Chapter 3 - Life Tables

Section 3.2 - Basic Life Tables

A life table displays the expected survival from some integer age to future integer ages.

For example, we begin at age x_0 with a hypothetical number of lives, I_{x_0} , (this number is called the radix of the table). Then the number of lives from this group which survive at least *t* years beyond this age is

Here both x_0 and t are viewed as integers. While I_{x_0} is typically an integer, generally, I_{x_0+t} is not. But in some cases it may be rounded to an integer.

Given the values l_{x_0+t} for $t = 0, 1, \cdots$, we can derive survival probabilities $_tp_x$ for any $x \ge x_0$, because

$$\begin{aligned} x_{t+t} &= I_{x_0}(x_{t+t-x_0} p_{x_0}) \\ &= I_{x_0}(x_{t-x_0} p_{x_0})_t p_x \\ &= I_x(t_0 p_x). \end{aligned}$$

So indeed we describe the survival probabilities via

when I_x values are given through the life table. The starting value, the radix I_{x_0} , is completely arbitrary and cancels out of computations such as (3.1).

Since I_x represents the expected number of survivors at year x, we can also compute mortality probabilities

$$_t q_x = 1 - \frac{I_{x+t}}{I_x}$$

and deferred mortality probabilities

In addition to l_x , another entry in a typical life table is the expected number of deaths during the year, ie

$$d_x = l_x - l_{x+1}.$$
 (3.4)

Clearly,

$$d_x = l_x \left(1 - \frac{l_{x+1}}{l_x} \right) = l_x (1 - p_x)$$
 or

which also describes q_x in terms of l_x and d_x .

Other quantities included in life tables

Average person years lived between ages x and x + 1:

$$L_x = rac{d_x}{2} + l_{x+1} = rac{l_x + l_{x+1}}{2}$$
 for $x < \omega$ and $L_\omega = l_\omega \, e_\omega$

Total person years lived beyond age *x*:

Expectation of life at age *x*:

$$e_x = \frac{T_x}{I_x}.$$

Here we have assumed all deaths within a year occur halfway through the year. This is consistent with the UDD factional age assumption in the next section.

Table 1. Life table for the total population: United States, 2007

Spreadsheet version available from:ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/NVSR/59_09/Table01.xls.

	Probability of dying between ages x to x + 1	Number surviving to age x	Number dying between ages x to x + 1	Person-years lived between ages x to x + 1	Total number of person-years lived above age x	Expectation of life at age x
Age	q_*	4	d _x	L _x	T _x	G _X
0-1 - 1-2 - 2-3 - 2-4 - 3-4 - 3-4 - 3-4 - 3-4 - 3-4 - 3-4 - 3-4 - 3-4 - 1-1 - 1-1 - 1-1 - 1-1 - 1-1 - 1-1 - 1-1 - 1-1 - 1-1 - 1-2 - 1-3 - 1-4 - 1-5 - 1-6 - 1-7 - 1-8 - 1-9 - 1-9 - 1-9 - 1-9 - 1-9 - 1-9 - 1-9	- -	ι 100.000 80.278 80.278 80.278 80.278 80.278 80.278 80.278 80.278 80.278 80.211 80.116 80.116 80.118 80.118 80.118 80.118 80.118 80.011 80.01	- d, 676 228 227 227 15 15 15 15 15 15 15 15 15 15 15 15 15	L ₂ 084409 085244 095244 095244 095244 095244 095244 095244 095244 095244 095244 095244 0951400 0951400 0951400 095140000000	7, 7,783,386 7,783,461 7,684,461 7,484,461 7,484,471 7,286,669 7,7197,765 6,660,647 6,660,647 6,600,6476,600,647 6,600,6476,	6, 775 775 765 755 755 755 755 755
33-34 34-35 35-57 35-57 36-37 37-40 38-40 38-41 38-42 38-43 38-44 42-43 42-43 42-44 42-44 42-44 42-44 42-44 42-44 42-44 42-44 42-44 42-44 42-44 42-45 42-46 42-47 42-48 42-48 42-49 42-49 42-40 42-41 42-42 42-43 42-44 42-45 42-47 42-48 42-49 42-41 42-42 42-43 42-44 42-45 42-45 42-46 42-47 42-48 42-48 42-49	0.001146 0.001264 0.001360 0.001464 0.001464 0.001464 0.001464 0.001465 0.001465 0.000185 0.000185 0.000185 0.000386 0.0	07,471 07,302 07,119 08,000 00,000000	112 1 123 130 1 163 7 163 7 164 7 16	077416 077,360 077,364 077,354 077,354 077,354 077,354 077,354 077,354 077,354 077,354 077,354 075,338 055,0354 055,338 055,0354 055,338 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,358 055,359,358 055,359,359,358 055,359,359,359,359,359,359,359,359,359,3	4.583,587,244 4.547,1582 4.542,1412 4.542,5412 4.542,5412 4.542,5412 4.542,5412 4.542,5412 4.542,5412 4.542,5414.542,541 4.542,541 4.542,5414.544,541 5.544,5415,554,5545,5545,5545,5545,5545,5	46.6 44.6 44.6 43.7 44.9 44.9 44.9 30.0 30.0 30.0 30.1 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33

