
Chapter 3 - Life Tables
Section 3.2 - Basic Life Tables

A life table displays the expected survival from some integer age to
future integer ages.

For example, we begin at age x0 with a hypothetical number of lives,
lx0 , (this number is called the radix of the table). Then the number of
lives from this group which survive at least t years beyond this age is

Here both x0 and t are viewed as integers. While lx0 is typically an
integer, generally,lx0+t is not. But in some cases it may be rounded
to an integer.
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Given the values lx0+t for t = 0,1, · · · , we can derive survival
probabilities tpx for any x ≥ x0, because

lx+t = lx0(x+t−x0px0)

= lx0(x−x0px0)tpx

= lx(tpx).

So indeed we describe the survival probabilities via

when lx values are given through the life table. The starting value,
the radix lx0 , is completely arbitrary and cancels out of computations
such as (3.1).
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Since lx represents the expected number of survivors at year x , we
can also compute mortality probabilities

tqx = 1− lx+t

lx
and deferred mortality probabilities

In addition to lx , another entry in a typical life table is the expected
number of deaths during the year, ie

dx = lx − lx+1. (3.4)

Clearly,

dx = lx
(

1− lx+1

lx

)
= lx(1− px) or

which also describes qx in terms of lx and dx .
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Other quantities included in life tables

Average person years lived between ages x and x + 1:

Lx =
dx

2
+ lx+1 =

lx + lx+1

2
for x < ω and Lω = lω eω

Total person years lived beyond age x :

Expectation of life at age x :

ex =
Tx

lx
.

Here we have assumed all deaths within a year occur halfway
through the year. This is consistent with the UDD factional age
assumption in the next section.
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Example 3-1: Using the enclosed life table find:
(a) the probability that a 21 year-old lives at least 20 more years:

(b) the probability that a 60 year-old dies within the next 3 years:

(c) the probability that a 50 year-old dies within 3 years of turning 58:
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Example 3-2: Consider the mortality probabilities shown below and
construct a life table with a radix of 100,000.

x qx lx dx Lx Tx ex
0 .15
1 .25
2 .55
3 1.0
4
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Section 3.3 - Fractional Age Assumptions

Uniform Distribution of Death (UDD) Fractional Age Assumption.

Assume that deaths are uniformly distributed between the
beginnings of years.
- - - - - - - - - - - - -
UDD 1
For every nonnegative integer x and any 0 ≤ s < 1, assume

- - - - - - - - - - - - -

Here

qx ≡ 1qx is the probability of death between x and x + 1

sqx is the probability of death between x and x + s.
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UDD 2
Define Rx by

Tx ≡ lifelength beyond age x (measured continuously)

where Kx = bTxc is the number of whole years lived (an integer), Rx
denotes the fraction of the year lived between x and x + 1,

(a) Rx is a uniform (0,1) random variable, and

(b) Kx and Rx are independent random variables

- - - - - - - - - - - - -

Our textbook proves that UDD1 and UDD2 are alternative
expressions of equivalent assumptions concerning the uniform
distribution of deaths within each year.
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Survival Function Interpretation of UDD

Suppose we plot the survival function Sx0(t) over the future lifelength

years, that is, we plot
(

t ,
lx0+t

lx0

)
, for t = 0,1, · · · .
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The slope of the line segment between integers t and t + 1 is:

lx0+t+1

lx0

−
lx0+t

lx0

= −
dx0+t

lx0

= −
(dx0+t

lx0+t

)( lx0+t

lx0

)
= −qx0+t(tpx0).

The distribution function Fx0(·) = 1− Sx0(·) has a constant derivative
of qx0+t(tpx0) between integers t and t + 1. So the density function of
this continuous random variable Tx0 is a histogram:
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Under the UDD fractional age assumption for any nonnegative
integer x and any 0 ≤ s ≤ 1, define

It follows that

holds whether x ≥ 0 and or t ≥ 0 are integers or not.
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Example 3-3: Using the previous life table and UDD, find

(a) 8.2q 21.5

(b) Given q35 = .001264 and q36 = .00134, use only this information
to find .5q 35.8 .
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Note that if x is an integer and 0 ≤ s < t ≤ 1, then because

we have

lx+t

lx+s
=

tpx

spx
=

1− t qx

1− s qx
(these must have the same x).

