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 AN EXPERIMENTAL DESIGN USED TO ESTIMATE THE
 OPTIMUM PLANTING DATE FOR COTTON

 R. L. ANDERSON

 Institute of Statistics, Raleigh, N. C.

 H. L. /MANNING

 Empire Cotton Growing Corporation and Agricultural Department
 Uganda, British East Africa

 INTRODUCTION

 Two EXPERIMENTS were conducted in 1946-1947 by the Agricul-
 tural Research Station of the Empire Cotton Growing Corpora-

 tion in the Uganda Protectorate of British East Africa to determine the
 optimum planting date for cotton. One experiment was laid out at the
 Kawanda Station, where the main rains occur during the first half of the
 year; the other experiment was laid out at Kabula, where the main rains
 occur during the second half of the year. Since it was suspected that
 interference from the insect, Lygus simonyi, would be a potent factor,
 it was not considered advisable to plant a long series of sowing dates in
 one locality. Lygus is a small capsid bug, which breeds upon grain
 crops planted with the first rains in a given locality; when these early
 crops are harvested, the' bug migrates on to newly planted cotton, if such
 is available. There has also been some scanty evidence that where
 young-cotton is planted in contiguous plots, the Lygus bugs would tend
 to migrate to the younger cotton.

 In these experiments, it was decided to plant at three successive
 dates, separated by intervals of two weeks (one fortnight), at each of
 eight localities, with a two-thirds overlap between successive localities.
 That is, dates 1, 2 and 3 were to be used at the first locality; dates 2, 3
 and 4 at the second locality; dates 3, 4 and 5 at the third locality; etc.
 This experimental design allowed us to use ten planting dates, spread
 over an 18 week period. Four replications were used at earlf locality,
 with the three dates at each locality being used in each replicate. Hence
 the yields at each' locality could be analyzed on tho basis of a 4 X 3
 randomized blocks design. The design and actual plot yields (kilograms
 of seed cotton per plot) of the experiment at the 1awanda Station are
 presented in Table 1. The same design was used at the Kabula Station,
 except that the planting dates ranged from September 13 through
 January 17.
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 TABLE 1

 DESIGN AND ACTUAL YIELDS (KGMS/PLOT) OF SEED COTTON FOR A PLANTING
 DATE TRIAL AT THE KAWANDA STATION*

 Dates

 1 2 3 4 5 6 7 8 9 10

 Local- May May May June June July July Aug. Aug. Sept. Total
 ity 1 15 29 12 26 10 24 7 21 4

 1 3.35 3.86 1.99

 1.49 2.71 2.89

 2.44 2.18 1.68

 2.44 1.95 2.13

 .9.72 10.70 8.69 29.11

 2 8.84 7.02 7.02
 6.23 7.93 7.69

 7.05 6.60 6.61

 6.55 6.12 5.19

 28.67 27.67 26.51 82.85

 3 6.12 6.34 3.83

 5.67 5.67 4.30

 5.22 5.66 5.20

 6.10 5.17 4.33

 23.11 22.84 17.66 63.61

 4 2.45 3.17 1.94

 2.80 1.50 1.39

 2.47 1.95 1.54

 2.71 1.96 3.19

 10.43 8.58 8.06 27.07

 5 3.85 4.94 3.85-
 4.57 3.53 3.21

 4.56 4.53 3.82

 4.70 5.27 3.72

 17.68 18.27 14.60 50.55

 6 5.21 3.75 3.25

 4.31 4.62 3.00

 3.81 3.40 3.38

 4.14 4.17 2.96

 17.47 15.94 12.59 46.00

 7 5.66 5.17 4.94
 6.06 4.17 3.58

 5.66 5.94 4.26

 7.01 5.58 4.62

 24.39 20.86 17.40 62.65

 8 5.11 3.84 2.76
 4.51 3.55 3.05

 4.75 3.93 3.39

 4.18 3.70 2.99

 18.55 15.02 12.19 45.76

 Total 9.72 39.37 59.47 59.78 43.92 43.80 54.93 52.00 32.42 12.19 407.60

 *The plotsize was 12' x 42', approximately 1/86 acre.
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 173

 The problem is to determine the best planting date, and to set up

 some kind of confidence limits on this date. One also might want to

 consider the -relative efficiency of this design relative to other designs,

 assuming that the insect interference were actually negligible. For

 example, what could one gain if he planted at four successive dates at
 each locality, giving a three-fourth overlap? Also what is the loss in

 efficiency as compared to a completely balanced design, whereby all
 dates are used at each locality, assuming no insect interference?

 ANALYSIS OF THE KAWANDA DATA

 (a) Analysis of Variance. In order to evaluate the true differences be-
 tween the yields at successive planting dates, it is necessary to adjust

 the average yields for the differences among the localities. This necessi-
 tates a rather complicated least squares solution of the date and locality

 effects, which we could avoid if there was good evidence of the non-exis-
 tence of real locality differences. As a preliminary step, we shall con-
 sider the analysis of variance for the Kawanda data. It will be granted
 that we have not demonstrated the non-existence of locality effects even
 though the analysis of variance shows no significant differences; how-
 ever, the experimentalist probably would be willing to neglect small
 locality effects in order to forego the necessity of carrying out the least

 squares solution.
 From Table 1 we note that there are 23 degrees of freedom for the

 locality, date and residual (locality-date interaction) constants. Since
 there are 7 degrees of freedom for localities and 9 for dates, there must
 be 7 remaining for the locality-date interaction. The sum of squares
 for these 7 degrees of freedom can be determined from the sum of 7
 independent squares, each representing one degree of freedom. These
 7 independent squares are formed by squaring various linear combina-

 tions of the 24 locality-date totals. Let Ytj represent the total yield of
 the 4 plots planted at the t-th date and the j-th locality, where t = 1, 2,

 ... , 10 and j = 1, 2, ... , 8. A linear combination C can be represented
 as

 (1) C = atjytj-

 Then C2/4 E a2i is a quantity which can be used to represent the sum of
 squares with one degree of freedom. In forming the 7 independent
 linear combinations, 7 different sets of ati are needed. In order that
 any two formsC and C' be independent,

 E atai = 0.
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 174 BIOMETRICS, SEPTEMBER 1948

