [5,] 2 6 4 -0.1908 -0.5892 0.3983 0.1618 0.6349 0.0003
## [6,] 2 6 5 -0.1908 -0.1388 -0.0521 -0.2886 0.1845 0.8618
## [7,] 3 8 7 0.0792 -0.0900 0.1692 -0.0674 0.4057 0.2121
## [8,] 3 9 7 -0.1300 -0.0900 -0.0400 -0.2765 0.1965 0.9159
## [9,] 3 9 8 -0.1300 0.0792 -0.2092 -0.4457 0.0274 0.0949

## Analysis of Variance Table
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##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## spiritType.f 2 3.1967 1.59834 13.2669 3.791e-06 ***
## spiritType.f:brandSprt.f 6 4.0872 0.68120 5.6543 1.850e-05 ***
## Residuals 207 24.9385 0.12048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ spiritType.f + spiritType.f/brandSprt.f, data = sac)
##
## $spiritType.f
## diff lwr upr p adj
## 2-1 -0.0025000 -0.1390648 0.1340648 0.9989709
## 3-1 0.2568056 0.1202407 0.3933704 0.0000435
## 3-2 0.2593056 0.1227407 0.3958704 0.0000362

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 (partial) | 95% CI
## --------------------------------------------------------
## spiritType.f | 0.11 | [0.05, 1.00]
## spiritType.f:brandSprt.f | 0.14 | [0.06, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 | 95% CI
## ----------------------------------------------
## spiritType.f | 0.10 | [0.04, 1.00]
## spiritType.f:brandSprt.f | 0.13 | [0.05, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

There is evidence for differences among the 𝑎 = 3 types of spirits. The differences between measured and reported
proofs are significantly higher for Cachaca (𝑖 = 3) than for Whisky (𝑖 = 2) and for Vodka (𝑖 = 1).
There are also differences among brands within spirits types. In particular, brands 5 and 6 (within Whisky) are
significantly higher than brand 4.

∇
When factor A is fixed and B is random, we would like to compare the levels of factor A, and estimate the variance
for factor B. The error therm for factor A is now 𝑀𝑆𝐵(𝐴) as opposed to 𝑀𝑆𝐸.

𝐻𝐴
0 ∶ 𝛼1 = ⋯ = 𝛼𝑎 = 0 𝑇 𝑆 ∶ 𝐹 ∗

𝐴 = 𝑀𝑆𝐴
𝑀𝑆𝐵(𝐴) 𝑅𝑅 ∶ 𝐹 ∗

𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎(𝑏−1)

The estimators of the population means for levels of factor A and their properties are given below.

𝐸 {𝑌 𝑖••} = 𝜇𝑖 = 𝜇•• + 𝛼𝑖 𝜎2 {𝑌 𝑖••} =
𝜎2 + 𝜎2

𝛽(𝛼)
𝑏𝑛 𝑠2 {𝑌 𝑖••} = 𝑀𝑆𝐵(𝐴)

𝑏𝑛

For Tukey’s method, relative to the fixed effects case, we replace 𝑀𝑆𝐸 with 𝑀𝑆𝐵(𝐴) and adjust the degrees of
freedom.
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𝐻𝑆𝐷 = 𝑞1−𝛼;𝑎,𝑎(𝑏−1)√
𝑀𝑆𝐵(𝐴)

𝑏𝑛

(1 − 𝛼)100% CI for 𝛼𝑖 − 𝛼𝑖′ ∶ (𝑌 𝑖•• − 𝑌 𝑖′••) ± 𝐻𝑆𝐷

A point estimate for the variance among the levels of factor A and its corresponding approximate Confidence Interval
based on Satterthwaite’s approximation are given below. First, we test whether the variance component for factor
B is 0.

𝐻𝐵(𝐴)
0 ∶ 𝜎2

𝛽(𝛼) = 0 𝑇 𝑆 ∶ 𝐹 ∗
𝐵(𝐴) = 𝑀𝑆𝐵(𝐴)

𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗
𝐵(𝐴) ≥ 𝐹1−𝛼;𝑎(𝑏−1),𝑎𝑏(𝑛−1)

𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼) 𝐸{𝑀𝑆𝐸} = 𝜎2 ⇒ 𝑠2

𝛽(𝛼) = 𝑀𝑆𝐵(𝐴) − 𝑀𝑆𝐸
𝑛

𝑑𝑓𝛽(𝛼) =
(𝑠2

𝛽(𝛼))
2

[ ( 1
𝑛 𝑀𝑆𝐵(𝐴))2

𝑎(𝑏−1) + (− 1
𝑛 𝑀𝑆𝐸)2

𝑎𝑏(𝑛−1) ]

Approximate (1 − 𝛼)100% CI for 𝜎2
𝛽(𝛼) ∶ [

𝑑𝑓𝛽(𝛼)𝑠2
𝛽(𝛼)

𝜒2
1−𝛼/2;𝑑𝑓𝛽(𝛼)

,
𝑑𝑓𝛽(𝛼)𝑠2

𝛽(𝛼)
𝜒2

𝛼/2;𝑑𝑓𝛽(𝛼)

]

Example 11.2 - Momentum of Animal Traps A study compared 𝑎 = 8 models of animal traps in terms of
momentum [Cook and Proulx, 1989]. Within each model, 𝑏 = 3 traps were built. Each trap was measured 𝑛 = 10
times. We will treat the models as a fixed factor, and the traps within models as a random factor (any number
could have been assembled for each model). The response measured was the momentum at HDISP (when both
jaws displayed half way). The response has been multiplied by 100 to avoid small variance estimates.

## trapGrp model trapModel momentum
## 1 1 1 11 0.51423
## 2 1 1 11 0.53202
## 3 1 1 11 0.51550
## 4 1 1 11 0.46825
## 5 1 1 11 0.48496
## 6 1 1 11 0.51743

## trapGrp model trapModel momentum
## 235 24 8 83 0.92003
## 236 24 8 83 0.91039
## 237 24 8 83 0.95544
## 238 24 8 83 0.84232
## 239 24 8 83 0.92145
## 240 24 8 83 0.87547
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1 2 3 4 5 6 7 8

50
60

70
80

90

at$model

at
$Y

## df SS MS F* F(.95) P(>F*) eta^2 Part eta^2
## Model 7 35845.161 5120.7372 493.3742 2.0522 0 0.9013 0.9411
## Trap(Model) 16 1684.028 105.2518 10.1408 1.6905 0 0.0423 0.4290
## Error 216 2241.867 10.3790 NA NA NA NA NA
## Total 239 39771.056 NA NA NA NA NA NA

## i i' Ybar_i Ybar_i' Diff LB UB p adj
## [1,] 2 1 55.8800 53.8400 2.0400 -7.1310 11.2110 0.2220
## [2,] 3 1 59.1267 53.8400 5.2866 -3.8843 14.4576 0.0000
## [3,] 3 2 59.1267 55.8800 3.2466 -5.9243 12.4176 0.0031
## [4,] 4 1 68.8299 53.8400 14.9899 5.8189 24.1609 0.0000
## [5,] 4 2 68.8299 55.8800 12.9499 3.7789 22.1209 0.0000
## [6,] 4 3 68.8299 59.1267 9.7033 0.5323 18.8742 0.0000
## [7,] 5 1 77.1966 53.8400 23.3566 14.1856 32.5276 0.0000
## [8,] 5 2 77.1966 55.8800 21.3166 12.1456 30.4876 0.0000
## [9,] 5 3 77.1966 59.1267 18.0700 8.8990 27.2409 0.0000
## [10,] 5 4 77.1966 68.8299 8.3667 -0.8043 17.5377 0.0000
## [11,] 6 1 81.1433 53.8400 27.3033 18.1323 36.4742 0.0000
## [12,] 6 2 81.1433 55.8800 25.2633 16.0923 34.4342 0.0000
## [13,] 6 3 81.1433 59.1267 22.0166 12.8457 31.1876 0.0000
## [14,] 6 4 81.1433 68.8299 12.3134 3.1424 21.4843 0.0000
## [15,] 6 5 81.1433 77.1966 3.9467 -5.2243 13.1176 0.0001
## [16,] 7 1 82.5467 53.8400 28.7066 19.5357 37.8776 0.0000
## [17,] 7 2 82.5467 55.8800 26.6666 17.4957 35.8376 0.0000
## [18,] 7 3 82.5467 59.1267 23.4200 14.2490 32.5910 0.0000
## [19,] 7 4 82.5467 68.8299 13.7167 4.5458 22.8877 0.0000
## [20,] 7 5 82.5467 77.1966 5.3500 -3.8209 14.5210 0.0000
## [21,] 7 6 82.5467 81.1433 1.4034 -7.7676 10.5743 0.6956
## [22,] 8 1 86.8833 53.8400 33.0433 23.8723 42.2143 0.0000
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## [23,] 8 2 86.8833 55.8800 31.0033 21.8323 40.1743 0.0000
## [24,] 8 3 86.8833 59.1267 27.7567 18.5857 36.9276 0.0000
## [25,] 8 4 86.8833 68.8299 18.0534 8.8824 27.2244 0.0000
## [26,] 8 5 86.8833 77.1966 9.6867 0.5157 18.8577 0.0000
## [27,] 8 6 86.8833 81.1433 5.7400 -3.4309 14.9110 0.0000
## [28,] 8 7 86.8833 82.5467 4.3367 -4.8343 13.5076 0.0000