3-5

Table 1. Life table for the total population: United States, 2007-Con.

Spreadsheet version available from:ttp://ttp.cdc.gov/pub/Health_Statistics/NCHS/Publications/NVSR/59_09/Table01.xls.

	Probability of dying between ages x to x + 1	Number surviving to age x	Number dying between ages x to x + 1	Person-years lived between ages x to x + 1	Total number of person-years lived above age x	Expectation of life at age x	
Age	q_s	1.	d _s	L _x	T _s	e _x	
Age 65-65 65-67 7-77 7-77 7-77 7-77 7-77 7-	G. G. 0.013800 0.0147220 0.0147220 0.0147220 0.0147250 0.0147250 0.0147250 0.023345 0.023345 0.023345 0.0232345 0.023345 0.0335280 0.0335280 0.0335282 0.0335280 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455201 0.0455202 0.0455202	i. b2,557 62,4512 62,4512 62,4512 62,4512 77,5581 77,5581 77,5581 77,5581 63,163 60,363 64,163 54,4618 54,4618 54,4618 54,4618 54,6618 32,0418 31,0564 32,0418 31,0564 31,0564 32,1748 24,778 24,778 12,538 12,538 12,538 12,6402	d _s d _s 1,137 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 1,214 2,214 2,214 2,214 2,214 2,214 2,214 3,179 2,256 3,179 3,3449 3,449 3,449 3,449 3,449 3,449 3,449 3,197 2,2994 2,4995 2,4995	L _x 43,019 81,046 97,049 77,052 97,7452 97,7452 97,7452 97,7452 97,7452 97,7452 97,7452 97,7452 97,7452 96,774	T _s 1.558,635 1.475,616 1.353,645 1.353,542 1.313,183 1.233,1942 1.235,1944 1.070,814 1.071,82 2.081,109 2.081,109 2.081,109 1.082,204 2.083,001 2.083,001 2.083,001 2.084,002 4.002,008 2.07,101 2.084,002 2.084,002 2.084,002 2.084,002 2.0910	e, 17.9 17.2 16.6 17.2 16.7 16.7 16.7 16.7 16.7 16.7 16.9 11.7 11.7 11.7 11.7 11.7 11.7 11.7 11	
96-97 77-98 98-99 99-100.	0.239389 0.258999 0.279625 0.301225	6,499 4,943 3,663 2,638	1,556 1,280 1,024 795	5,721 4,303 3,151 2,241	19,597 13,876 9,573 6,422	3.0 2.8 2.6 2.4	
100 and over	1.000000	1,844	1,844	4,181	4,181	2.3	

3-6

Example 3-1: Using the enclosed life table find: (a) the probability that a 21 year-old lives at least 20 more years:

(b) the probability that a 60 year-old dies within the next 3 years:

(c) the probability that a 50 year-old dies within 3 years of turning 58:

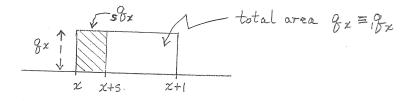
Example 3-2: Consider the mortality probabilities shown below and construct a life table with a radix of 100,000.