 TABLE 2

 THE COEFFICIENTS TO FORM A SET OF 7 INDEPENDENT LINEAR COMBINATIONS
 FOR THE LOCALITY-DATE INTERACTIONS

 Linear Combinations*

 Locality Date Order of Yield 1 2 3 4 5 6 7
 Planting

 1 2 2 10.70 +1 +1 +1
 3 3 8.69 -1 -1 -1

 2 2 1 28.67 -1 -1 -1
 3 2 27.67 +1 -3 -3
 4 3 26.51 4 4

 3 3 1 23.11 4 4
 4 2 22.84 +1 -3 .11
 5 3 17.66 -1 -1 -15

 4 4 X 10.43 -1 -1 -15
 5 2 8.58 +1 1 -41

 6 3 8.06 56

 5 5 1 17.68 56

 6 2 18.27 +1 1 -41
 7 3 14.60 -1 -1 -15

 6 6 1 17.47 -1 -1 -15
 7 2 15.94 +1 -3 11

 8 3 12.59 4 4

 7 7 1 24.39 4 4
 8 2 20.86 +1 -3 -3
 9 3 17.40 -1 -1 -1

 8 8 1 18.55 -1 -1 -1
 9 2 15.02 +1 +1 +1

 Total (C) 1.01 3.33 2.14 -0.07 0.78 2.79 17.99
 Divisor (D) 16 16 16 16 224 224 43,456

 C2/D 1.0433 0.0375 0.0074

 *Blank spaces represent 0 coefficients. Each yield is the total yield of 4 plots at the Kawanda
 Station.

 In addition, these combinations must be independent of date and
 locality effects. In order to fulfill this condition, the ats of a given C
 for any date or locality must also sum to 0.

 One set of 7 independent linear combinations for the residual or
 interaction sum of squares is given in Table 2. The first four combina-
 tions represent first-order interaction effects. For example consider

 (2) C1 = (Y21 -Y31) - (Y22 -Y32) =Y21 - Y31 Y22 + Y32-

 Each part of the right-hand side measures the difference between the
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 175

 yields at dates 2 and 3 but at two different locations, 1 and 2. Hence

 the difference between these two parts measures the change in the date
 effect from one location to another, which we designate as the date-
 location interaction. We note that Cl is independent of date and locality

 effects, since the sum of the coefficients for each date and locality is

 zero. Also the first four combinations are obviously independent, since
 they have no plots in common.

 TABLE 3

 ANALYSIS OF VARIANCE FOR THE KAWANDA DATA

 Source Degrees of Freedom Sum of Squares Mean Square

 Interaction 7 1.0882 .1555

 Localities 7 201.1345

 Dates (adj.) 9 21.7354 2.4150**

 Dates 9 45.2186

 Localities (adi.) 7 177.6513 25 .3787**

 Replications 24 11 .6219 0.4842

 Error 48 17.3125 0.3606

 **Significant at the 1% probability level.

 In this experiment these first four combinations also represent some
 effect of the order of planting on yield (and consequently of Lygus migra-
 tion from the early to the late plantings). The effect of the Lygus-
 migration from the early to the -late plantings is a quadratic effect,
 since the sums (C) are sums of single yields at the first and third plant-
 ings subtracted from two yields at the second planting. The sum of the

 first four combinations could be used to measure this quadratic effect
 of the order of planting with one degree of freedom, and the remaining
 three degrees of freedom would then represent the interaction effect,
 adjusted for order of planting. The sum of squares for the order of
 planting would be (6.41)2/4(16) = .6420, leaving 0.4013 for the three
 interaction degrees of freedom. None of these effects is significantly
 different from zero, using the error variance given in Table 3. Since
 there is obviously no date-location interaction, we can use each of
 the first four C's as a measure of the effect of order of planting. The
 standard error of each of these C's is 2.40, indicating that none of them
 is significantly different from zero. It is possible to compute a separate
 error term for each C with 6 degrees of freedom, but this does not alter
 any of the above conclusions.
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 176 BIOMETRICS, SEPTEMBER 1948

 Combinations 5 and 6 are each based on a comparison of 4 dates and
 4 localities. For example

 C5 = Y21 - Y22 - Y31 - 3Y32 + 4Y33
 (3)

 + 4Y42 - 3Y43 - Y44 - Y53 + Y54 -

 Again the sum of the coefficients for any date or locality is 0. In addition
 the sum of the products of these coefficients with those for any of the
 first 4 combinations is 0. Combination 7 is an over-all comparison, which
 was constructed so as to be independent of all the other combinations
 as well as dates and localities.

 The divisors are the denominators, 4 Ea , mentioned above. For
 the first 4 combinations the divisors are 4(1 + 1 + 1 + 1) = 16. For
 the next two, the divisors are 2[4(1 + 1 + 1 + 9 + 16)] = 224. And
 finally for the last comparison, the divisor is 4(10864) = 43456. The
 combination totals and contributions to the residual sum of squares are
 given at the bottom of Table 2, and SSR = 1.0882.

 Next we compute the total sum of squares for the 23 degrees of
 freedom (SST) and the sum of squares for the unadjusted date effects
 (SSD), and the sum of squares for the unadjusted locality effects (SSL).
 These are computed as follows:

 Correction for mean = C = (407.60)2/96 = 1730.6017

 SST = [(9.72)2 + (10.70)2 + *-- + (12.19)2]/4 - C

 - 223.9581

 (4) SSL = [(29.11)2 + (82.85)2 + + (45.76)2]/12 - C

 = 201.1345

 (9.72)2 (39.33)2 (59.47)2 + + (12. 19)2
 4 8 12 4

 -C = 45.2186

 In order to make exact tests of significance, we require the sum of
 squares for localities adjusted for dates [SSL(adj.)] and the sum of
 squares for dates adjusted for localities [SSD(adj.)]. A simple identity
 can be used to evaluate these adjusted sums of squares:
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 177

 SSL + SSD(adj.) = SSD + SSL(adj.)

 (5)
 = SST - SSR= 222.8699

 Hence

 SSD(adj.) = 222.8699 - 201.1345 = 21.7354

 (6)
 SSL(adj.) = 222.8690'- 45.2186 = 177.6513.

 Finally the error sum of squares (SSE) is given by the replication by
 date sum of squares summed over the 8 locations, with 3 X 2 X 8 48
 degrees of freedom. Because of the large locality differences, it might
 be suspected that the error variance would not be the same for all loca-
 tions. Bartlett's x2 test for the homogeneity of variance was applied,
 giving x = 7.364 with 7 degrees of freedom. The probability of obtain-
 ing this or a larger value of x2, assuming equal error variances at all
 localities, is about .40, indicating that it is quite reasonable to assume

 .equal error variances at all localities and to pool the individual estimates
 as mentioned above. It might be argued that we should also pool the
 location X date interaction with the error variance, giving a total of 55

 error degrees of freedom. We have not done this in the analysis which
 follows, because the additional degrees of freedom were not thought
 necessary in this case.