## df s^2 LB UB
## Trap(Model) 12.9907 9.4873 4.9852 24.6343
## Error 216.0000 10.3790 8.6693 12.6524

## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## model.f 7 35845 5120.7 493.374 < 2.2e-16 ***
## model.f:trapModel.f 16 1684 105.3 10.141 < 2.2e-16 ***
## Residuals 216 2242 10.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ model.f + model.f/trapModel.f, data = at)
##
## $model.f
## diff lwr upr p adj
## 2-1 2.040000 -0.5061298 4.586130 0.2219660
## 3-1 5.286633 2.7405035 7.832763 0.0000000
## 4-1 14.989900 12.4437702 17.536030 0.0000000
## 5-1 23.356600 20.8104702 25.902730 0.0000000
## 6-1 27.303267 24.7571369 29.849396 0.0000000
## 7-1 28.706633 26.1605035 31.252763 0.0000000
## 8-1 33.043300 30.4971702 35.589430 0.0000000
## 3-2 3.246633 0.7005035 5.792763 0.0031454
## 4-2 12.949900 10.4037702 15.496030 0.0000000
## 5-2 21.316600 18.7704702 23.862730 0.0000000
## 6-2 25.263267 22.7171369 27.809396 0.0000000
## 7-2 26.666633 24.1205035 29.212763 0.0000000
## 8-2 31.003300 28.4571702 33.549430 0.0000000
## 4-3 9.703267 7.1571369 12.249396 0.0000000
## 5-3 18.069967 15.5238369 20.616096 0.0000000
## 6-3 22.016633 19.4705035 24.562763 0.0000000
## 7-3 23.420000 20.8738702 25.966130 0.0000000
## 8-3 27.756667 25.2105369 30.302796 0.0000000
## 5-4 8.366700 5.8205702 10.912830 0.0000000
## 6-4 12.313367 9.7672369 14.859496 0.0000000
## 7-4 13.716733 11.1706035 16.262863 0.0000000
## 8-4 18.053400 15.5072702 20.599530 0.0000000
## 6-5 3.946667 1.4005369 6.492796 0.0001021
## 7-5 5.350033 2.8039035 7.896163 0.0000000
## 8-5 9.686700 7.1405702 12.232830 0.0000000
## 7-6 1.403367 -1.1427631 3.949496 0.6956345
## 8-6 5.740033 3.1939035 8.286163 0.0000000
## 8-7 4.336667 1.7905369 6.882796 0.0000119

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [



11.2. TESTS, CONTRASTS, AND PAIRWISE COMPARISONS 141

## lmerModLmerTest]
## Formula: Y ~ model.f + (1 | model.f:trapModel.f)
## Data: at
##
## REML criterion at convergence: 1269.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.92671 -0.74501 -0.08267 0.72379 2.48273
##
## Random effects:
## Groups Name Variance Std.Dev.
## model.f:trapModel.f (Intercept) 9.487 3.080
## Residual 10.379 3.222
## Number of obs: 240, groups: model.f:trapModel.f, 24
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 70.6808 0.6622 16.0000 106.731 < 2e-16 ***
## model.f1 -16.8408 1.7521 16.0000 -9.612 4.75e-08 ***
## model.f2 -14.8008 1.7521 16.0000 -8.447 2.72e-07 ***
## model.f3 -11.5542 1.7521 16.0000 -6.594 6.17e-06 ***
## model.f4 -1.8509 1.7521 16.0000 -1.056 0.30648
## model.f5 6.5158 1.7521 16.0000 3.719 0.00187 **
## model.f6 10.4625 1.7521 16.0000 5.971 1.96e-05 ***
## model.f7 11.8658 1.7521 16.0000 6.772 4.48e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mdl.f1 mdl.f2 mdl.f3 mdl.f4 mdl.f5 mdl.f6
## model.f1 0.000
## model.f2 0.000 -0.143
## model.f3 0.000 -0.143 -0.143
## model.f4 0.000 -0.143 -0.143 -0.143
## model.f5 0.000 -0.143 -0.143 -0.143 -0.143
## model.f6 0.000 -0.143 -0.143 -0.143 -0.143 -0.143
## model.f7 0.000 -0.143 -0.143 -0.143 -0.143 -0.143 -0.143

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## model.f 3534.7 504.96 7 16 48.652 1.319e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

There are many differences among the 28 pairs of trap models. Also, within models there is relatively high variation
among the individual traps.

∇

When factors A and B are both random, we are generally interested in estimating their variance components and
testing whether they are 0.

𝐻𝐴
0 ∶ 𝜎2

𝛼 = 0 𝑇 𝑆 ∶ 𝐹 ∗
𝐴 = 𝑀𝑆𝐴

𝑀𝑆𝐵(𝐴) 𝑅𝑅 ∶ 𝐹 ∗
𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎(𝑏−1)

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼) + 𝑏𝑛𝜎2

𝛼 𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 + 𝑛𝜎2
𝛽(𝛼)
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𝑠2
𝛼 = 𝑀𝑆𝐴 − 𝑀𝑆𝐵(𝐴)

𝑏𝑛 𝑑𝑓𝛼 = (𝑠2
𝛼)2

[ ( 1
𝑏𝑛 𝑀𝑆𝐴)2

𝑎−1 + (− 1
𝑏𝑛 𝑀𝑆𝐵(𝐴))2

𝑎(𝑏−1) ]

Approximate (1 − 𝛼)100% CI for 𝜎2
𝛼 ∶ [ 𝑑𝑓𝛼𝑠2

𝛼
𝜒2

1−𝛼/2;𝑑𝑓𝛼

, 𝑑𝑓𝛼𝑠2
𝛼

𝜒2
𝛼/2;𝑑𝑓𝛼

]

The test and Confidence Interval for 𝜎2
𝛽(𝛼) are the same for the random effects model as for the mixed effects model.

Example 11.3 - Measurements on Semiconductor Wafers An instructional paper described making measure-
ments on semiconducter wafers [Jensen, 2002]. There were 𝑎 = 20 lots (batches) sampled, within each lot, there
were 𝑏 = 2 wafers sampled, and each wafer was measured at 𝑛 = 9 locations (replicates). The response variable was
not given for proprietary reasons. In this example, we treat lot and wafer(lot) as random factors. There are two
wafer variables, wafer1 takes on the values 1 and 2 within each lot, wafer2 gives each wafer a unique value (1-40)
and is less risky of creating an error in computing.

## lotNum wafer1 wafer2 repNum Y
## 1 1 1 1 1 181.247
## 2 1 1 1 2 181.280
## 3 1 1 1 3 185.021
## 4 1 1 1 4 180.144
## 5 1 1 1 5 192.570
## 6 1 1 1 6 178.741

## lotNum wafer1 wafer2 repNum Y
## 355 20 2 40 4 161.783
## 356 20 2 40 5 160.013
## 357 20 2 40 6 160.981
## 358 20 2 40 7 162.384
## 359 20 2 40 8 163.720
## 360 20 2 40 9 161.716
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scq$lotNum

sc
q$

Y

## df SS MS F* F(.95) P(>F*) eta^2 Part eta^2
## Lot 19 14050.871 739.5195 7.5475 2.1370 0 0.6358 0.6976
## Wafer(Lot) 20 1959.633 97.9817 5.1488 1.6035 0 0.0887 0.2435
## Error 320 6089.584 19.0299 NA NA NA NA NA
## Total 359 22100.088 NA NA NA NA NA NA

## df s^2 LB UB
## Lot 14.0642 35.6410 19.1268 88.4214
## Wafer(Lot) 12.9551 8.7724 4.6061 22.8150
## Error 320.0000 19.0299 16.3941 22.3605

## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## lotNum.f 19 14050.9 739.52 38.8608 < 2.2e-16 ***
## lotNum.f:wafer2.f 20 1959.6 97.98 5.1488 3.708e-11 ***
## Residuals 320 6089.6 19.03
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Y ~ 1 + (1 | lotNum.f) + (1 | lotNum.f:wafer2.f)
## Data: scq
##
## REML criterion at convergence: 2184.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
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## -2.2897 -0.5826 -0.1729 0.4287 3.7529
##
## Random effects:
## Groups Name Variance Std.Dev.
## lotNum.f:wafer2.f (Intercept) 8.772 2.962
## lotNum.f (Intercept) 35.641 5.970
## Residual 19.030 4.362
## Number of obs: 360, groups: lotNum.f:wafer2.f, 40; lotNum.f, 20
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 174.342 1.433 19.000 121.6 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The largest source of variation is among lots (𝑠2
𝛼 = 35.64), followed by error (within wafer) (𝑠2 = 19.03), followed

by between wafers within lots (𝑠2
𝛽(𝛼) = 8.77).

∇

11.3 Repeated Measures Design
In this section we cover a second type of repeated measures design where subjects are randomized to treatments as
in the Completely Randomized Design, then are measured at multiple time points. Recall in the chapter on block
designs, there was a repeated measures design where each subject (block) received each treatment. In this case,
each subject receives only one of the treatments.

Note that the notation used here is not the same as Kutner, et al.

11.3.1 Model Structure
The elements are described below for the case with a single treatment factor (it can be extended to multiple factors)
and a balanced design.

• Treatments - The primary factor of interest, with 𝑎 (fixed) levels.
• Subjects - Individuals included in the experiment 𝑏 (random) units per treatment.
• Time Points - When the measurements are obtained on each subject, with 𝑐 (fixed) time points per individual.

We will use 𝑖 to represent treatment, 𝑗 represent the subject within treatment and 𝑘 to represent time point. The
model is given below.

𝑌𝑖𝑗𝑘 = 𝜇••• + 𝛼𝑖 + 𝛽𝑗(𝑖) + 𝛾𝑘 + (𝛼𝛾)𝑖𝑘 + 𝜖𝑖𝑗𝑘 𝑖 = 1, … , 𝑎; 𝑗 = 1, … , 𝑏; 𝑘 = 1, … , 𝑐

𝑎
∑
𝑖=1

𝛼𝑖 =
𝑐

∑
𝑘=1

𝛾𝑘 =
𝑎

∑
𝑖=1

(𝛼𝛾)𝑖𝑘 =
𝑐

∑
𝑘=1

(𝛼𝛾)𝑖𝑘 = 0

𝛽𝑗(𝑖) ∼ 𝑁𝐼𝐷 (0, 𝜎2
𝛽(𝛼)) 𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2) {𝛽𝑗(𝑖)} ⊥ {𝜖𝑖𝑗𝑘}

𝐸 {𝑌𝑖𝑗𝑘} = 𝜇••• + 𝛼𝑖 + 𝛾𝑘 + (𝛼𝛾)𝑖𝑘 𝜎2 {𝑌𝑖𝑗𝑘} = 𝜎2
𝛽(𝛼) + 𝜎2

𝜎 {𝑌𝑖𝑗𝑘, 𝑌𝑖′𝑗′𝑘′} =
⎧{
⎨{⎩

𝜎2
𝛽(𝛼) + 𝜎2 ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 = 𝑘′

𝜎2
𝛽(𝛼) ∶ 𝑖 = 𝑖′, 𝑗 = 𝑗′, 𝑘 ≠ 𝑘′

0 ∶ otherwise
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The variance-covariance within subjects has 𝜎2
𝛽(𝛼) + 𝜎2 on the main diagonal and 𝜎2

𝛽(𝛼) on the off diagonals. In
practice, particularly when there are many time points, this structure is too simple and a more complex structure
can be fit.