X	q_x	I_X	d_x	L_x	T_{x}	e _x
0	.15					
1	.25					
2	.55					
3	1.0					
4						

Section 3.3 - Fractional Age Assumptions

Uniform Distribution of Death (UDD) Fractional Age Assumption.

Assume that deaths are uniformly distributed between the beginnings of years.


<u>UDD 1</u>

For every nonnegative integer x and any $0 \le s < 1$, assume

Here

 $q_x \equiv {}_1q_x$ is the probability of death between x and x + 1

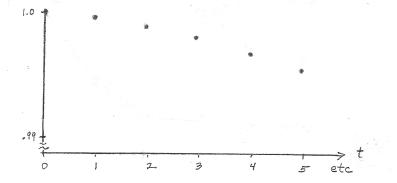
 $_{s}q_{x}$ is the probability of death between x and x + s.

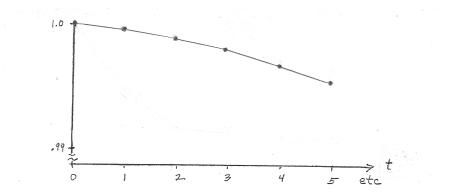
UDD 2 Define R_x by

- - - - - - -

 $T_x \equiv$ lifelength beyond age x (measured continuously)

where $K_x = \lfloor T_x \rfloor$ is the number of whole years lived (an integer), R_x denotes the fraction of the year lived between *x* and *x* + 1,

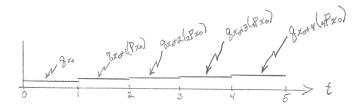

(a) R_x is a uniform (0, 1) random variable, and


(b) K_x and R_x are independent random variables

Our textbook proves that UDD1 and UDD2 are alternative expressions of equivalent assumptions concerning the uniform distribution of deaths within each year.

Survival Function Interpretation of UDD

Suppose we plot the survival function $S_{x_0}(t)$ over the future lifelength years, that is, we plot $\left(t, \frac{l_{x_0+t}}{l_{x_0}}\right)$, for $t = 0, 1, \cdots$.



The slope of the line segment between integers *t* and t + 1 is:

$$\frac{I_{x_0+t+1}}{I_{x_0}} - \frac{I_{x_0+t}}{I_{x_0}} = -\frac{d_{x_0+t}}{I_{x_0}} = -\left(\frac{d_{x_0+t}}{I_{x_0+t}}\right) \left(\frac{I_{x_0+t}}{I_{x_0}}\right) = -q_{x_0+t}(tp_{x_0}).$$

The distribution function $F_{x_0}(\cdot) = 1 - S_{x_0}(\cdot)$ has a constant derivative of $q_{x_0+t}(tp_{x_0})$ between integers *t* and t + 1. So the density function of this continuous random variable T_{x_0} is a histogram:

Under the UDD fractional age assumption for any nonnegative integer *x* and any $0 \le s \le 1$, define

It follows that

holds whether $x \ge 0$ and or $t \ge 0$ are integers or not.

Example 3-3: Using the previous life table and UDD, find (a) $_{8.2}q_{21.5}$

(b) Given $q_{35} = .001264$ and $q_{36} = .00134$, use only this information to find ${}_{.5}q_{35.8}$.