 The complete analysis of variance is given in Table 3.
 This analysis indicates that there are highly significant differences

 among both the dates and localities. Since there are real differences
 between the mean yields for different localities, the mean yields at each
 planting date should be adjusted for locality effects. Two types of
 analysis are suggested at this point. Either we determine the adjusted
 average yield for each planting date, or we fit a regression curve of some
 kind to the adjusted average yields.

 (b) Average Yields for Each Planting Date, Adjusted for Locality Effects.

 We can represent the total yield Yti of the 4 plots at a given date, t,
 and locality, j, as follows:

 (7) yi 4(m +d, + 1j) +rt,

 where m is the general mean, dt is the effect of the t-th planting date
 (t= 1,2,* * ,10) and li is the effect of the .-th locality (j = 1, 2, 8),
 r, is the residual after accounting for the effects of the constants-
 ~m, d: , and 1. Jt'should be noted that we have multiplied the right-hand
 side by 4 in order to put the results on a per-plot basis.
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 178 BIOMETRICS, SEPTEMBER 1948

 The constants will be estimated by the method of least squares.
 First we set up the error equation

 (8) SSR = - [y, [t- 4(m + d' + 1j)]2/4
 where SSR indicates the interaction or residual sum of squares, the sum
 of the 24 squared residuals, r, ;/4. The constants are estimated by
 minimizing SSR with respect t9 dach of the constants. For d1, we set

 (9) aSdR o

 This gives

 (10) > [yl- 4(m + di + M)] = 0,

 where the summation is made over, only the one locality (4 plots) having
 the first planting date. Equation (10) simplifies to

 (11) E Y1 i = D, = 4d, + 411 + 4m

 Similar equations can be obtained for each d,.
 Similarly if we minimize SSR with respect to i , we have

 (12) 2Yti = Li 4(d + d2+ d3) + 121 + 12m.

 The equation for m is

 Ey ='G =.4d, + 8d2+ 12(d3 + + d8) + 8d9+ 4do
 (13)

 + 12(11 + *+8) + 96m

 The coefficients of all.19 least squares equations are presented in
 Table 4. The reduced equations, after eliminating the locality constants,
 are given at the bottom of Table 4. In this table the yield totals, ad-
 justed for localities, are indicated by A, . The G equation indicates
 that if m is to be the general mean, we should assume that Z 1i = 0 and
 that

 (14) [d' + dio + 2(d2+ d9) + 3(d3 + + d8)] =0.

 In order to obtain standard errors to test for the difference between
 the adjusted average yields at any two dates, it is necessary to invert
 the coefficient matrix for the adjusted date effects. The inverted matrix
 is 'presented in the upper part of Table 5. The elements of this matrix
 (which are indicated by the symbol me, , where t stands for the row and
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 179

 TABLE 4

 COEFFICIENTS OF LEAST SQUARES EQUATIONS FOR ESTIMATION OF PLANTING
 DATE MEANS

 Independent Variables

 Dates (d1) Localities (1,)
 Plot Totals* 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 m

 Di : 9.72 4 4 4
 D2 : 39.37 8 4 4 8
 D3 : 59.47 12 4 4 4 12

 D4 59.78 12 4 4 4 12
 Ds 43.92 12 4 4 4 12
 De 43.80 12 4 4 4 12
 D7 54.93 12 4 4 4 12
 Ds: 52.00 12 4 4 4 12
 Do: 32.42 8 4 4 8
 Dio: 12.19 4 4 4

 Li : 29.11 4 4 4 12 12
 L2 : 82.85 4 4 4 12 12
 L3 : 63.61 4 4 4 12 12
 L4 : 27.07 4 4 4 12 12
 Ls : 50.55 4 4 4 12 12
 Ls : 46.00 4 4 4 12 12
 L7 : 62.65 4 4 4 12 12

 Ls : 45.76 4 4 4 12 12

 G :407.60 4 8 12 12 12 12 12 12 8 4 12 12 12 12 12 12 12 12 96

 EQUATIONS FOR DATE EFFECTS ADJUSTED FOR LOCALITIES

 Adjusted Totals* Coefficients of Adjusted Date Effects (di)

 1 2 3 4 5 6 7 8 9 10

 Ai =3D1 -Li = 0.05 8 -4 -4
 A2 = 3D2 Li -L2 - 6.15 -4 16 -8 -4
 A3 = 3D3 - Li -L2 - L3 = 2.84 -4 -8 24 -8 -4
 A4 = 3D4 - L -2 L -L4 = 5.81 -4 -8 24 -8 -4
 As = 3D6 - L3 -L4 -Ls = -9.47 -4 -8 24 -8 -4
 A6 = 3DW -L4 -Ls -L6 = 7.78 -4 -8 24 -8 -4
 A7 =3D - L6 -La -L7 = 5.59 -4 -8 24 -8 -4
 As = 3Da - Ls -L -Ls = 1.59 -4 -8 24 -8 -4
 Aq = 3Ds -L7 -Ls = -11.15 -4 -8 16 -4
 Alo 3D1D - Ls -9.19 -4 -4 8

 *Plot Totals at Kawanda.

 j the column number) can be used to determine both the values of the
 adjusted date effects and their variances. Before inverting the 10-row
 coefficient matrix at the bottom of Table 4. it is noted that the coeffi-
 cients always sum to 0 for a given row or column. Such a matrix is
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 180 BIOMETRICS, SEPTEMBER 1948

 TABLE 5

 INVERSE (Me i) MATRIX FOR ADJUSTED DATE EFFECTS*

 1 2 3 4 5 6 7 8 9 10

 1 .48884
 2 .37500 .40550

 3 .35268 .34450 .36086

 4 .30580 .30799 .30362 .31892
 t 5 .26562 .26504 .26622 .26208 .27744

 6d .22322 .22337 .22306 .22414 22015 .23503
 7 .18304 .18299 .18308 .18276 .18396 .17949 .19615

 8 .13616 .13617 .13615 .13621 .13601 .13675 .13398 .14434
 9 .11384 .11383 .11385 .11379 .11399 .11325 .11602 .10566 .14434
 10 0 0 0 0 0 0 0 0 0

 A ** 0 .05 6.15 2.84 5.81 -9.47 7.78 5.59 1.59 -11.15 -9.19
 d'e 4.300 4,478 4.110 3.856 2.981 3.022 2.387 1.598 0.699 0
 (d, +m) 5.691 5.869 5,501 5.247 4.372 4.413 3.778 2.989 2.090 1.391
 S2(d',) 0.5288 0.4387 0.3904 0.3450 0.3001 0.2543 0.2122 0.1561 0.1740 0
 s(d't) 0.7272 0.6623 0.6248 0.5874 0.5478 0.5043 0.4607 0.3951 0.4171 0

 *Since the matrix is symmetrical, only the lower left section is reproduced here.
 **Data from the Kawanda experiment.

 called a singular matrix and cannot be inverted. - This difficulty could
 have been taken care of by dropping the last equation and eliminating
 dio by use of equation (14). However, we decided on a simpler proce-
 dure, namely to assume di, = 0, and hence drop the 10-th row andbcol-
 umn from the matrix. Then we merely inserted a column and a row of
 zeros in the inverted matrix. We have indicated the date effects under
 this assumption as dt .