𝜎
⎧{
⎨{⎩

⎡
⎢⎢
⎣

𝑌𝑖𝑗1
𝑌𝑖𝑗2

⋮
𝑌𝑖𝑗𝑐

⎤
⎥⎥
⎦

⎫}
⎬}⎭

=
⎡
⎢
⎢
⎣

𝜎2
𝛽(𝛼) + 𝜎2 𝜎2

𝛽(𝛼) ⋯ 𝜎2
𝛽(𝛼)

𝜎2
𝛽(𝛼) 𝜎2

𝛽(𝛼) + 𝜎2 ⋯ 𝜎2
𝛽(𝛼)

⋮ ⋮ ⋱ ⋮
𝜎2

𝛽(𝛼) 𝜎2
𝛽(𝛼) ⋯ 𝜎2

𝛽(𝛼) + 𝜎2

⎤
⎥
⎥
⎦

11.3.2 Analysis of Variance and 𝐹 -tests
For the various factors, we have he following sums of squares, degrees of freedom, and expected mean squares.

Treatments: 𝑆𝑆𝐴 = 𝑏𝑐
𝑎

∑
𝑖=1

(𝑌 𝑖•• − 𝑌 ••𝑏𝑢𝑙𝑙𝑒𝑡)
2 𝑑𝑓𝐴 = 𝑎 − 1

𝐸{𝑀𝑆𝐴} = 𝜎2 + 𝑐𝜎2
𝛽(𝛼) + 𝑏𝑐 ∑𝑎

𝑖=1 𝛼2
𝑖

𝑎 − 1

Subjects(Trts): 𝑆𝑆𝐵(𝐴) = 𝑐
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

(𝑌 𝑖𝑗• − 𝑌 𝑖••)2 𝑑𝑓𝐵(𝐴) = 𝑎(𝑏 − 1)

𝐸{𝑀𝑆𝐵(𝐴)} = 𝜎2 + 𝑐𝜎2
𝛽(𝛼)

Time: 𝑆𝑆𝐶 = 𝑎𝑏
𝑐

∑
𝑘=1

(𝑌 ••𝑘 − 𝑌 •••)2 𝑑𝑓𝐶 = 𝑐 − 1

𝐸{𝑀𝑆𝐶} = 𝜎2 + 𝑎𝑏 ∑𝑐
𝑘=1 𝛾2

𝑘
𝑐 − 1

TreatmentxTime: 𝑆𝑆𝐴𝐶 = 𝑏
𝑎

∑
𝑖=1

𝑐
∑
𝑘=1

(𝑌 𝑖•𝑘 − 𝑌 𝑖•• − 𝑌 ••𝑘 + 𝑌 •••)2

𝑑𝑓𝐴𝐶 = (𝑎 − 1)(𝑐 − 1) 𝐸{𝑀𝑆𝐴𝐶} = 𝜎2 + 𝑏 ∑𝑎
𝑖=1 ∑𝑐

𝑘=1(𝛼𝛾)2
𝑖𝑘

(𝑎 − 1)(𝑐 − 1)

The error sum of squares represents the Subject(Treatment)xTime interaction and has expectation 𝐸{𝑀𝑆𝐸} = 𝜎2.

𝑆𝑆𝐸 =
𝑎

∑
𝑖=1

𝑏
∑
𝑗=1

𝑐
∑
𝑘=1

(𝑌𝑖𝑗𝑘 − 𝑌 𝑖𝑗• − 𝑌 𝑖•𝑘 + 𝑌 𝑖••)2 𝑑𝑓𝐸 = 𝑎(𝑏 − 1)(𝑐 − 1)

To test for treatment effects, compare 𝑀𝑆𝐴 to 𝑀𝑆𝐵(𝐴). To test for Time effects and TimexTreatment interaction,
compare their mean squares to 𝑀𝑆𝐸.

𝐻𝐴
0 ∶ 𝛼1 = ⋯ = 𝛼𝑎 𝑇 𝑆 ∶ 𝐹 ∗

𝐴 = 𝑀𝑆𝐴
𝑀𝑆𝐵(𝐴) 𝑅𝑅 ∶ 𝐹 ∗

𝐴 ≥ 𝐹1−𝛼;𝑎−1,𝑎(𝑏−1)

𝐻𝐶
0 ∶ 𝛾1 = ⋯ = 𝛾𝑘 = 0 𝑇 𝑆 ∶ 𝐹 ∗

𝐶 = 𝑀𝑆𝐶
𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗

𝐶 ≥ 𝐹1−𝛼;𝑐−1,𝑎(𝑏−1)(𝑐−1)

𝐻𝐴𝐶
0 ∶ (𝛼𝛾)11 = ⋯ = (𝛼𝛾)𝑎𝑐 = 0 𝑇 𝑆 ∶ 𝐹 ∗

𝐴𝐶 = 𝑀𝑆𝐴𝐶
𝑀𝑆𝐸 𝑅𝑅 ∶ 𝐹 ∗

𝐴𝐶 ≥ 𝐹1−𝛼;(𝑎−1)(𝑐−1),𝑎(𝑏−1)(𝑐−1)

Depending on whether the TreatmentxTime interaction is important, treatments can be compared within time
points (interaction important) or marginally (interaction unimportant).
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11.3.3 Treatment Comparisons
First, consider the case where the interaction is not important, when the “time effect” is consistent across treatments.
Then we can use Tukey’s method for comparing all pairs of treatments, keeping in mind that for treatments,
𝑀𝑆𝐵(𝐴) is the error term.

𝐻𝑆𝐷 = 𝑞1−𝛼;𝑎,𝑎(𝑏−1)√
𝑀𝑆𝐵(𝐴)

𝑏𝑐

(1 − 𝛼)100% CI for 𝛼𝑖 − 𝛼𝑖′ ∶ (𝑌 𝑖•• − 𝑌 𝑖••) ± 𝐻𝑆𝐷

When the TreatmentxTime interaction is important, we may wish to compare the treatments within the time
periods. This involves taking the standard error for the difference between means within the time periods as a
linear function of 𝑀𝑆𝐵(𝐴) and 𝑀𝑆𝐸 and using Satterthwaite’s approximation for the degrees of freedom.

𝜎2 {𝑌 𝑖•𝑘 − 𝑌 𝑖′•𝑘} =
2 (𝜎2 + 𝜎2

𝛽(𝛼))
𝑏 𝐸{𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸} = 𝑐 (𝜎2 + 𝜎2

𝛽(𝛼))

So if we divide 𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸 by 𝑏𝑐 and multiply by 2, this has expectation equal to the variance of the
mean difference.

𝑠2 {𝑌 𝑖•𝑘 − 𝑌 𝑖′•𝑘} = 2 (𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸)
𝑏𝑐

𝑑𝑓∗ = (𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸)2

[ (𝑀𝑆𝐵(𝐴))2

𝑎(𝑏−1) + ((𝑐−1)𝑀𝑆𝐸)2

𝑎(𝑏−1)(𝑐−1) ]

Then we can use Tukey’s method to compare all pairs of treatments within specific time points.

𝐻𝑆𝐷𝑘 = 𝑞1−𝛼;𝑎,𝑑𝑓∗√𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸
𝑏𝑐

(1 − 𝛼)100% Confidence Intervals: (𝑌 𝑖•𝑘 − 𝑌 𝑖′•𝑘) ± 𝐻𝑆𝐷𝑘

Example 11.4 - Treating Cats with Anxiety A study was conducted to test a drug zylkene versus placebo
in cats with anxiety [Beata et al., 2007]. There were 𝑎 = 2 treatments (zylkene 𝑖 = 1 and placebo 𝑖 = 2), with
𝑏 = 17 cats randomized to each treatment (34 total) and each cat was observed at each of 𝑐 = 5 time points. The
response was a clinical globel impression (higher scores mean less anxiety and are better). R code and output are
given below.

## id weight age gender trt timepnt y
## 1 2 4.0 67 1 0 1 9
## 2 2 4.0 67 1 0 2 9
## 3 2 4.0 67 1 0 3 9
## 4 2 4.0 67 1 0 4 9
## 5 2 4.0 67 1 0 5 9
## 6 4 3.5 78 2 0 1 9

## id weight age gender trt timepnt y
## 165 31 3.1 90 1 1 5 23
## 166 32 4.0 56 1 1 1 8
## 167 32 4.0 56 1 1 2 11
## 168 32 4.0 56 1 1 3 13
## 169 32 4.0 56 1 1 4 14
## 170 32 4.0 56 1 1 5 17
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## df SS MS F* F(.95) P(>F*) eta^2
## Drug 1 382.5000 382.5000 5.7412 4.1491 0.0226 0.1167
## Cat(Drug) 32 2131.9765 66.6243 21.9512 1.5341 0.0000 0.6505
## Time 4 324.1176 81.0294 26.6974 2.4425 0.0000 0.0989
## DrugxTime 4 50.5882 12.6471 4.1669 2.4425 0.0033 0.0154
## Error 128 388.4941 3.0351 NA NA NA NA
## Total 169 3277.6765 NA NA NA NA NA

## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## trt.f 1 382.50 382.50 126.0251 < 2.2e-16 ***
## timepnt.f 4 324.12 81.03 26.6974 4.137e-16 ***
## trt.f:id1.f 32 2131.98 66.62 21.9512 < 2.2e-16 ***
## trt.f:timepnt.f 4 50.59 12.65 4.1669 0.003316 **
## Residuals 128 388.49 3.04
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Error: id1.f
## Df Sum Sq Mean Sq F value Pr(>F)
## trt.f 1 382.5 382.5 5.741 0.0226 *
## Residuals 32 2132.0 66.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## timepnt.f 4 324.1 81.03 26.697 4.14e-16 ***
## trt.f:timepnt.f 4 50.6 12.65 4.167 0.00332 **
## Residuals 128 388.5 3.04
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 (partial) | 95% CI
## -----------------------------------------------
## trt.f | 0.50 | [0.40, 1.00]
## timepnt.f | 0.45 | [0.34, 1.00]
## trt.f:id1.f | 0.85 | [0.80, 1.00]
## trt.f:timepnt.f | 0.12 | [0.03, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

## # Effect Size for ANOVA (Type I)
##
## Parameter | Eta2 | 95% CI
## -------------------------------------
## trt.f | 0.12 | [0.04, 1.00]
## timepnt.f | 0.10 | [0.02, 1.00]
## trt.f:id1.f | 0.65 | [0.53, 1.00]
## trt.f:timepnt.f | 0.02 | [0.00, 1.00]
##
## - One-sided CIs: upper bound fixed at [1.00].