Note that if *x* is an integer and $0 \le s < t \le 1$, then because

we have

$$\frac{I_{x+t}}{I_{x+s}} = \frac{tp_x}{sp_x} = \frac{1-tq_x}{1-sq_x} \qquad \text{(these must have the same } x\text{)}.$$

Note also that

$$_{.2}q_{35.8} = 1 - \frac{1 - .001264}{1 - .8(.001264)} = .00025306$$
 and

 $_{.5}q_{35.8} = (.00025306) + (.99974694)(.3)(.001340) = .00065495$

In chapter 2 we saw that the future lifetime density satisfies

 $f_x(t) =_t p_x \mu_{x+t} .$

We will use this relationship to solve for the force of mortality under the UDD fractional age assumption. Again, let *x* be a nonnegative integer and $0 \le s < 1$. Because of the histogram nature of the density of the future lifelength distribution,

 $f_x(s) = q_x = {}_s p_x \, \mu_{x+s}$

and thus

Thus we see that as *s* increases, the force of mortality also increases under the UDD fractional age assumption. Here

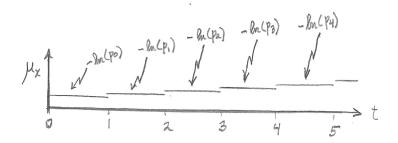
$$\lim_{s \searrow 0} \mu_{x+s} = q_x \quad \text{and} \quad \lim_{s \nearrow 1} \mu_{x+s} = \frac{q_x}{1-q_x}$$

Constant Force of Mortality (CFOM) Fractional Age Assumption.

A second assumption used to model fractional ages, is that the force of mortality between the beginnings of year *x* and *x* + 1 is constant (denote it by μ_x^*). Let *x* be an arbitrary nonnegative integer and $0 \le s < 1$. In chapter 2 we established that

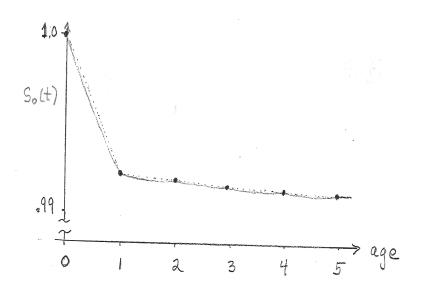
$$= e^{-\mu_x^*} \int_0^s dr = e^{-s \mu_x^*}.$$

Letting s approach 1, shows that


 $p_x = e^{-\mu_x^*}$ or that

This shows the relationship between the constant force of mortality and the survival probability for that given year. It follows that when x is an arbitrary nonnegative integer and $0 \le s < 1$,

If, in addition, t > 0 satisfies $t + s \le 1$ then


$$_{s}\rho_{x+t}=(\rho_{x})^{s}.$$

Under the CFOM fractional age assumption, the force of mortality function changes from year to year, but within a given year it is constant. Therefore the graph of the force of mortality function is a histogram, as pictured below.

Under the CFOM fractional age assumption, the survival function takes the form


$$= \Big(\prod_{r=0}^{k^*} p_r\Big)(p_{k^*})^{t-k^*-1},$$
 where $k^* = \lfloor t \rfloor$. It looks like

3-23

The future lifetime, T_0 , has a distribution with density

for $k^* < t < k^* + 1$. In our example its graph decreases slightly between integers. It looks like

Under the CFM fractional age assumption,

$$\mu_x^* = -\ln(\rho_x)$$
 or $\rho_x = e^{-\mu_x^*}$,

and it follows that

whenever μ_x^* is small. Thus when q_x is small, so is μ_x^* and they are roughly equal.

The survival function can be written as

$$S_0(x+s) = \Big(\prod_{j=0}^x p_j\Big)\Big(rac{1}{p_x}\Big)_s p_x$$

when *x* is a nonnegative integer and $0 \le s \le 1$. The UDD fractional assumption uses

$$_{s}p_{x}=1-sq_{x}$$

while the CFOM fractional assumption uses

$$_{s}\rho_{x}=(\rho_{x})^{s}.$$

As long as q_x is small,

$$(p_x)^s = e^{-s\,\mu_x^*} \approx (1-s\,\mu_x^*)$$

that is, the two assumptions produce very similar results.