 For those not accustomed to the matrix notation, we might add that
 a matrix is simply a two-way array of figures such as the coefficients in

 Table 4. We are here dealing with symmetrical matrices. An inverted
 symmetrical matrix consists of another two-way array which has the
 following property: If you multiply the elements of any row (or column)
 of the original symmetrical matrix by the corresponding elements of the
 same row (or column) of the inverted matrix, the sum of the products
 is unity; if you multiply the corresponding elements of different rows or
 columns, the sum of the products is zero.

 The values of the adjusted date effects are then computed from the
 M and A values as follows:

 10

 (15) ~d' EMtjAj
 i=,
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 181

 For example, d' = [(0.48884)(0.05) + *- + (0.11384)(-11.15)] =

 4.3005. Note that all Mt,lo values are 0. The complete set of d' values
 is presented in Table 5.

 In order to obtain the original d, values, we subtract a constant k
 from each d' so that the new values d' - k = d, fulfill equation (14).
 We see that

 (16) k = [d' + 2d' + 3(d' + '. + dQ) + 2d' + d'o]/24 = 2.855.
 In most cases, it is desired to replace the date effects by adjusted yields

 at each date by adding m (= 4.246) to each of the dt . Hence we can
 combine both steps by adding

 (17) m - k = 4.246 - 2.855 = 1.391

 to each of the d' . These adjusted yields for each date (do + m) are also
 given in Table 5.

 The variance of any adjusted date effect (d') is simply 3Mtt2,
 where o2 is estimated by the error variance, 0.3606. The factor, 3, is

 required because the Dt were multiplied by 3 in determining the A,
 The variance of d' for example, is

 3(0.48884)(0.3606) = 0.5288

 The variances and standard errors of d' are also given in Table 5.

 However, we are generally more interested in the variances of the
 differences between the adjusted mean yields for successive dates. For

 example, the difference between the average yields for the first two dates
 is 0.18. The variance of the difference between the adjusted mean yields

 at two dates, i and k is given by the formula

 (18) 3(Mi- 2M- k + Mkkl

 where 02 is the error variance, estimated to be 0.3606. Hence the vari-
 ance of the difference between the average yields for the first two dates is

 3(0.48884 - 0.75000 + 0.40550)(0.3606) = (0.43301)(0.3606) = 0.1561.

 Hence we conclude that there was no significant difference between the
 two adjusted mean yields. The coefficients of the error variance (for
 example, 0.43301) are given in Table 6.

 Some of the differences between adjusted mean yields for successive
 dates and their standard errors are given in the second half of Table 6
 on the next page.
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 182 BIOMETRICS, SEPTEMBER 1948

 TABLE 6

 COEFFICIENTS OF VARIANCES OF DIFFERENCES BETWEEN ADJUSTED DATE MEANS

 Date

 2 3 4 5 6 7 8 9 10

 1 .43301 .43301 .58846 .70508 .83232 .95676 1.08256 1.21649 1.46652
 2 .23205 .32532 .45860 .58137 .70701 .83250 .96651 1.21649

 3 .21762 .31758 .44928 .57253 .69866 .83250 1.08256
 Date 4 .21658 .31703 .44866 .57253 .70701 .95676

 5 .21652 .31703 .44928 .58137 .83232
 6 .21658 .31758 .45860 .70508
 7 .21762 .32532 .58846
 8 .23205 .43301
 9 .43301

 Dates Mean Difference Standard Error

 1-2, -0.18 0.40
 2-3 0.37 0.29

 3-4 0.25 0 .28
 4-5 0.88 0.27
 5-6 -0.04 0.27
 6-7 0.63 0.27

 (19) 7-8 0.79 0.28
 (19) ~8-9 0.90 0.29

 9-10 0.70 0.40
 4-6 0.84 0.34
 5-7 0.59 0.34
 2-4 0.62 0.34
 2-5 1.50 0.41
 2-6 1.46 0.46

 From these averages, we conclude that: (i) The optimum planting
 date is somewhere near'the first planting date (May 1). This optimum
 is poorly determined, as shown by the fact that there is no significant
 decrease in the adjusted yield until the fifth planting date (June 26).
 (ii) There is an unaccountable plateau at the fifth and sixth planting
 dates. Except for this, after the fourth date there appears to be a gen-
 eral significant decrease in yield between successive planting dates until
 we reach the last date (September 4). There is a tendency to flatten out
 at this last date, as expected because the yields cannot fall below zero.

 (c) Determination of the regression of cotton yields (adjusted for locality
 differences) on planting date. An examination of the adjusted mean
 yields (d, + m) in Table 5 suggests that a regression equation of the
 following type should be used:

 20\ Xt = .[ 7 b/ - .0 e C/. . t2 +1i 7 pti
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 EXPERIMENTAL DESIGN FOR COTTON PLANTING 183

 where t is the mean time period (= 5.5) and p, i is the residual after
 accounting for the parabolic trend and the effect of the j-th locality,

 a, b and c are the coefficients of the regression curve, to be estimated
 from the data. As before, we shall assume that j 1I = 0.

 The constants are estimated by least-squares. For example, the
 least-squares equation for b is

 (21) S [yit' - 4(at' + bt'" + ct'3 + ljt')]=0;

 where the summation extends over all plots, t' = t-t, and t' implies
 the values of t' used at the j-th locality. Since = Et3 = 0 over
 all plots, equation (21) simplifies as follows:

 a yt' = 568b - (421 + 3012 + 1813 + 614 - 615 - 1818
 (22)

 - 3017 - 4218).