Based on the ANOVA model, fit based on the formulas described in this section, we observe a significant interaction
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between Treatment and Time (𝐹 ∗
𝐴𝐶 = 4.167, 𝑃 = .0033), as well as significant main effects for Treatment and Time.

Here, we will compare the two treatments within the five time points using 95% Confidence Intervals for 𝜇𝑍 − 𝜇𝑃
within each time point (1 comparison per time). We will use 𝑖 = 1 to represent Zylkene and 𝑖 = 2 to represent
Placebo.

𝑠2 {𝑌 1•𝑘 − 𝑌 2•𝑘} = 2 (𝑀𝑆𝐵(𝐴) + (𝑐 − 1)𝑀𝑆𝐸)
𝑏𝑐 = 2 (66.62 + (5 − 1)(3.04))

17(5) = 1.854

𝑑𝑓∗ = (66.62 + 4(3.04))2

[ (66.62)2

32 + (4(3.04))2

128 ]
= 6206.29

139.85 = 44.4

𝑡.975;44.4 = 2.015 ⇒ (𝑌 1•𝑘 − 𝑌 2•𝑘) ± 2.015
√

1.854 ≡ (𝑌 1•𝑘 − 𝑌 2•𝑘) ± 2.74
For the 5 time points, we compute the following Confidence Intervals.

𝑘 = 1 ∶ (10.94 − 9.06) ± 2.74 ≡ 1.88 ± 2.74 ≡ (−0.86, 4.62)
𝑘 = 2 ∶ (12.12 − 10.18) ± 2.74 ≡ 1.94 ± 2.74 ≡ (−0.80, 4.68)
𝑘 = 3 ∶ (13.59 − 10.88) ± 2.74 ≡ 2.71 ± 2.74 ≡ (−0.03, 5.45)
𝑘 = 4 ∶ (15.18 − 11.41) ± 3.77 ≡ 3.77 ± 2.74 ≡ (1.03, 6.51)
𝑘 = 5 ∶ (16.12 − 11.41) ± 4.71 ≡ 4.71 ± 2.74 ≡ (1.97, 7.45)

At time point 3, they are very close to being significantly different as the interval just contains 0. At time points 4
and 5, Zylkene gives significantly higher scores than placebo.

Next, we consider two other covariance structures among measurements within cats: unstructured and AR(1)
which is autoregressive of order 1. We will use the lme function in the nlme package to fit them.

The unstructured case has no restrictions on the variances and covariances.

𝜎
⎧{
⎨{⎩

⎡
⎢⎢
⎣

𝑌𝑖𝑗1
𝑌𝑖𝑗2

⋮
𝑌𝑖𝑗𝑐

⎤
⎥⎥
⎦

⎫}
⎬}⎭

=
⎡
⎢⎢
⎣

𝜎2
1 𝜎12 ⋯ 𝜎1𝑐

𝜎12 𝜎2
2 ⋯ 𝜎2𝑐

⋮ ⋮ ⋱ ⋮
𝜎1𝑐 𝜎2𝑐 ⋯ 𝜎2

𝑐

⎤
⎥⎥
⎦

For the AR(1) case, the variances are all equal, and the covariances (and correlations) decrease multiplicatively as
the observations are further apart in time. This can be extended to allow for heterogeneity of variances, which is
not covered here. In the following, we assume |𝜙| < 1.

𝜎
⎧{
⎨{⎩

⎡
⎢⎢
⎣

𝑌𝑖𝑗1
𝑌𝑖𝑗2

⋮
𝑌𝑖𝑗𝑐

⎤
⎥⎥
⎦

⎫}
⎬}⎭

=
⎡
⎢⎢
⎣

𝜎2 𝜙𝜎2 ⋯ 𝜙𝑐−1𝜎2

𝜙𝜎2 𝜎2 ⋯ 𝜙𝑐−2𝜎2

⋮ ⋮ ⋱ ⋮
𝜙𝑐−1𝜎2 𝜙𝑐−2𝜎2 ⋯ 𝜎2

⎤
⎥⎥
⎦

## id weight age gender trt timepnt y
## 1 2 4.0 67 1 0 1 9
## 2 2 4.0 67 1 0 2 9
## 3 2 4.0 67 1 0 3 9
## 4 2 4.0 67 1 0 4 9
## 5 2 4.0 67 1 0 5 9
## 6 4 3.5 78 2 0 1 9

## id weight age gender trt timepnt y
## 165 31 3.1 90 1 1 5 23
## 166 32 4.0 56 1 1 1 8
## 167 32 4.0 56 1 1 2 11
## 168 32 4.0 56 1 1 3 13
## 169 32 4.0 56 1 1 4 14
## 170 32 4.0 56 1 1 5 17
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## Linear mixed-effects model fit by REML
## Data: caz
## AIC BIC logLik
## 798.2436 838.2209 -386.1218
##
## Random effects:
## Formula: ~trt.f - 1 | id
## Structure: Compound Symmetry
## StdDev Corr
## trt.fplacebo 3.566192
## trt.fzylkene 3.566192 0
## Residual 1.742159
##
## Fixed effects: y ~ trt.f * timepnt.f
## Value Std.Error DF t-value p-value
## (Intercept) 12.088235 0.6260226 128 19.309583 0.0000
## trt.f1 -1.500000 0.6260226 32 -2.396080 0.0226
## timepnt.f1 -2.088235 0.2672349 128 -7.814231 0.0000
## timepnt.f2 -0.941176 0.2672349 128 -3.521907 0.0006
## timepnt.f3 0.147059 0.2672349 128 0.550298 0.5831
## timepnt.f4 1.205882 0.2672349 128 4.512443 0.0000
## trt.f1:timepnt.f1 0.558824 0.2672349 128 2.091132 0.0385
## trt.f1:timepnt.f2 0.529412 0.2672349 128 1.981073 0.0497
## trt.f1:timepnt.f3 0.147059 0.2672349 128 0.550298 0.5831
## trt.f1:timepnt.f4 -0.382353 0.2672349 128 -1.430775 0.1549
## Correlation:
## (Intr) trt.f1 tmpn.1 tmpn.2 tmpn.3 tmpn.4 t.1:.1 t.1:.2
## trt.f1 0.00
## timepnt.f1 0.00 0.00
## timepnt.f2 0.00 0.00 -0.25
## timepnt.f3 0.00 0.00 -0.25 -0.25
## timepnt.f4 0.00 0.00 -0.25 -0.25 -0.25
## trt.f1:timepnt.f1 0.00 0.00 0.00 0.00 0.00 0.00
## trt.f1:timepnt.f2 0.00 0.00 0.00 0.00 0.00 0.00 -0.25
## trt.f1:timepnt.f3 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 -0.25
## trt.f1:timepnt.f4 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 -0.25
## t.1:.3
## trt.f1
## timepnt.f1
## timepnt.f2
## timepnt.f3
## timepnt.f4
## trt.f1:timepnt.f1
## trt.f1:timepnt.f2
## trt.f1:timepnt.f3
## trt.f1:timepnt.f4 -0.25
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.21774790 -0.51423747 -0.04419265 0.71213362 2.31966939
##
## Number of Observations: 170
## Number of Groups: 34

## numDF denDF F-value p-value
## (Intercept) 1 128 372.8600 <.0001
## trt.f 1 32 5.7412 0.0226
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## timepnt.f 4 128 26.6973 <.0001
## trt.f:timepnt.f 4 128 4.1669 0.0033

## [1] 798.2436

## id 1
## Marginal variance covariance matrix
## 1 2 3 4 5
## 1 15.753 12.718 12.718 12.718 12.718
## 2 12.718 15.753 12.718 12.718 12.718
## 3 12.718 12.718 15.753 12.718 12.718
## 4 12.718 12.718 12.718 15.753 12.718
## 5 12.718 12.718 12.718 12.718 15.753
## Standard Deviations: 3.969 3.969 3.969 3.969 3.969