Hyperbolic Fractional Age Assumption.

Under the hyperbolic assumption, for $0 \le s < 1$,

The force of mortality becomes

$$\mu_{\mathbf{X}} = \frac{q_{\mathbf{X}}}{1 - (1 - s) \, q_{\mathbf{X}}}.$$

This is a decreasing function of *s*, which is the reason it is rarely used.

Function	Uniform distribution of deaths	Constant force of mortality	Hyperbolic assumption
l _{x+s}	$l_x - sd_x$	$l_x p_x^s$	$\frac{l_{x+1}}{p_x + sq_x}$
sqx	sq_x	$1 - p_x^s$	$\frac{sq_x}{1-(1-s)q_x}$
sqx+1	$\frac{sq_x}{1-tq_x}$	$1 - p_x^s$	$\frac{sq_x}{1-[1-(s+t)]q_x}$
μ _{x+s}	$\frac{q_x}{1-sq_x}$	$-\ln p_x$	$\frac{\dot{q_x}}{1-(1-s)q_x}$
m _x	$\frac{q_x}{1-0.5q_x}$	$-\ln p_x$	$-\frac{q_x^2}{p_x \ln p_x}$
ê _x	$e_x + 0.5$		
ê _{x:M}	$e_{x:\overline{n} } + 0.5 (1n p_x)$		

Table : Summary of formulas for fractional ages

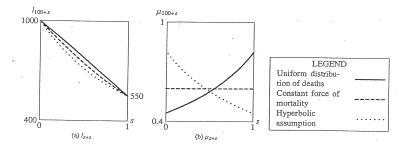


Figure Comparison of the three assumptions for distribution of deaths between integral ages

Example 3-4: Use the US life tables to find the following under the UDD fraction age assumption:

(a) $_{6.5}p_{35.4}$

(b) _{7.6}*q*_{25.8}

(C) _{7.5}|_{6.2}*q*_{40.5}

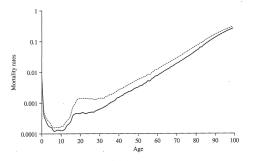
Example 3-5: Use the US life tables to find the following under the CFOM fraction age assumption:

(a) _{6.5}*p*_{35.4}

(b) _{7.6}*q*_{25.8}

(c) _{3.5}|_{7.6}*q*_{55.4}

Section 3.4 - Measuring and Comparing Mortality


The mortality rate

 $q_x = P[$ a person who has lived to age x dies before

reaching age x+1]

provides a direct comparison of the risk of death at different ages.

Example: Comparison of the mortality rates of males and females in the U.S. (2002).

Note that

$$q_x = rac{S_0(x) - S_0(x+1)}{S_0(x)} = rac{F_0(x+1) - F_0(x)}{S_0(x)}$$

as long as $f_0(\cdot)$ does not change too much between x and x + 1.

So the force of mortality is a continuous version of the same idea as the discrete version mortality rate.

Thus mortality comparisons are also made in terms of force of mortality.

Mortality rates differ among genders, between racial groups and between life insurance policy holders and those without insurance. Likewise mortality rates differ from one country to another country. These differences often result in separate life tables being constructed for each group.

Another influence on survival is provided by underwriting. Because of the examination of health records, only healthy persons are accepted as new policy holders. Consequently their survival experience is far better than the general population at least for a few years following taking out their policy.

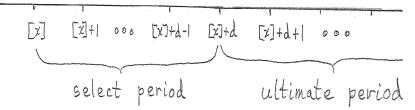
Section 3.7 - Select and Ultimate Survival Models

We make the following modeling assumptions:

(1) Survival depends on
(a) the current age of the person
(b) the age *x* at which this individual joined the insured group -

(2) After a fixed number of years, *d*, the survival advantage of recent selection wears off and the survival probability is the same as it is for all insured individuals of that same age.