 TABLE 7

 COEFFICIENTS OF LEAST SQUARES EQUATIONS FOR ESTIMATION OF OPTIMUM
 PLANTING DATE OF COTTON

 Independent Variables

 Plot Totals | | la | 14 |I ie 17 Is a b c

 Li: 29.11 12 0 0 0 0 0 0 0 12 -42 155

 L2 : 82 85 0 12 0 0 0 0 0 0 12 -30 83

 L3: 63.61 0 0 12 0 0 0 0 0 12 -18 35

 L4: 27.07 0 0 0 12 0 0 0 0 12 - 6 11

 Lb: 50.55 0 0 0 0 12 0 0 0 12 6 11
 Le : 46.00 0 0' 0 0 0 12 0 0 12 18 35
 L7 : 62.65 0 0 0 0 0 0 12 0 12 30 83
 Ls: 45.76 0 0 0 0 0 0 0 12 12 42 155

 G :407.60* 12 12 12 12 12 12 12 12 96 0 568
 B -39.22* -42 -30 -18 - 6 6 18 30 42 0 568 0

 C :2299.62* 155 83 35 11 11 35 83 155 568 0 6742

 Solution for b and c

 (1) B + (7Li + 5L2 + 3L3 + L4 Ls - 3L - 5L7 - 7Ls)/2 -32.32 64b
 (2) C -(155Li + 83L1 + 35L3 + 11L4 + 11L + 35Ls + 83L7 + 155Ls)/12 = -64.68 4096c/3
 (3) G = 96a + 568c

 *G= Grand Total; B = 2v y(t - t); C = 2v (t- t)2; Plot totals at Kawanda.

 The coefficients for all of the equations and the requisite data from
 the Kawanda experiment are given in Table 7. If we multiply the L
 equations by the appropriate constants, as shown at the bottom of
 Table 7, and add to the b and c equations, we have at once the equations
 to estimate the values of b and c adjusted for locality effects,

 (23) b = -0.5050, c = -0.04737.

 And then a = - 568c/96 = 4.5261.
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 From these final equations, we also see that b and c are independent
 and that the variances of b and c are

 (24) a2(b) = a2/64; a2(c) = 30.2/4096,

 where a2 is estimated from the error variance, in this case 0.3606. Hence
 the estimated variances and standard errors of b and c are

 s2(b) = 0.005634; s(b) = 0.07506
 (25)

 s2(c) = 0.0002641; s(c) = 0.01625

 These results indicate that both b and c are significantly different
 from 0.

 A comparison of the adjusted mean yields based on the quadratic

 regression equation (20) and on the original equation (7) (Table 5) is
 given below.

 ADJUSTED MEAN YIELD

 Date (7) (20) Deviation

 1 .5.691 5.839 - .148

 2 5.869 5.713 .156

 3 5.501 5.492 .009

 4 5.247 5.177 .070

 (26) 5 4.372 4.767 -.395
 6 4.413 4.262 .151

 7 3.778 3.662 .116

 8 2.989 2.968 .021
 9 2.090 2.178 - .088

 10 1.391 1.294 .097

 Average* 4.247 4.247 .000

 *The average is computed as [di + dio + 2(d2 + d9) + 3(d3 + * + ds)]/24.

 From (26), we see that there is no pronounced trend in the deviations,
 such as consistent positive or negative deviations at the early and late
 dates or in the middle. The only large deviation is at the fifth date, for
 which we previously noted the unexplained sharp drop. The chief
 difference between the two series of adjusted yields is that the maximum
 point is at the first date using the quadratic regression as compared to
 the second date for the original adjusted yields.

 It might be advisable to check the adequacy of our quadratic predic-
 tion equation in estimating the adjusted yields. We find that the reduc-
 tion in total sum/of squares due to the quadratic regression is given by
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 (27) (-32.32)(-0.5050) + (-64.6758)(-0.04737) = 19.3853.

 Hence the remaining sum of squares for the other 7 degrees of freedom
 for dates is

 (28) 21.7354- 19.3853 = 2.3501

 This mean square is 2.3501/7 = 0.3357, which is even less than the error
 mean square.

 The planting date to give the maximum yield can be estimated by
 differentiating the estimating quadratic equation (20) with respect to

 and equating the result to 0. This gives as a result the maximum
 planting date'

 (29) tmax = t - b/2c = 0.17

 The variance of this estimate can only be approximated. If only the
 first order terms of the Taylor expansion of the differential of b/2c is

 used, we find that

 2(b/2c) = +( b2+2(C) =(2[2(b) + 2(/)

 (30)

 = (2c){db2 + 4096C21

 where q2 is estimated by 82 Hence

 (31) s2(b/2c) = 3.994; s(b/2c) = 2.00.

 The standard error of tmax is the same as s(b/2c), because t is fixed.
 Hence the maximum planting date 41 two standard errors is given by
 0.17 1t 4.00. As expected, the confidence interval is very large, indi-
 cating that the difference between the two maximum points in (26) is
 unimportant. The variance of the estimate of the optimum planting is
 large for two reasons: (i) There is a serious loss of information in making
 the adjustments for locality differences. For example, the coefficient of
 b is reduced from 568 to 64 in making the adjustments (Table 7). (ii)
 The optimum point comes before or near the first planting date used in
 the experiment. If the optimum planting date were near t, so that b
 would be small, s2(b/2c) would be materially reduced.

 (d) Effects of Lygus Infestation. Unfortunately this design does not
 furnish any means of determining if there is any linear decrease in the

 'This is a maximum only if c is negative.
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 yield for the last planting at a given locality because of a Lygus migration
 from the earlier planted plots. If we include a constant in equation (20)

 to represent the difference between the yields of the first and third plant-
 ings at all localities, this constant proves to be the same as the linear

 regression coefficient, b, of yield on planting date, adjusted for localities.
 As indicated before, the quadratic effect of the Lygus migration can be
 measured by taking the differences between the yield for the second
 planting and the average of the yields for the first and third plantings.
 This quadratic effect was shown to be non-significant.