## Linear mixed-effects model fit by REML
## Data: caz
## AIC BIC logLik
## 749.8307 829.7852 -348.9153
##
## Random effects:
## Formula: ~1 | id1.f
## (Intercept) Residual
## StdDev: 3.073923 1.391268
##
## Correlation Structure: General
## Formula: ~1 | id1.f
## Parameter estimate(s):
## Correlation:
## 1 2 3 4
## 2 0.031
## 3 -0.011 0.621
## 4 0.219 0.697 0.886
## 5 -0.041 0.550 0.805 0.929
## Variance function:
## Structure: Different standard deviations per stratum
## Formula: ~1 | timepnt.f
## Parameter estimates:
## 1 2 3 4 5
## 1.000000 1.139761 1.712557 2.374562 2.335903
## Fixed effects: y ~ trt.f * timepnt.f
## Value Std.Error DF t-value p-value
## (Intercept) 12.088235 0.6264483 128 19.296463 0.0000
## trt.f1 -1.500000 0.6264483 32 -2.394452 0.0227
## timepnt.f1 -2.088235 0.3723377 128 -5.608445 0.0000
## timepnt.f2 -0.941176 0.2328305 128 -4.042325 0.0001
## timepnt.f3 0.147059 0.1790910 128 0.821140 0.4131
## timepnt.f4 1.205882 0.2300381 128 5.242098 0.0000
## trt.f1:timepnt.f1 0.558824 0.3723377 128 1.500851 0.1359
## trt.f1:timepnt.f2 0.529412 0.2328305 128 2.273808 0.0246
## trt.f1:timepnt.f3 0.147059 0.1790910 128 0.821140 0.4131
## trt.f1:timepnt.f4 -0.382353 0.2300381 128 -1.662129 0.0989
## Correlation:
## (Intr) trt.f1 tmpn.1 tmpn.2 tmpn.3 tmpn.4 t.1:.1 t.1:.2
## trt.f1 0.000
## timepnt.f1 -0.421 0.000
## timepnt.f2 -0.325 0.000 0.380
## timepnt.f3 0.091 0.000 -0.415 -0.198
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## timepnt.f4 0.533 0.000 -0.742 -0.683 0.090
## trt.f1:timepnt.f1 0.000 -0.421 0.000 0.000 0.000 0.000
## trt.f1:timepnt.f2 0.000 -0.325 0.000 0.000 0.000 0.000 0.380
## trt.f1:timepnt.f3 0.000 0.091 0.000 0.000 0.000 0.000 -0.415 -0.198
## trt.f1:timepnt.f4 0.000 0.533 0.000 0.000 0.000 0.000 -0.742 -0.683
## t.1:.3
## trt.f1
## timepnt.f1
## timepnt.f2
## timepnt.f3
## timepnt.f4
## trt.f1:timepnt.f1
## trt.f1:timepnt.f2
## trt.f1:timepnt.f3
## trt.f1:timepnt.f4 0.090
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.3359672 -0.6444285 -0.1169039 0.6566682 2.7544055
##
## Number of Observations: 170
## Number of Groups: 34

## numDF denDF F-value p-value
## (Intercept) 1 128 385.9196 <.0001
## trt.f 1 32 3.9783 0.0547
## timepnt.f 4 128 9.7978 <.0001
## trt.f:timepnt.f 4 128 2.7241 0.0323

## [1] 749.8307

## id1.f 1
## Conditional variance covariance matrix
## 1 2 3 4 5
## 1 1.935600 0.067913 -0.037752 1.0086 -0.18467
## 2 0.067913 2.514500 2.348000 3.6492 2.83350
## 3 -0.037752 2.348000 5.676900 6.9764 6.23720
## 4 1.008600 3.649200 6.976400 10.9140 9.97360
## 5 -0.184670 2.833500 6.237200 9.9736 10.56200
## Standard Deviations: 1.3913 1.5857 2.3826 3.3037 3.2499

## Linear mixed-effects model fit by REML
## Data: caz
## AIC BIC logLik
## 744.0077 783.9849 -359.0038
##
## Random effects:
## Formula: ~1 | id1.f
## (Intercept) Residual
## StdDev: 0.00118003 3.963392
##
## Correlation Structure: AR(1)
## Formula: ~1 | id1.f
## Parameter estimate(s):
## Phi
## 0.9047053
## Fixed effects: y ~ trt.f * timepnt.f
## Value Std.Error DF t-value p-value
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## (Intercept) 12.088235 0.6296157 128 19.199388 0.0000
## trt.f1 -1.500000 0.6296157 32 -2.382406 0.0233
## timepnt.f1 -2.088235 0.3074310 128 -6.792533 0.0000
## timepnt.f2 -0.941176 0.2261102 128 -4.162469 0.0001
## timepnt.f3 0.147059 0.1916021 128 0.767522 0.4442
## timepnt.f4 1.205882 0.2261102 128 5.333163 0.0000
## trt.f1:timepnt.f1 0.558824 0.3074310 128 1.817720 0.0714
## trt.f1:timepnt.f2 0.529412 0.2261102 128 2.341389 0.0208
## trt.f1:timepnt.f3 0.147059 0.1916021 128 0.767522 0.4442
## trt.f1:timepnt.f4 -0.382353 0.2261102 128 -1.691003 0.0933
## Correlation:
## (Intr) trt.f1 tmpn.1 tmpn.2 tmpn.3 tmpn.4 t.1:.1 t.1:.2
## trt.f1 0.000
## timepnt.f1 -0.075 0.000
## timepnt.f2 0.051 0.000 0.414
## timepnt.f3 0.120 0.000 -0.310 -0.003
## timepnt.f4 0.051 0.000 -0.677 -0.640 -0.003
## trt.f1:timepnt.f1 0.000 -0.075 0.000 0.000 0.000 0.000
## trt.f1:timepnt.f2 0.000 0.051 0.000 0.000 0.000 0.000 0.414
## trt.f1:timepnt.f3 0.000 0.120 0.000 0.000 0.000 0.000 -0.310 -0.003
## trt.f1:timepnt.f4 0.000 0.051 0.000 0.000 0.000 0.000 -0.677 -0.640
## t.1:.3
## trt.f1
## timepnt.f1
## timepnt.f2
## timepnt.f3
## timepnt.f4
## trt.f1:timepnt.f1
## trt.f1:timepnt.f2
## trt.f1:timepnt.f3
## trt.f1:timepnt.f4 -0.003
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.37467405 -0.60851025 -0.04452508 0.72724395 2.41919926
##
## Number of Observations: 170
## Number of Groups: 34

## numDF denDF F-value p-value
## (Intercept) 1 128 369.4090 <.0001
## trt.f 1 32 6.7869 0.0138
## timepnt.f 4 128 12.4477 <.0001
## trt.f:timepnt.f 4 128 2.0486 0.0914

## [1] 744.0077

## id1.f 1
## Conditional variance covariance matrix
## 1 2 3 4 5
## 1 15.708 14.212 12.857 11.632 10.524
## 2 14.212 15.708 14.212 12.857 11.632
## 3 12.857 14.212 15.708 14.212 12.857
## 4 11.632 12.857 14.212 15.708 14.212
## 5 10.524 11.632 12.857 14.212 15.708
## Standard Deviations: 3.9634 3.9634 3.9634 3.9634 3.9634

The AR(1) model allows the covariance of the observations within cats to decrease as they are farther apart in time.
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Based on having the smallest 𝐴𝐼𝐶 value, it gives the best fit of the three models without having excess variance
parameters.

𝑠2 {𝑌𝑖𝑗𝑘, 𝑌𝑖𝑗𝑘′} = 15.708(0.905)|𝑘−𝑘′|

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
library(lmerTest)
library(nlme)
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Chapter 12

Analysis of Covariance (ANCOVA)

In various cases, researchers are interested in comparing treatments after adjusting for a numeric predictor that is
associated with an experimental unit. That is often, but not necessarily, a baseline pre-treatment score on the unit.
The goal is to determine whether treatment effects are present after controlling for the covariate.

When the Analysis of Covariance was first developed, the computations used were very complicated. Now, it’s just
as simple as fitting a regression with one or more predictors and dummy variables for the treatment conditions.
Models can have one or more factors. We will consider the case with one treatment factor and one covariate.

12.1 Additive Model
In the additive model, the slope relating the covariate to the response is assumed to be the same for each treatment.
As with the 1-Way ANOVA model, we will use 𝑟 as the number of treatments with 𝑛𝑖 replicates for treatment 𝑖.
We will use centered 𝑋 values for the covariate for ease of interpretation when describing adjusted means. We will
also include 𝑟 − 1 indicators for treatments 1, … , 𝑟 − 1 assuming again that treatment effects sum to 0.

𝑌𝑖𝑗 = 𝜇• + 𝜏1𝐼𝑖𝑗1 + ⋯ + 𝜏𝑟−1𝐼𝑖𝑗,𝑟−1 + 𝛾 (𝑋𝑖𝑗 − 𝑋••) + 𝜖𝑖𝑗𝑘

𝜖𝑖𝑗𝑘 ∼ 𝑁𝐼𝐷 (0, 𝜎2)
𝑟

∑
𝑖=1

𝜏𝑖 = 0 ⇒ 𝜏𝑟 = −
𝑟−1
∑
𝑖=1

𝜏𝑖

𝐼𝑖𝑗1 =
⎧{
⎨{⎩

1 ∶ 𝑖 = 1
0 ∶ 𝑖 = 2, … , 𝑟 − 1

−1 ∶ 𝑖 = 𝑟
⋯ 𝐼𝑖𝑗,𝑟−1 =

⎧{
⎨{⎩

1 ∶ 𝑖 = 𝑟 − 1
0 ∶ 𝑖 = 1, … , 𝑟 − 2

−1 ∶ 𝑖 = 𝑟

To test for treatment effects, controlling for the predictor, we test 𝐻0 ∶ 𝜏1 = ⋯ = 𝜏𝑟 = 0. This easily conducted as a
general linear test, where the full model contains the 𝑟 − 1 treatment indicator variables and the centered covariate.
The reduced model contains only the centered covariate. The test is as follows.

𝑇 𝑆 ∶ 𝐹 ∗ =
[ 𝑆𝑆𝐸(𝑅)−𝑆𝑆𝐸(𝐹)

𝑑𝑓𝑅−𝑑𝑓𝐹
]

[ 𝑆𝑆𝐸(𝐹)
𝑑𝑓𝐹

]
𝑅𝑅 ∶ 𝐹 ∗ ≥ 𝐹1−𝛼;𝑑𝑓𝑅−𝑑𝑓𝐹 ,𝑑𝑓𝐹

Note that for the current case, 𝑑𝑓𝑅 = 𝑛𝑇 − 2 and 𝑑𝑓𝐹 = 𝑛𝑇 − 2 − (𝑟 − 1).
Example 12.1 - Comparison of Skin Softeners A study compared two treatments and a control 𝑟 = 3 for
skin softening [Ma’Or et al., 1997]. The active treatments were as follows, and the covariate was the pre-treatment
softness score for the subjects. There were 20 subjects per treatment, so 𝑛𝑇 = 3(20) = 60. The response is skin
roughness (lower scores are better).

• Treatment 1 - Gel Formulation

155
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• Treatment 2 - Gel Formulation + 1% Dead Sea Concentrate
• Treatment 3 - Placebo

The R code and output are given below.