The survival probabilities

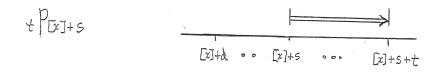

 $p_{[x]}$ $p_{[x]+1}$ $p_{[x]+2}$ \cdots $p_{[x]+d-1}$

describe the survival experience of the select at age [x] group during the select period (the *d* years following selection).

After that the survival probabilities

 $p_{[x]+d} \equiv p_{x+d}$ $p_{[x]+d+1} \equiv p_{x+d+1}$...

are the same as other individuals of the same age. This is described as the ultimate period of the model because the survival (mortality) probabilities are now equal to a ultimate (typical) set of probabilities for persons of this age.

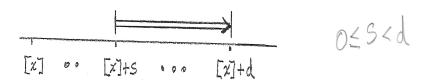


Earlier in this chapter we used a basic life table to find survival (mortality) probabilities via:

Rule:

Mortality
$$_t q_x = 1 - \frac{l_{x+t}}{l_x}$$

Clearly, when we are completely in the ultimate period of the select model, this rule still applies. That is, let $s \ge d$ and $t \ge 1$, then



We use the counts in the ultimate life table to compute probabilities for survival (or mortality) in the usual manner (select age is irrelevant). If, however, $0 \le s < d$ and $t \ge 1$, then

$_t p_{[x]+s}$

must incorporate the survival experience of the select at age [x] group. For this group we have special survival (or mortality) probabilities

From these we can compute the probabilities of surviving until the start of the ultimate period via

These probabilities are then used to backfit (impute) expected survival counts $l_{[x]+s}$ for $0 \le s < d$ via

So the expected survivals from the ultimate table at age x + d is used to establish appropriate expected survivals during the select period.

The good news is that the rule on page 3-39 still applies. We just have to use the expected survival counts appropriate within the select or ultimate period, whichever is needed.

Example 3-6 Use the Select life table D.1 in the Appendix of the textbook (here d = 2) to find:

(a) $_5p_{[28]+3}$

(b) ₄*q*_[29]