 TABLE 8

 INDEX OF LYGUS DAMAGE PER COTTON PLANT FOR THE KAWANDA EXPERIMENT

 Locality 1 2 3 4

 Date 1 2 3 2 3 4 3 4 5 4 5 6

 2.16 1.16 2.89 4.02 2.00 1.54 3.66 2.17 1.46 1.78 2.13 2.47

 2.49 1.69 2.22 3.20 3.35 1.65 3.64 1.91 1.56 3.59 3.04 2.27

 1.71 1.60 2.89 3.69 4.11 1.09 3.84 1.52 1.56 2.17 2.87 2.76
 1.62 1.33 1.67 3.00 4.55 2.50 3.73 2.11 1.53 2.26 2.31 3.20

 Total 7.98 5.78 9.67 13.91 14.01 6.78 14.87 7.71 6.11 9.80 10.35 10.70

 23.43 34.70 28.69 30.85

 Locality 5 6 7 8

 Date 5 6 7 6 7 8 7 8 9 8 9 10

 3.47 4.24 2.34 3.16 3.25 2.04 .2.62 2.37 0.78 1.71 0.89 1.16

 3.58 3.89 2.31 3.85 2.05 1.67 1.51 2.39 1.11 2.46 1.49 1.51
 3.24 4.26 2.00 3.78 4.05 1.73 2.20 2.04 0.82 1.89 2.40 1.16

 4.96 3.69 3.07 4.00 2.16 2.02 1.62 2.04 1.20 2.60 1.13 0.71

 Total 15.25 16.08 9.72 14.79 11.51 7.46 7.95 8.84 3.91 8.66 5.91 4.54

 41.05 33.76 20.70 19.11

 In order to check if there was an adverse effect on the cotton yield
 by Lygus migration, an index of the Lygus damage per plant was de-
 termined for .each plot of the Kawanda experiment. The Lygus damage
 data are given in Table 8. Using these data, the cotton yields (Y) were
 adjusted for the Lygusdamage (X) in the following analysis of covari-
 ance, where x = X -X and y = Y - Y.
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 TABLE 9

 ANALYSIS OF COVARIANCE FOR THE KAWANDA EXPERIMENT

 Degrees of

 Source Freedom Sy2 Sxy SX1

 Interaction 7 1 .0882 0.4357 3.0523
 Dates (adj.) 9 21,7354 19.8782 36.7967
 Localities (adj.) 7 177 .513 29.7493 27.0614
 Replications 24 1,1. 6219 -2.5228 5.4713
 Error 48 17; 3125 -2.3957 14.0422

 Error + Dates (adj.) 57 39.0479 17.4825 50.8389

 Error + Loc. (adj.) 55 194.9638 27.3536 41.1036

 Error 47 16.9038 .3597

 Error + Dates (adj.) 56 33.0360
 Dates (adj.) 9 16.1322 i.7925**
 Error + Loc. (adj.) 54 176.7605

 Localities (adj.) 7 159.8567 22 .8367**

 **Significant at the 1% probability level.

 From this analysis, we conclude that there was no significant over-all
 regression of yield on Lygus damage, as shown by the non-significant
 reduction in the error sum of squares by the use of X-variate (Lygus
 damage). Hence we conclude that there was no serious insect migration
 to the last-planted cotton at a given locality, when only three planting
 dates were used at each'locality.

 The regression coefficient, by.x, is found from the error row in the
 above table:

 (32) by = - -0.1706.

 Each yield figure could be adjusted for the Lygus damage by use of the
 equation

 (33) Y(adjusted) = Y + 0.1706(X -X).

 Then the optimum planting date could be determined from these
 adjusted yields by use of the methods given above.

 It would not be useful in general to bother with such a small adjust-
 ment, but we will illustrate the method which would be used. In Table
 7, the locality yield totals (adjusted for Lygus damage) are

 (34) 28.15, 83.82, 63.55, 27.38, 52.60, 46.81, 61.23, 44.07.
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 Similarly the adjusted values of B and C are -51.46 and 2261.44. Using
 these adjusted values, we obtain

 (35) b =-0.5965; c =-0.05113.

 The variances of these estimates-will be the same as before except that C2

 is estimated as the average variance of Y - by.x(X - X).2 This average
 variance is 0.3597(1 + 1/96)/ 0.3634. There is no significant change
 in the value of either b or c.

 ANALYSIS OF THE KABULA DATA

 As stated previously, the same experimental design was used at the
 Kabula Experiment Station, except that the planting dates ranged from
 September 13 through January 17. The average yield for this experi-

 ment was 4.463 kgms./plot. No data were gathered on the Lygus
 damage. The analysis of variance for the Kabula data is given in
 Table 10.

 TABLE 10

 ANALYSIS OF VARIANCE FOR THE KABULA COTTON YIELD DATA

 Source Degrees of Freedom Mean Square

 Interaction 7 0.7999

 Dates (adj.) 9 3.6573**
 Localities (adj.) 7 26.5159**

 Replications 24 1 .6730
 Error 48 1.1448

 **Significant at the 1% significance level.

 The unadjusted mean yields per plot for each planting date at
 Kabula, the mean yields per plot adjusted for localities by equation (7)
 and the estimated adjusted mean yields per plot based on the quadratic
 regression equation (20) are presented in Table 11.

 2This is only an approximation to the best estimate of q2. The correct estimate would involve
 weighting each observation according to its use in the estimation of b and c.
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 TABLE 11

 MEAN COTTON YIELDS FOR EACH PLANTING DATE AT KABULA

 Unadjusted Mean Yields Adjusted for Localities

 Date t' Mean Yield Equation (7) Equation (20) Equation (38)

 1 (9-13) -4.5 6.498 6.808 7.279 6.665

 2 (9-27) -3'.5 6.412 6.997 6.479 7.151

 3 (10-11) -2.5 6.018 6.631 5.751 6.525

 4 (10-25) -1.5 4.816 5.661 5.096 5.428

 5 (11-8) -0.5 2.544 '.?27 4.514 4.325

 6 (11-22) 0.5 2.362 3.774 4.003 3.503

 7 (12-6) 1.5 3.466 3.065 3.566 3.077
 8 (12-20) 2.5 4.611 2.939 3.200 2.983

 9 (1-3) 3.5 6.033 2.996 2.907 2.985
 10 (1-17) 4.5 4.286 2.644 2.686 2.666

 Average 4.463 4.463 4.463 4.463

 Again we note that there is no significant decrease in the adjusted'
 mean yield until we reach the fourth or fifth planting date. Some of the
 differences between the adjusted mean yields, using equation (7), and
 their standard errors are given below.

 Date Mean Difference Standard Error

 2-4. 1.336 .610
 (36) 4-5 1.834 .498

 5-10 1.183 .976

 It would appear that the optimum planting date is somewhere between
 September 13 and October 11.

 When the quadratic trend was fitted to the mean yields at the suc-
 cessive dates by equation (20), we obtained the following estimates of
 b and c =1: their standard errors:

 b.= -0.5103 ? 0.1338

 (37)
 c = 0.0362 ? 0.0290

 We note that only the linear coefficient, b, is significantly different.
 from 0. Also since b and c are of opposite signs, this regression curve will
 be concave upwards, indicating a minimum rather than a maximum at
 the point: t = t- b/2c. Hence no optimn um planting date can be esti-
 mated by use of the quadratic equation. Extrapolation would be
 impossible because the adjusted means estimated by the regression will
 increase on both tails when c is positive. The minimum point is not
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 reached until t = 12.55; hence, Table 11 does not indicate the increasing
 yields at the later dates. However, we do see that the regression esti-
 mate is beginning to diverge quite noticeably at the first date.