## trt_Grp pre_x post_y gel gelDS
## 1 1 121.10 76.30 1 0
## 2 1 375.40 265.10 1 0
## 3 1 138.05 82.92 1 0
## 4 1 114.85 91.75 1 0
## 5 1 263.91 175.32 1 0
## 6 1 255.88 152.54 1 0

## trt_Grp pre_x post_y gel gelDS
## 55 3 127.57 112.80 0 0
## 56 3 138.97 116.75 0 0
## 57 3 269.69 255.30 0 0
## 58 3 138.39 132.16 0 0
## 59 3 138.59 107.22 0 0
## 60 3 134.89 125.20 0 0

##
## Call:
## lm(formula = post_y ~ I1 + I2 + Xc, data = dsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.13 -10.35 -3.93 12.29 35.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 137.53667 2.08924 65.831 < 2e-16 ***
## I1 -2.66382 2.95473 -0.902 0.371
## I2 -26.91735 2.95595 -9.106 1.22e-12 ***
## Xc 0.70732 0.03257 21.716 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.18 on 56 degrees of freedom
## Multiple R-squared: 0.9121, Adjusted R-squared: 0.9073
## F-statistic: 193.6 on 3 and 56 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: post_y
## Df Sum Sq Mean Sq F value Pr(>F)
## I1 1 9853 9853 37.622 9.205e-08 ***
## I2 1 18744 18744 71.572 1.361e-11 ***
## Xc 1 123501 123501 471.566 < 2.2e-16 ***
## Residuals 56 14666 262
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Call:
## lm(formula = post_y ~ Xc, data = dsm)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -50.220 -19.668 -4.885 21.923 63.420
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 137.53667 3.66612 37.52 <2e-16 ***
## Xc 0.69686 0.05713 12.20 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28.4 on 58 degrees of freedom
## Multiple R-squared: 0.7195, Adjusted R-squared: 0.7147
## F-statistic: 148.8 on 1 and 58 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: post_y
## Df Sum Sq Mean Sq F value Pr(>F)
## Xc 1 119991 119991 148.79 < 2.2e-16 ***
## Residuals 58 46773 806
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Model 1: post_y ~ Xc
## Model 2: post_y ~ I1 + I2 + Xc
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 46773
## 2 56 14666 2 32107 61.297 7.888e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -150.41 -48.35 -19.85 0.00 42.88 188.51

The 𝐹 ∗-statistic is 61.297 with 2 and 56 degrees of freedm and 𝑃 < .0001. There is strong evidence of differences
among the treatments, controlling for baseline score.

∇

12.1.1 Adjusted means
Where the lines cross at the centered X level of 0 are the adjusted meabs. That is, they are the predicted scores
for the treatments at the “average” value of the uncentered covariate. Based on this additive model, we obtain the
following adjusted means.

𝑖 = 1, … , 𝑟 − 1 ∶ ̂𝜇𝑖 = ̂𝜇• + ̂𝜏𝑖 ̂𝜇𝑟 = ̂𝜇• −
𝑟−1
∑
𝑖=1

̂𝜏𝑖

The goal is to typically compare the adjusted means, as would be done for the 1-Way ANOVA. The standard errors
depend on the variance-covariance matrix of the regression coefficients, which is obtained with the vcov function
from the regression model fit.

𝑖, 𝑖′ < 𝑟 𝑠 { ̂𝜏𝑖 − ̂𝜏𝑖′} = √𝑠2 { ̂𝜏𝑖} + 𝑠2 { ̂𝜏𝑖′} − 2𝑠 { ̂𝜏𝑖, ̂𝜏𝑖′}

When comparing the first 𝑟 − 1 treatments with the 𝑟𝑡ℎ, we use the follwing result.
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Figure 12.1: Analysis of Covariance for skin softener study - Additive Model

̂𝜏𝑖 − ̂𝜏𝑟 = ̂𝜏𝑖 − (−
𝑟−1
∑
𝑖=1

̂𝜏𝑖) = 2 ̂𝜏𝑖 +
𝑟−1
∑
𝑖′=1
𝑖′≠𝑖

̂𝜏𝑖′

Then the (messy) standard errors for these differences are as follow.

𝑠 { ̂𝜏𝑖 − ̂𝜏𝑟} =
√√√√
⎷

4𝑠2 { ̂𝜏𝑖} +
𝑟−1
∑
𝑖′=1
𝑖′≠𝑖

𝑠2 { ̂𝜏𝑖′} + 4
𝑟−1
∑
𝑖′=1
𝑖′≠𝑖

𝑠 { ̂𝜏𝑖, ̂𝜏𝑖′} + 2
𝑟−2
∑
𝑖′=1
𝑖′≠𝑖

𝑟−1
∑

𝑖″=𝑖′+1
𝑖″≠𝑖

Example 12.2 - Comparison of Skin Softeners We obtain the adjusted means and their differences along with
multiple comparisons with the following R code.

## trt_Grp pre_x post_y gel gelDS
## 1 1 121.10 76.30 1 0
## 2 1 375.40 265.10 1 0
## 3 1 138.05 82.92 1 0
## 4 1 114.85 91.75 1 0
## 5 1 263.91 175.32 1 0
## 6 1 255.88 152.54 1 0

## trt_Grp pre_x post_y gel gelDS
## 55 3 127.57 112.80 0 0
## 56 3 138.97 116.75 0 0
## 57 3 269.69 255.30 0 0
## 58 3 138.39 132.16 0 0
## 59 3 138.59 107.22 0 0
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## 60 3 134.89 125.20 0 0

##
## Call:
## lm(formula = post_y ~ I1 + I2 + Xc, data = dsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.13 -10.35 -3.93 12.29 35.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 137.53667 2.08924 65.831 < 2e-16 ***
## I1 -2.66382 2.95473 -0.902 0.371
## I2 -26.91735 2.95595 -9.106 1.22e-12 ***
## Xc 0.70732 0.03257 21.716 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.18 on 56 degrees of freedom
## Multiple R-squared: 0.9121, Adjusted R-squared: 0.9073
## F-statistic: 193.6 on 3 and 56 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: post_y
## Df Sum Sq Mean Sq F value Pr(>F)
## I1 1 9853 9853 37.622 9.205e-08 ***
## I2 1 18744 18744 71.572 1.361e-11 ***
## Xc 1 123501 123501 471.566 < 2.2e-16 ***
## Residuals 56 14666 262
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## [1] 134.8728 110.6193 167.1178

## i i' AdjMn_i AdjMn_i' Diff LB UB p adj
## [1,] 2 1 110.6193 134.8728 -24.2535 -41.6821 -6.8250 0
## [2,] 3 1 167.1178 134.8728 32.2450 14.8202 49.6698 0
## [3,] 3 2 167.1178 110.6193 56.4985 39.0665 73.9306 0

All three pairs of treatments are significantly different. Treatment 2 (Gel+DeadSea) has significantly lower roughness
scores than the other treatments and Gel has significantly lower scores than Placebo.

∇

12.2 Interaction Model
When the slope relating the response to the covariate differs among treatments, the model contains interactions.
This can be tested by including cross-product terms for the treatment indicator variables and the centered covariate.
Then the full model containing these extra terms can be compared with the additive (reduced) model. The intraction
model is given below.

𝑌𝑖𝑗 = 𝜇• +
𝑟−1
∑
𝑘=1

𝜏𝑘𝐼𝑖𝑗𝑘 + 𝛾 (𝑋𝑖𝑗 − 𝑋••) +
𝑟−1
∑
𝑘=1

𝛽𝑘𝐼𝑖𝑗𝑘 (𝑋𝑖𝑗 − 𝑋••) + 𝜖𝑖𝑗𝑘

Comparing adjusted means is more difficult when there is an interaction, as the difference among treatment means
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differs at different 𝑋 levels (unlike the additive model). A method was developed by Johnson and Neyman to find
regions of 𝑋 values where two treatments are significantly different and where they are not. We will not pursue
that method here, but will run the general linear test for interactions.

Example 12.3 - Comparison of Skin Softeners We obtain the adjusted means and their differences along with
multiple comparisons with the following R code.

## trt_Grp pre_x post_y gel gelDS
## 1 1 121.10 76.30 1 0
## 2 1 375.40 265.10 1 0
## 3 1 138.05 82.92 1 0
## 4 1 114.85 91.75 1 0
## 5 1 263.91 175.32 1 0
## 6 1 255.88 152.54 1 0

## trt_Grp pre_x post_y gel gelDS
## 55 3 127.57 112.80 0 0
## 56 3 138.97 116.75 0 0
## 57 3 269.69 255.30 0 0
## 58 3 138.39 132.16 0 0
## 59 3 138.59 107.22 0 0
## 60 3 134.89 125.20 0 0

##
## Call:
## lm(formula = post_y ~ I1 + I2 + Xc, data = dsm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -31.13 -10.35 -3.93 12.29 35.34
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 137.53667 2.08924 65.831 < 2e-16 ***
## I1 -2.66382 2.95473 -0.902 0.371
## I2 -26.91735 2.95595 -9.106 1.22e-12 ***
## Xc 0.70732 0.03257 21.716 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.18 on 56 degrees of freedom
## Multiple R-squared: 0.9121, Adjusted R-squared: 0.9073
## F-statistic: 193.6 on 3 and 56 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: post_y
## Df Sum Sq Mean Sq F value Pr(>F)
## I1 1 9853 9853 37.622 9.205e-08 ***
## I2 1 18744 18744 71.572 1.361e-11 ***
## Xc 1 123501 123501 471.566 < 2.2e-16 ***
## Residuals 56 14666 262
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Call:
## lm(formula = post_y ~ I1 + I2 + Xc + I(I1 * Xc) + I(I2 * Xc),
## data = dsm)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -28.385 -7.771 0.046 7.394 35.485
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 137.83352 1.64131 83.978 < 2e-16 ***
## I1 -2.99032 2.32058 -1.289 0.2030
## I2 -26.78674 2.32170 -11.538 3.41e-16 ***
## Xc 0.72542 0.02632 27.564 < 2e-16 ***
## I(I1 * Xc) -0.05744 0.03431 -1.674 0.0999 .
## I(I2 * Xc) -0.17549 0.03784 -4.638 2.28e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.71 on 54 degrees of freedom
## Multiple R-squared: 0.9477, Adjusted R-squared: 0.9429
## F-statistic: 195.8 on 5 and 54 DF, p-value: < 2.2e-16

## Analysis of Variance Table
##
## Response: post_y
## Df Sum Sq Mean Sq F value Pr(>F)
## I1 1 9853 9853 61.026 1.985e-10 ***
## I2 1 18744 18744 116.096 4.560e-15 ***
## Xc 1 123501 123501 764.925 < 2.2e-16 ***
## I(I1 * Xc) 1 2475 2475 15.330 0.0002553 ***
## I(I2 * Xc) 1 3472 3472 21.507 2.279e-05 ***
## Residuals 54 8719 161
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
##
## Model 1: post_y ~ I1 + I2 + Xc
## Model 2: post_y ~ I1 + I2 + Xc + I(I1 * Xc) + I(I2 * Xc)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 14666.1
## 2 54 8718.5 2 5947.5 18.419 7.971e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is significant (𝐹 ∗ = 18.42, 𝑃 < .0001). Based on the plot, there appears to be larger treatment
differences among patients with higher baseline skin roughness.