Note also that

.5q 35.8 = .2q 35.8 + (1− .2q 35.8).3q 36 and

.2q 35.8 = 1− .2p 35.8 = 1−
( l36

l35.8

)
= 1−

( p35

.8p 35

)
= 1−

( 1− q 35

1− .8 q 35

)
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So

.2q 35.8 = 1− 1− .001264
1− .8(.001264)

= .00025306 and

.5q 35.8 = (.00025306)+(.99974694)(.3)(.001340) = .00065495

In chapter 2 we saw that the future lifetime density satisfies

fx(t) =t px µx+t .

We will use this relationship to solve for the force of mortality under
the UDD fractional age assumption. Again, let x be a nonnegative
integer and 0 ≤ s < 1. Because of the histogram nature of the
density of the future lifelength distribution,

fx(s) = qx = spx µx+s

and thus
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Thus we see that as s increases, the force of mortality also
increases under the UDD fractional age assumption. Here

lim
s↘0

µx+s = qx and lim
s↗1

µx+s =
qx

1− qx
.
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Constant Force of Mortality (CFOM) Fractional Age Assumption.

A second assumption used to model fractional ages, is that the force
of mortality between the beginnings of year x and x + 1 is constant
(denote it by µ∗x ) . Let x be an arbitrary nonnegative integer and
0 ≤ s < 1. In chapter 2 we established that

= e−µ
∗
x
∫ s

0 dr = e−s µ∗x .

Letting s approach 1, shows that

px = e−µ
∗
x or that

This shows the relationship between the constant force of mortality
and the survival probability for that given year.
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It follows that when x is an arbitrary nonnegative integer and
0 ≤ s < 1,

If, in addition, t > 0 satisfies t + s ≤ 1 then

spx+t = (px)
s.

Under the CFOM fractional age assumption, the force of mortality
function changes from year to year, but within a given year it is
constant. Therefore the graph of the force of mortality function is a
histogram, as pictured below.
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Under the CFOM fractional age assumption, the survival function
takes the form

=
( k∗∏

r=0

pr

)
(pk∗)t−k∗−1,

where k∗ = btc. It looks like
3-22



3-23



The future lifetime, T0, has a distribution with density

for k∗ < t < k∗ + 1. In our example its graph decreases slightly
between integers. It looks like
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Under the CFM fractional age assumption,

µ∗x = − ln(px) or px = e−µ
∗
x ,

and it follows that

whenever µ∗x is small. Thus when qx is small, so is µ∗x and they are
roughly equal.
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The survival function can be written as

S0(x + s) =
( x∏

j=0

pj

)( 1
px

)
spx

when x is a nonnegative integer and 0 ≤ s ≤ 1. The UDD fractional
assumption uses

spx = 1− s qx

while the CFOM fractional assumption uses

spx = (px)
s.
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As long as qx is small,

(px)
s = e−s µ∗x ≈ (1− s µ∗x)

that is, the two assumptions produce very similar results.
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Hyperbolic Fractional Age Assumption.

Under the hyperbolic assumption, for 0 ≤ s < 1,

The force of mortality becomes

µx =
qx

1− (1− s)qx
.

This is a decreasing function of s, which is the reason it is rarely
used.
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Example 3-4: Use the US life tables to find the following under the
UDD fraction age assumption:

(a) 6.5p35.4

(b) 7.6q25.8

(c) 7.5|6.2q40.5
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Example 3-5: Use the US life tables to find the following under the
CFOM fraction age assumption:

(a) 6.5p35.4

(b) 7.6q25.8

(c) 3.5|7.6q55.4
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Section 3.4 - Measuring and Comparing Mortality

The mortality rate

qx = P[ a person who has lived to age x dies before

reaching age x+1]

provides a direct comparison of the risk of death at different ages.

Example: Comparison of the mortality rates of males and females in
the U.S. (2002).

3-32



Note that

qx =
S0(x)− S0(x + 1)

S0(x)
=

F0(x + 1)− F0(x)
S0(x)

as long as f0(·) does not change too much between x and x + 1.