 It might be useful to investigate the possibility that equation (20)
 should be changed to include third and fourth degree terms, as follows:

 (38) ytj = 4[a + bt' + ct,2 + dt'3 + et'4] + p,

 The degree must be even if we are to have the downward trend at both
 ends. The estimates of b and d (adjusted for localities) are independent
 of c and e. However b and d are correlated with each other and so are
 c and e.

 The estimating equations for b and d are:

 64b + 1072d = -32.658

 (39)
 1072b + 31060d = -299.868

 The inverse of the coefficient matrix is

 .03703545 - .00127824

 (40)
 - .00127824 .00007631261

 The estimated values of b and d i their standard errors are:

 b = -0.82622 =t 0.2059
 (41)

 d = 0.018862 i 0.00935.

 Hence we conclude that both b and d are significantly different from 0.
 Similarly for c and e, the estimating equations are:

 (4,096c + 84,736e)/3 = 49.441
 (42)

 (84,736c + 2,038,528e)/3 = 326.086.

 The inverse of the (c, e) coefficient matrix is:

 .00522869 - .000217342

 (43)
 - .000217342 .00001050601

 Hence the estimated values of c and e with their standard errors are:

 c = .18764 4 .07739

 (44)
 e = -.0073197 i .003467
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 The adjusted mean yields estimated by the quartic regression curve

 (38) are also given in Table I. The agreement between these estimated
 mean yields and those estimated from equation (7) is quite good. The

 estimated mean yields (by quartic regression) are beginning to drop off
 at both ends, and there are no pronounced series of plus or minus devia-
 tions as with the estimated mean yields found by using only the quad-
 ratic regression. The remaining date sum of squares after fitting equa-
 tion (38) is 4.6986 with 5 degrees/of freedom, giving a mean square of

 0.9397, which is smaller than the error mean square.
 The problem of estimating the optimum planting date is complicated

 by the fact that there are two maximum points and one minimum point.
 These points are solutions of the equation

 (45) b + 2ct' + 3dt'2 + 4et'3 = 0.

 The maximum point with the largest average adjusted yield is at t' =
 -3.665, which is slightly before the second date (September 27). No
 attempt has been made to estimate the standard error of this estimated
 optimum planting date.

 RELATIVE EFFICIENCY OF THIS EXPERIMENTAL DESIGN

 If there were no adverse effects from the Lygus migration to the
 newly planted cotton, it would be advisable to use as many planting dates
 as possible at each locality. The analysis of the Kawanda data seems
 to indicate that more than 3 successive planting dates might have been
 used at a given locality without incurring any serious insect interference.

 We shall consider the relative efficiency of the following field designs:

 (i) The present "staggered" 3-date plan.
 (ii) A staggered 4-date plan, with only 6 locations as follows:

 Location Dates Location Dates

 1 1,2j3,4 4 5,6,7,8
 2 2,3,4,5 5 6,7,8,9
 3 3,4,5,6 6 7,8,9,10

 (Notice that the sequence (4, 5, 6, 7) is omitted in order to
 have a design which would have the same number of repli-
 cations per date as for the 3-date plan.)

 (iii) A balanced incomplete blocks design with 3 planting

 dates per block, which requires 30 blocks with each plant-
 ing date being replicated 9 times. (The same number of
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 plots could not be planted at each location if this design

 were used.)
 (iv) A complete blocks design with all 10 planting dates at each

 locality, the- locality being a complete block.

 Under designs (i) and (ii), 96 plots would be used, but only 90 plots

 would be used for (iii) and only $0 plots for (iv). Hence the expected
 error variances will have to b6 adjusted to an equal number of plots.
 The' most efficient of these designs would be the complete blocks design

 (iv), because no adjustments for localities would be required in determin-

 ing the average yield for a given planting date. The balanced incomplete

 design (iii) has been shown to be 74% as efficient as the complete blocks
 design (iv); that is, 4 replications of each planting date using (iii) would

 be required to give the same accuracy as 3 replications using (iv).
 The relative -efficiency of design (i) will also be assessed with respect

 -to (iv) by comparing the average variances of the difference between
 the mean yields at successive planting dates. If the error variance per
 plot is designated as a2, then the variance of the difference between any
 two date means for the complete blocks design would be 2a&/8 = .25 a2.
 This variance can be compared with any of those in Table 6 by adjusting

 for the different number of total plots used in the two designs. Since
 96 plots were used in the "staggered" 3-date plan (i), the variances in
 Table 6 should be multiplied by 96/80 = 1.2 to put them on the same

 basis as that of the complete blocks design.
 The lowest variance in Table' 6 is that for the difference in yield

 between dates 5 and 6, 0.21652 u2. For comparison purposes, we mul-
 tiply this variance by 1.2, giving .26 a2. Hence this comparison is 96%
 efficient as compared with the same comparison if design (iv) were
 used. If we omit the comparisons for the first two and the last two
 planting dates, the average of the efficiencies for planting dates sepa-

 rated by one time interval (a fortnight) would be 94%. The compari-
 sons for the first two and the last two dates are quite inefficient, because
 these planting dates are not used at many locations under design (i);
 the relative efficiency is only 48%. The average efficiency for all-nine
 of the one fortnight comparisons is 84%. The average efficiencies for
 all the comparisons of average yields given in Table 6 are presented in
 Table 12 below. It should be noted that these efficiencies are based on
 the premise that a2 is the same for all designs.' If the increase of block
 size to 10 plots per block in design (iv) results in an increase in a2, the
 relative efficiencies would be higher than those given in Table 12. The
 incomplete blocks design (iii) would have the same block size; hence,
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 a2 for this design would be expected to be the same as for the 3-date
 plan (i). The relative efficiency of (i) as compared to (iii) would be
 1/.74 = 1.35 times as great as the efficiencies given in Table 12.

 As stated above, we also consider the -efficiency of the 4-date plan (ii),
 assuming that a2 would be the same for this design as for (i), even though
 only 6 instead of 8 localities are considered. The least square equation
 for (ii) was set up and a variances table such as Table 6 was then con-
 structed. The relative efficiencies of this design (ii) compared with the
 complete blocks design (iv) are also presented in Table 12. It might be
 mentioned that a balanced incomplete blocks design with 4 planting
 dates per block can be constructed, using 15 blocks. This balanced
 incomplete blocks design is 83% as efficient as the complete blocks de-
 sign, assuming a2 does not increase with the increase of block size for
 the complete blocks design.