∇

library(tidyverse)
library(kableExtra)
library(effectsize)
library(agricolae)
library(car)
library(PMCMRplus)
library(additivityTests)
library(lmerTest)
library(nlme)
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Figure 12.2: Analysis of Covariance for skin softener study - Interaction Model

library(rsm)
library(mixexp)

## Warning: package 'mixexp' was built under R version 4.1.3

## Loading required package: lattice

## Loading required package: grid

## Loading required package: daewr
library(daewr)



Chapter 13

Response Surface and Mixture Designs

Response surface and mixture designs are used in a wide range of engineering fields. The goal is to choose levels
of a group of numeric predictor variables that optimize the response variable(s). Response surfaces are based on 𝑘
predictors at several levels and model based on a second-order model with linear, interaction, and quadratic terms
among the predictors. Mixture designs have several inputs, but these are restricted to sum to 1 (or 100%).

13.1 Response Surface Designs
The model for a second order response surface with 𝑘 factors is given below and can be implemented easily using
the rsm package in R.

𝑌 = 𝛽0 +
𝑘

∑
𝑖=1

𝛽𝑖𝑋𝑖 +
𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
𝛽𝑖𝑖′𝑋𝑖𝑋′

𝑖 +
𝑘

∑
𝑖=1

𝛽𝑖𝑖𝑋2
𝑖 + 𝜖

The model has 1+𝑘+𝑘(𝑘−1)/2+𝑘 parameters. Once the regression model is fit, individual parameters and groups
(2-factor interactions, quadratic terms) can be tested for significance. The fitted model can be written in scalar or
matrix form.

̂𝑌 = ̂𝛽0 +
𝑘

∑
𝑖=1

̂𝛽𝑖𝑋𝑖 +
𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
̂𝛽𝑖𝑖′𝑋𝑖𝑋′

𝑖 +
𝑘

∑
𝑖=1

̂𝛽𝑖𝑖𝑋2
𝑖 = ̂𝛽0 + 𝐵′

1𝑥 + 𝑥′𝐵2𝑥

where 𝑥, 𝐵1, 𝐵2 are defined as follow.

𝑥 = ⎡⎢
⎣

𝑋1
⋮

𝑋𝑘

⎤⎥
⎦

𝐵1 = ⎡⎢
⎣

̂𝛽1
⋮
̂𝛽𝑘

⎤⎥
⎦

𝐵2 =
⎡
⎢
⎢
⎣

̂𝛽11 ̂𝛽12/2 ⋯ ̂𝛽1𝑘/2
̂𝛽12/2 ̂𝛽22 ⋯ ̂𝛽2𝑘/2
⋮ ⋮ ⋱ ⋮

̂𝛽1𝑘/2 ̂𝛽2𝑘/2 ⋯ ̂𝛽𝑘𝑘

⎤
⎥
⎥
⎦

Taking the derivative of ̂𝑌 with respect to 𝑥, setting it equal to zero, ives the optimal set of inputs for the 𝑘 factors
(which may fall outside of possible values). This is printed directly in the summary of the rsm fit.

𝜕 ̂𝑌
𝜕𝑥 = 𝐵1 + 2𝐵2𝑥 set= 0 ⇒ 𝑥∗ = −1

2𝐵−1
2 𝐵1

Two commonly used designs for response surfaces are the Central Composite Design and the Box-Behnken
Design.

In the Central Composite Design, there are 𝑘 factors, each with three equally spaced levels coded −1, 0, +1. A 2𝑘

factorial is set up with each factor at +/ − 1. Then 2𝑘 observations are made with 𝑘 − 1 variables at their 0 levels
and the remaining factor at ±𝛼 where 𝛼 is commonly

√
2,

√
3, or 2, these are labelled “axial points.” Finally, there

are 𝑐 observations with each of the 𝑘 factors at their center (0) levels, which permits a goodness of fit test.
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Example 13.1 - Solar Drying of Avocado Pulp A study was conducted as 𝑘 factor response surface with 𝑘
factors to measure solar drying of avocado pulp [Kowarit et al., 2024]. The 4 factors are described below, and the
response was moisture content of the avocado pulp (lower values are better). This is a central composite design
with 𝛼 = 2.

• Hot Air Temperature (𝑋1, Celsius): -1=40, 0=55, +1=70 (axial points at 25, 85)
• Drying Time (𝑋2, hours): -1=13, 0=16.5, +1=20 (axial points at 9.5, 23.5)
• Raw Material Thickness (𝑋3, cm): -1=0.5, 0=0.75, +1=1.00 (axial points at 0.25, 1.25)
• Wind Speed (𝑋4, meters/second): -1=0.12, 0=0.19, +1=0.26 (axial points at 0.05, 0.33)

There were 24 = 16 runs with the 4 factors at +/-1, 4(2) = 8 runs at the axial points for each factor (with the other
3 factors at their 0 level), and 6 runs at the center points, for a total of 30 experimental runs. The R program and
output are given below, with response surface and contour plots in Figure 13.1 and Figure 13.2, respectively.

## run hotAirTemp dryTime rawMatThck windSpeed moisture
## 1 1 70 20.0 1.00 0.26 20.33
## 2 2 70 13.0 1.00 0.12 20.15
## 3 3 85 16.5 0.75 0.19 18.26
## 4 4 55 16.5 0.75 0.19 18.90
## 5 5 55 16.5 0.75 0.19 17.99
## 6 6 70 20.0 0.50 0.12 18.54

## run hotAirTemp dryTime rawMatThck windSpeed moisture
## 25 25 70 13.0 1.00 0.26 20.29
## 26 26 55 9.5 0.75 0.19 19.03
## 27 27 40 20.0 1.00 0.26 21.61
## 28 28 55 16.5 0.75 0.19 18.90
## 29 29 55 16.5 0.75 0.19 18.90
## 30 30 40 13.0 0.50 0.12 17.73

##
## Call:
## rsm(formula = moisture ~ SO(hotAirTemp, dryTime, rawMatThck,
## windSpeed), data = am)
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1996e+01 1.1195e+01 1.9649 0.068230 .
## hotAirTemp 2.6835e-01 1.5944e-01 1.6831 0.113053
## dryTime -4.8311e-01 7.3777e-01 -0.6548 0.522495
## rawMatThck -8.5945e+00 9.1563e+00 -0.9386 0.362780
## windSpeed -6.4616e+01 3.2146e+01 -2.0101 0.062761 .
## hotAirTemp:dryTime -6.8333e-03 5.4205e-03 -1.2607 0.226691
## hotAirTemp:rawMatThck -5.9667e-02 7.5887e-02 -0.7863 0.443959
## hotAirTemp:windSpeed 2.1786e-01 2.7102e-01 0.8038 0.434049
## dryTime:rawMatThck -1.4143e-01 3.2523e-01 -0.4349 0.669856
## dryTime:windSpeed 1.5561e+00 1.1615e+00 1.3397 0.200282
## rawMatThck:windSpeed -2.4071e+01 1.6261e+01 -1.4803 0.159495
## hotAirTemp^2 -1.2204e-03 9.6599e-04 -1.2633 0.225752
## dryTime^2 2.7585e-02 1.7743e-02 1.5547 0.140853
## rawMatThck^2 1.2027e+01 3.4776e+00 3.4584 0.003511 **
## windSpeed^2 1.3274e+02 4.4357e+01 2.9925 0.009110 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Multiple R-squared: 0.7643, Adjusted R-squared: 0.5444
## F-statistic: 3.475 on 14 and 15 DF, p-value: 0.01123
##
## Analysis of Variance Table
##
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## Response: moisture
## Df Sum Sq Mean Sq F value
## FO(hotAirTemp, dryTime, rawMatThck, windSpeed) 4 23.1131 5.7783 4.4595
## TWI(hotAirTemp, dryTime, rawMatThck, windSpeed) 6 9.1073 1.5179 1.1715
## PQ(hotAirTemp, dryTime, rawMatThck, windSpeed) 4 30.8123 7.7031 5.9450
## Residuals 15 19.4359 1.2957
## Lack of fit 10 18.7458 1.8746 13.5823
## Pure error 5 0.6901 0.1380
## Pr(>F)
## FO(hotAirTemp, dryTime, rawMatThck, windSpeed) 0.014231
## TWI(hotAirTemp, dryTime, rawMatThck, windSpeed) 0.371796
## PQ(hotAirTemp, dryTime, rawMatThck, windSpeed) 0.004511
## Residuals
## Lack of fit 0.005031
## Pure error
##
## Stationary point of response surface:
## hotAirTemp dryTime rawMatThck windSpeed
## 67.1141331 14.0922992 0.7835529 0.1767657
##
## Eigenanalysis:
## eigen() decomposition
## $values
## [1] 133.931086216 10.838362960 0.023680706 -0.002003314
##
## $vectors
## [,1] [,2] [,3] [,4]
## hotAirTemp 0.0008310985 0.0017517386 -0.1599582827 0.987121871
## dryTime 0.0058342613 -0.0005625942 0.9871073880 0.159952022
## rawMatThck -0.0982548808 -0.9951596092 -0.0002787034 0.001803565
## windSpeed 0.9951438334 -0.0982546031 -0.0056810736 -0.001584081

The linear (first order) terms and polynomial quadratic terms are significant as groups with 𝑃 -values of .0142
and .0045, respectively. The two-factor interactions are not, with 𝑃 =.3718. The stationary (optimal) point is
𝑥∗=(67.11,14.09,0.78,0.18).