So the force of mortality is a continuous version of the same idea as
the discrete version mortality rate.

Thus mortality comparisons are also made in terms of force of
mortality.
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Mortality rates differ among genders, between racial groups and
between life insurance policy holders and those without insurance.
Likewise mortality rates differ from one country to another country.
These differences often result in separate life tables being
constructed for each group.

Another influence on survival is provided by underwriting. Because
of the examination of health records, only healthy persons are
accepted as new policy holders. Consequently their survival
experience is far better than the general population at least for a few
years following taking out their policy.

3-34



Section 3.7 - Select and Ultimate Survival Models

We make the following modeling assumptions:

(1) Survival depends on
(a) the current age of the person
(b) the age x at which this individual joined the insured group -

(2) After a fixed number of years, d , the survival advantage of recent
selection wears off and the survival probability is the same as it is for
all insured individuals of that same age.
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The survival probabilities

p[x ] p[x ]+1 p[x ]+2 · · · p[x ]+d−1

describe the survival experience of the select at age [x ] group during
the select period ( the d years following selection).

After that the survival probabilities

p[x ]+d ≡ px+d p[x ]+d+1 ≡ px+d+1 · · ·

are the same as other individuals of the same age. This is described
as the ultimate period of the model because the survival (mortality)
probabilities are now equal to a ultimate (typical) set of probabilities
for persons of this age.
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Earlier in this chapter we used a basic life table to find survival
(mortality) probabilities via:

Rule:

Mortality tqx = 1− lx+t

lx
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Clearly, when we are completely in the ultimate period of the select
model, this rule still applies. That is, let s ≥ d and t ≥ 1, then

We use the counts in the ultimate life table to compute probabilities
for survival (or mortality) in the usual manner (select age is
irrelevant).
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If, however, 0 ≤ s < d and t ≥ 1, then

tp[x ]+s

must incorporate the survival experience of the select at age [x]
group. For this group we have special survival (or mortality)
probabilities

p[x ] p[x ]+1 p[x ]+2 · · · p[x ]+d−1

(q[x ] q[x ]+1 q[x ]+2 · · · q[x ]+d−1).

From these we can compute the probabilities of surviving until the
start of the ultimate period via
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These probabilities are then used to backfit (impute ) expected
survival counts l[x ]+s for 0 ≤ s < d via

So the expected survivals from the ultimate table at age x + d is
used to establish appropriate expected survivals during the select
period.

The good news is that the rule on page 3-39 still applies. We just
have to use the expected survival counts appropriate within the
select or ultimate period, whichever is needed.
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Example 3-6 Use the Select life table D.1 in the Appendix of the
textbook (here d = 2) to find:

(a) 5p[28]+3

(b) 4q[29]

(c) 6p[30]+1

(d) 3|2q[55]+1
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Example 3-7: Using the US life table (2007) construct a select life
table for ages 40-46 using select ages 40 and 41 with a 3-year
select period and

q[40] = .0015 q[40]+1 = .0017 q[40]+2 = .0021

q[41] = .0016 q[41]+1 = .0019 q[41]+2 = .0023
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Section 3.10 - Other Life Table Topics

(a) Life Table Analogues for Continuous Mortality Models

dx = lx − lx+1 = lx(1− px)

FOM µx =
− d

dt

(
x+tp0

)
|t=0

xp0

Expected future life length beyond x :

◦
ex =

∫ ∞
0

tpxdt and

Tx =

∫ ∞
0

lx+tdt

Lx =

∫ 1

0
lx+tdt
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(b) Percentiles of Future Life Length

The 100π percentile of future life length beyond age x is:

(Continuous Life Length Case ) - the t0 satisfying

t0qx = π

(Discrete Life Length Case ) - the value t0 + s0 where t0 is a
nonnegative integer and 0 ≤ s0 < 1 satisfy

In particular, the median future life length, m(x), satisfies the above
with π = 1

2 .
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(c) Central Death Rate

mx is defined as the number of deaths during the year divided by the
average number alive during the year, i.e.

This differs slightly from qx , which is the number of deaths during the
year divided by the number alive at the beginning of the year.
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