 TABLE 12

 AVERAGE PERCENTAGE EFFICIENCIES OF THE 3 AND 4-DATE PLANS (i and ii)
 COMPARED WITH A COMPLETE BLOCKS DESIGN (iv)

 Number of Fortnights Separating Planting Dates

 Design 1 2 3 4 5 6 7 8 9 Avg.

 i* 94 65 46 36 30 25 22 57
 iit 106 89 68 52 44 41 34 74

 it 84 61, 43 34 28 23 20 17 14 47
 iit 93 80 63 48 41 35 31 26 21 60

 *Omitting the first and last planting dates.
 tUsing all planting -dates.

 From Table 12, we see that the 3-date plan (design i) is only about
 3/4 as efficient as the 4-date plan (design ii). That is we could have
 obtained about the same variances of the adjusted mean differences
 with 4 replications at each of the 6 locations for (ii) as with the 4 replica-
 tions at each of the 8 locations for (i).

 It might be noted that in this particular experiment, the most im-
 portant comparison for the determination of the range of the optimum
 planting dates was that between dates 1 and 5. The efficiency of the
 estimate of the difference in the mean yield between these two dates is
 only 30% for the 3-date plan (i). Actually since the optimum planting
 date could have come before the first planting date used in the experi-
 ments, this range should have -been about twice as large; the efficiency
 of this estimate would be even lower than 30%. Hence we can conclude
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 that the 3-date design is a very inefficient design for determining the
 optimum planting date.

 The efficiency of the determination of the optimum planting date can

 also be estimated from the variances of b and c in the quadratic regression

 equation (20). The variances of b and c for the 3-date plan (using 96
 plots) are given in equation (24).

 The variances of b and c for the) four designs (i, ii, iii and iv), based on

 80 plots, are the following coeffici nts of ':

 (i) (ii) ~~(iii) (iv

 (46) o2(b) .01875 .01000 .00214 .00152

 OJ2 (c) .000882 .000514 .000320 .000237

 These results show that the 3-date plan (i) is only about 8% efficient

 in the estimation of b and 27% efficient in the estimation of c as compared
 to the complete blocks design, if we can assume that a2 will not increase
 with the latter. When compared with the incomplete blocks design, the
 efficiency is about 1.5 times as great. Comparing the 3 and 4-date
 plans, we note that the efficiency is almost doubled for the 4-date plan.

 From equation (30), we see that the variance of the optimum planting
 date (if the regression is quadratic) is

 (47) O2(tm) = 2 [u2(b) + a2(C)

 where 2(b) and 2(c) are found by multiplying the constants given in
 (46) by a. In order to increase the efficiency of the experiment, we must
 either reduce a2, redesign the experiment so as to obtain lower coeffi-
 cients for 2 (b) and 2(c), or plan the experiment so as to have the opti-
 mum planting date fall near the middle of the dates used in the experi-
 ment (make b small).

 If we do set up the experiment so that b is expected to be small, then
 the efficiency of the experiment largely depends on aT(b). From (46),
 we see that o_2(b) is very large for the "staggered" designs as compared to
 the randomized blocks designs (iii and iv). It has been suggested that
 we might increase the efficiency of the "staggered" 3-plan design by
 redesigning the experiment. For example we might use only the follow-
 ing sequences of dates-i, 2, 3; 2, 3, 4; 7, 8, 9; 8, 9, 10-planting each
 sequence at two locations. Although _2(c) is reduced from 3o_2/4096
 to 30_2/7168, _2(b) remains at 02/64 (for 96 total plots). This design is
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 not recommended for two reasons: (i) It does not improve the efficiency

 of the estimation of b, which is the chief contribution to the inefficiency

 of the "staggered" designs, (ii) There should be some estimate of the
 yield for all planting dates, especially since the hypothesis of a quadratic

 regression of yield on planting date may be false. If some other regres-
 sion equation is used, the reduction in the variance of c may be offset by

 an increase in the variance of somp other estimate.
 If we were to use the sequences-I, 2, 3; 3, 4, 5; 5, 6, 7; 7, 8, 9-all

 planting dates, except the tenth, would be represented. However c2(b)
 would still be o2/64 and 2(c) would be increased to 3o2/3904.

 SUMMARY AND CONCLUSION

 This paper presents a new type of experimental design, the "stag-

 gered" design, for use with experimental material which can have but
 few consecutive plantings at a given locality. Two experiments involv-
 ing the determination of the optimum planting date of cotton have been

 conducted in British East Africa. The "staggered" design was used
 here because of a fear that an insect, Lygus'simonyi, would tend to trans-
 fer from earlier planted plots to newly planted ones, hence distorting a
 proper assessment of the relationship between cotton yield and planting
 date. At one of the experiments, an index of the Lygus damage was
 determined for each plot. If this index truly reflected the Lygus damage,
 it appeared that there was no important migration for planting dates
 separated by four weeks or less.

 We have shown that the 3-date "staggered" design is decidedly
 inefficient in estimating the optimum planting date. The adjustments

 for locality effects are so great that there tends to be a very long range
 of indeterminacy of the optimum planting date. The following sugges-
 tions are offered to improve the efficiency of the estimation of the opti-
 mum planting date under conditions of uncertainty with respect to
 insect migration:

 (i) Test the adequacy of the Lygus damage index as a true indicator
 of the infestation by the Lygus bug. If this index is reliable, or can be
 made reliable, then it appears that more planting dates should be used
 at each locality and that adjustments should be made for the Lygus
 damage by covariance techniques rather than by use of the "staggered"
 design.
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 (ii) Even if the index is shown to be inadequate, especially when more
 than 3 planting dates are used at each locality, we would advise at least
 trying 4 successive planting dates at each locality.

 (iii) A great improvement would result if the localities did not differ
 so widely in their fertility. This "staggered" design would be much
 more efficient if the locality differences were not so pronounced as in
 these African experiments.

 (iv) It is advisable to plan the experiment so that the optimum
 planting date is near the middle date used in the experiment.

 (v) Ordinarily the experimenter hopes to secure some information on
 the correct allocation of experimental material as to changes in the num-
 ber of locations and replications within locations. In this case the small
 date-location interaction as compared to the date-replication interaction
 leads us to infer that one could not lose any information by using fewer
 localities and more replications at each locality. Since this result was
 obtained in both experiments, we feel that the use of more planting dates
 at a given locality with fewer localities being used probably would not
 materially alter the error variance.
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