∇

The Box-Behnken design places runs at every combination of ±1 for each pair of factors, with all other factors at
their 0 (central) level. There are multiple runs for each factor at their central level. The analysis is the same as for
the Central Composite Design.

Example 13.2 – Gels of Diclofenac and Curcumin for Transdermal Drug Delivery

A study (Chaudhary, et al (2011)) had 3 factors, each at 3 levels [Chaudhary et al., 2011]. The factors were as
follow.

• Polymer Concentration - (0.5, 1.0, 1.5 % w/w)
• Ethanol Concentration (10, 15, 20 % w/w)
• PG Concentration (5, 10, 15 %w/w).

There were three response variables: 𝑌 1 = Flux of DDEA (mg/(cm2 h)), 𝑌 2 = Flux of CRM (mg/(cm2 h)), and
𝑌 3 = Viscosity of Gel (cp). The experiment had 𝑛 = 17 runs. The design and data are given below.

∇
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Figure 13.1: Response Surface for avocado pulp study - 3D Plots
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Figure 13.2: Response Surface for avocado pulp study - Contour Plots
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Table 13.1: Box-Behnken Design for Drug Delivery Study

runnum polyconc ethnconc pgconc fluxddea fluxcrm viscgel
1 -1 -1 0 0.67 1.48 185
2 0 0 0 0.24 1.90 1924
3 0 1 -1 0.25 3.31 2018
4 0 -1 1 0.22 2.88 2310
5 1 0 -1 0.11 3.30 3227
6 -1 1 0 0.67 1.72 145
7 -1 0 -1 0.69 1.37 143
8 0 0 0 0.23 1.87 1923
9 -1 0 1 0.67 1.52 176

10 0 0 0 0.24 1.91 1800
11 0 0 0 0.24 1.92 1921
12 1 0 1 0.17 2.98 3071
13 0 1 1 0.23 2.01 1783
14 0 0 0 0.24 1.87 1922
15 1 -1 0 0.11 3.07 3320
16 1 1 0 0.16 3.45 2801
17 0 -1 -1 0.20 1.71 2245

13.2 Mixture Models
Mixture models are similar to response surface models, with the restriction that the sum of the 𝑋 levels is equal to
1, that is the 𝑋 variables are components of a mixture. There are four widely used models that can be implemented
in the mixexp package in R. Note that these models do not include an intercept, as the X’s sum to 1, and we will
use as 𝑘 as the number of mixture components.

Linear: 𝐸{𝑌 } =
𝑘

∑
𝑖=1

𝛽𝑖𝑋𝑖

Quadratic: 𝐸{𝑌 } =
𝑘

∑
𝑖=1

𝛽𝑖𝑋𝑖 +
𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
𝛽𝑖𝑖′𝑋𝑖𝑋𝑖′

Full Cubic: 𝐸{𝑌 } =
𝑘

∑
𝑖=1

𝛽𝑖𝑋𝑖 +
𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
𝛽𝑖𝑖′𝑋𝑖𝑋𝑖′ +

𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
𝛿𝑖𝑖′𝑋𝑖𝑋𝑖′ (𝑋𝑖 − 𝑋𝑖′) +

+
𝑘−2
∑
𝑖=1

𝑘−1
∑

𝑖′=𝑖+1

𝑘
∑

𝑖″=𝑖′+1
𝛽𝑖𝑖′𝑖″𝑋𝑖𝑋𝑖′𝑋𝑖″

Special Cubic: 𝐸{𝑌 } =
𝑘

∑
𝑖=1

𝛽𝑖𝑋𝑖 +
𝑘−1
∑
𝑖=1

𝑘
∑

𝑖′=𝑖+1
𝛽𝑖𝑖′𝑋𝑖𝑋𝑖′ +

𝑘−2
∑
𝑖=1

𝑘−1
∑

𝑖′=𝑖+1

𝑘
∑

𝑖″=𝑖′+1
𝛽𝑖𝑖′𝑖″𝑋𝑖𝑋𝑖′𝑋𝑖″

The goal is to choose the mixture that optimizes the output.

Example 13.3 - Breaking Strength of Lipstick Blends A mixture experiment considered 𝑘 = 3 inputs for
lipstick [Hui et al., 2017]. One response was breaking strength (grams), with the following inputs, this was Stage
1C in the paper, and the Full Cubic model was fit.

• Sweet Almond Oil (𝑋1)
• Hydrogenated Polyisobutene (𝑋2)
• Octydodecanol (𝑋3)

The R code and output are given below.
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## ExpNum X1 X2 X3 Break Soft
## 1 1 1.00000 0.00000 0.00000 325.8 62.0
## 2 2 1.00000 0.00000 0.00000 239.2 53.0
## 3 3 0.00000 1.00000 0.00000 332.9 61.3
## 4 4 0.00000 0.00000 1.00000 242.1 58.8
## 5 5 0.66667 0.33333 0.00000 247.3 53.3
## 6 6 0.33333 0.66667 0.00000 258.9 53.3
## 7 7 0.66667 0.00000 0.33333 342.1 61.5
## 8 8 0.66667 0.00000 0.33333 343.0 57.8
## 9 9 0.33333 0.33333 0.33333 292.5 53.8
## 10 10 0.00000 0.66667 0.33333 299.9 52.8
## 11 11 0.33333 0.00000 0.66667 399.2 61.3
## 12 12 0.00000 0.33333 0.66667 407.6 58.0
## 13 13 0.66667 0.16667 0.16667 258.9 53.3
## 14 14 0.16667 0.66667 0.16667 326.0 55.0
## 15 15 0.16667 0.16667 0.66667 325.1 53.8
## 16 16 0.16667 0.16667 0.66667 436.8 59.0

##
## coefficients Std.err t.value Prob
## X1 283.4746 33.32269 8.5069535 0.0001444655
## X2 331.9844 47.06751 7.0533671 0.0004063754
## X3 244.3524 47.08335 5.1897831 0.0020349071
## cubic(X1, X2) -201.1627 393.63036 -0.5110446 0.6275740863
## cubic(X1, X3) -437.2026 349.65399 -1.2503865 0.2577122053
## cubic(X2, X3) -667.6002 388.25675 -1.7194813 0.1363220821
## X2:X1 -222.8240 196.31796 -1.1350157 0.2996670546
## X3:X1 464.4747 180.58235 2.5720936 0.0422159307
## X2:X3 314.0409 210.14454 1.4944045 0.1856908476
## X2:X3:X1 -1152.8906 1320.00853 -0.8733963 0.4160293996
##
## Residual standard error: 47.18515 on 6 degrees of freedom
## Corrected Multiple R-squared: 0.7582724

## Analysis of Variance Table
##
## Response: Break
## Df Sum Sq Mean Sq F value Pr(>F)
## X1 1 822487 822487 369.4245 1.283e-06 ***
## X2 1 418251 418251 187.8594 9.375e-06 ***
## X3 1 380430 380430 170.8724 1.236e-05 ***
## cubic(X1, X2) 1 802 802 0.3604 0.57023
## cubic(X1, X3) 1 1624 1624 0.7293 0.42589
## cubic(X2, X3) 1 5300 5300 2.3807 0.17378
## X1:X2 1 7691 7691 3.4546 0.11243
## X1:X3 1 11369 11369 5.1064 0.06457 .
## X2:X3 1 3437 3437 1.5437 0.26042
## X1:X2:X3 1 1698 1698 0.7629 0.41602
## Residuals 6 13358 2226
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##
## Call:
## lm(formula = mixmodnI, data = frame)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -60.722 -15.433 0.876 12.755 50.978
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X1 283.47 33.32 8.507 0.000144 ***
## X2 331.98 47.07 7.053 0.000406 ***
## X3 244.35 47.08 5.190 0.002035 **
## cubic(X1, X2) -201.16 393.63 -0.511 0.627570
## cubic(X1, X3) -437.20 349.65 -1.250 0.257712
## cubic(X2, X3) -667.60 388.25 -1.719 0.136321
## X1:X2 -222.83 196.32 -1.135 0.299661
## X1:X3 464.47 180.58 2.572 0.042215 *
## X2:X3 314.04 210.14 1.494 0.185689
## X1:X2:X3 -1152.90 1320.00 -0.873 0.416021
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 47.18 on 6 degrees of freedom
## Multiple R-squared: 0.992, Adjusted R-squared: 0.9786
## F-statistic: 74.25 on 10 and 6 DF, p-value: 1.76e-05
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Figure 13.3: Mixture Plot for lipstick study

## X1 X2 X3 Break
## 1 1.00000 0.00000 0.00000 325.8 283.4746
## 2 1.00000 0.00000 0.00000 239.2 283.4746
## 3 0.00000 1.00000 0.00000 332.9 331.9841
## 4 0.00000 0.00000 1.00000 242.1 244.3521
## 5 0.66667 0.33333 0.00000 247.3 235.2266
## 6 0.33333 0.66667 0.00000 258.9 281.1992
## 7 0.66667 0.00000 0.33333 342.1 341.2641
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## 8 0.66667 0.00000 0.33333 343.0 341.2641
## 9 0.33333 0.33333 0.33333 292.5 305.6438
## 10 0.00000 0.66667 0.33333 299.9 323.1077
## 11 0.33333 0.00000 0.66667 399.2 392.9941
## 12 0.00000 0.33333 0.66667 407.6 392.8011
## 13 0.66667 0.16667 0.16667 258.9 263.7996
## 14 0.16667 0.66667 0.16667 326.0 285.0699
## 15 0.16667 0.16667 0.66667 325.1 385.8225
## 16 0.16667 0.16667 0.66667 436.8 385.8225

The highest breaking strengths (> 360) appear at blends of approximately 50/50% between Sweet Almond Oil and
Octydodecanol, based on the plot of the simplex.

∇
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