(c) ₆*p*_{[30]+1}

(d) $_{3|_2}q_{[55]+1}$

x	$l_{[x]}$	l[x]+1	l_{x+2}	<i>x</i> + 2	x	$l_{[x]}$	$l_{[x]+1}$	l_{x+2}	<i>x</i> + 2
			100 000.00	20	50 [°]	98 552.51	98 450.67	98 326.19	52
			99975.04	21	51	98 430.98	98 318.95	98 181.77	53
20	99 995.08	99 973.75	99 949.71	22	52	98 297.24	98 173.79	98 022.38	54
21	99970.04	99 948.40	99 923.98	23	53	98 149.81	98 013.56	97 846.20	55
22	99 944.63	99 922.65	99 897.79	24	54	97 987.03	97 836.44	97 651.21	56
23	99918.81	99 896.43	99 871.08	2.5	55	97 807.07	97 640.40	97 435.17	57
24	99 892.52	99 869.70	99 843.80	26	56	97 607.84	97 423.18	97 195.56	58
25	99 865.69	99 842.38	99 815.86	27	57	97 387.05	97 182.25	96929.59	59
26	99 838.28	99 814.41	99787.20	28	58	97 142.13	96914.80	96634.14	60
27	99 810.20	99785.70	99757.71	29	59	96 870.22	96617.70	96305.75	61
28	99781.36	99756.17	99727.29	30	60	96 568.13	96287.48	95940.60	62
29	99751.69	99 <i>7</i> 25.70	99 695.83	31	61	96232.34	95920.27	95 534.43	63
30	99721.06	99 694.18	99 663.20	32	62	95 858.91	95 511.80	95 082.53	64
31	99 689.36	99 661.48	99 629.26	33	63	95 443.51	95 057.36	94 579.73	65
32	99 656.47	99 627.47	99 593.83	34	64	94 981.34	94551.72	94 020.33	66
33	99 622.23	99 591.96	99 556.75	35	65	94 467.11	93 989.16	93 398.05	67
34	99 586.47	99 554.78	99 517.80	36	66	93 895.00	93 363.38	92,706.06	68
35	99 549.01	99 515.73	99 476.75	. 37	67	93 258.63	92 667.50	91 936.88	69
36	99 509.64	99 474.56	99 433.34	38	68	92 551.02	91 894.03	91 082.43	70
37	99 468.12	99431.02	99 387.29	39	69	91764.58	91 034.84	90 133.96	71
38	99 424.18	99 384.82	99338.26	40	70	90 891.07	90 081.15	89 082.09	72
39	99 377.52	99 335.62	99 285.88	41	71	89 921.62	89 023.56	87916.84	73
40	99 327.82	99 283.06	99 229.76	42	72	88 846.72	87 852.03	86 627.64	74
41	99 274.69	99 226.72	99 169.41	43	73	87 656.25	86555.99	85203.46	75
42	99 217.72	99 166.14	99 104.33	44	74	86 339.55	85124.37	83 632.89	76
43	99 156.42	99 100.80	99 033.94	45	75	84 885.49	83 545.75	81 904.34	77
44	99 090.27	99 030.10	98957.57	46	76	83 282.61	81 808.54	80 006.23	78
45	99 018.67	98953.40	98 874.50	47	77	81 519.30	79901.17	77927.35	79
46	98 940.96	98 869.96	98 783.91	48	78	79 584.04	77 812.44	75 657.16	80
47	98 856.38	98778.94	98 684.88	49	79	77 465.70	75 531.88	73 186.31	81
48	98 764.09	98 679.44	98 576.37	50	80	75 153.97	73 050.22	70 507.19	82
49	98 663.15	98 570.40	98 457.24	51					

Table 3.7. Select life table with a two-year select period.

Example 3-7: Using the US life table (2007) construct a select life table for ages 40-46 using select ages 40 and 41 with a 3-year select period and

$$q_{[40]} = .0015$$
 $q_{[40]+1} = .0017$ $q_{[40]+2} = .0021$

 $q_{[41]} = .0016$ $q_{[41]+1} = .0019$ $q_{[41]+2} = .0023$

Section 3.10 - Other Life Table Topics

(a) Life Table Analogues for Continuous Mortality Models

$$d_{x} = l_{x} - l_{x+1} = l_{x}(1 - p_{x})$$

FOM $\mu_{x} = \frac{-\frac{d}{dt}(x + tp_{0})|_{t=0}}{xp_{0}}$

Expected future life length beyond *x*:

$$\overset{\circ}{\boldsymbol{e}}_{x} = \int_{0}^{\infty} {}_{t} \boldsymbol{p}_{x} dt$$
 and $T_{x} = \int_{0}^{\infty} {}_{x+t} dt$
 $L_{x} = \int_{0}^{1} {}_{x+t} dt$

(b) Percentiles of Future Life Length

The 100π percentile of future life length beyond age *x* is: (Continuous Life Length Case) - the t_0 satisfying

 $t_0 \mathbf{q}_{\mathbf{X}} = \pi$

(Discrete Life Length Case) - the value $t_0 + s_0$ where t_0 is a nonnegative integer and $0 \le s_0 < 1$ satisfy

In particular, the median future life length, m(x), satisfies the above with $\pi = \frac{1}{2}$.

(c) Central Death Rate

 m_x is defined as the number of deaths during the year divided by the average number alive during the year, i.e.

This differs slightly from q_x , which is the number of deaths during the year divided by the number alive at the beginning of the year.