Two-Way ANOVA EXAMPLES

Description:

Subjects were students in grades 4-6 from three school districts in Ingham and Clinton Counties, Michigan. Chase and Dummer stratified their sample, selecting students from urban, suburban, and rural school districts with approximately 1/3 of their sample coming from each district. Students indicated whether good grades, athletic ability, or popularity was most important to them. They also ranked four factors: grades, sports, looks, and money, in order of their importance for popularity. The questionnaire also asked for gender, grade level, and other demographic information.

Number of cases: 372 Variable Names:

- 1. Gender: Boy or girl
- 2. Grade: 4, 5 or 6
- 3. Age: Age in years
- 4. Race: White, Other
- 5. Urban/Rural: Rural, Suburban, or Urban school district
- 6. School: Brentwood Elementary, Brentwood Middle, Ridge, Sand, Eureka, Brown, Main, Portage, Westdale Middle
- Goals: Student's choice in the personal goals question where options were 1
 = Make Good Grades, 2 = Be Popular, 3 = Be Good in Sports
- 8. Grades: Rank of "make good grades" (1=most important for popularity, 4=least important)
- 9. Sports: Rank of "being good at sports" (1=most important for popularity, 4=least important)
- 10. Looks: Rank of "being handsome or pretty" (1=most important for popularity, 4=least important)
- 11. Money: Rank of "having lots of money" (1=most important for popularity, 4=least important)

Two-way ANOVA: Money versus gender-1, region-1

Source	ਸੂਰ	99	MC	F	D
Source	Dr	55	MG	Ľ	F
gender-1	1	0.688	0.68817	0.79	0.375
region-1	2	5.167	2.58333	2.96	0.053
Interaction	2	3.554	1.77688	2.04	0.132
Error	366	319.065	0.87176		
Total	371	328.473			
S = 0.9337	R-Sq	= 2.86%	R-Sq(ad	j) = 1	.54%

		Individual 9 Pooled StDev	95% CIs For	Mean Base	ed on
gender-1	Mean	+	+	+	+
boy	3.16129	(*)	
girl	3.24731	(*)
		+		+	+
		3.10	3.20	3.30	3.40

		Individual Pooled StDe	95% CIs v	For Mea	an Based	on
region-1	Mean	+	+	+	+	+-
Rural	3.08065	(*)		
Suburban	3.16935	(*		-)	
Urban	3.36290			(*)
		+	+	+	+	+-
		3.04	3.2	20	3.36	3.52

Two-way ANOVA: Grades versus gender-1, region-1

Source	DF	SS	MS	F	P	
gender-1	1	3.882	3.88172	3.30	0.070	
region-1	2	8.344	4.17204	3.55	0.030	
Interactio	on 2	1.634	0.81720	0.69	0.500	
Error	366 4	430.452	1.17610			
Total	371 4	444.312				
S = 1.084	R-Sq =	3.12%	R-Sq(adj) = 1.8	80%	
		Individ Pooled S	ual 95% C StDev	Is For	Mean Ba	sed on
gender-1	Mean		-+	+	+-	+-
boy	2.64516		(–		*)
girl	2.44086	(*)		
			-+	+	+-	+-
		2	.40	2.55	2.70	2.85
		Individ: Pooled S	ual 95% C StDev	Is For	Mean Ba	sed on
region-1	Mean	+	+		-+	+
Rural	2.59677		(_ *)
Suburban	2.69355			(*_)
Urban	2.33871	(*)		,
		+	+		-+	+
		2.20	2.40	2	.60	2.80

Two-way ANOVA: Sports versus gender-1, region-1

Source	DF	SS	MS	F	P	
gender-1	1	66.261	66.2608	81.95	0.000	
region-1	2	4.667	2.3333	2.89	0.057	
Interaction	2	2.860	1.4301	1.77	0.172	
Error	366	295.919	0.8085			
Total	371	369.707				
S = 0.8992	R-Sq	= 19.96%	R-Sq(a	dj) = 1	8.86%	

		Individual 95	% CIs For	Mean Based	on
		Pooled StDev			
gender-1	Mean	+	+	+	+
boy	1.67204	(*)			
girl	2.51613			()	*)
		+	+	+	+
		1.80	2.10	2.40	2.70

		Individual	95% CIs 1	For Mean B	ased on Poo	led StDev
region-1	Mean	+	+	+	+	
Rural	2.23387			(*)
Suburban	2.08871		(*)	
Urban	1.95968	(*)		
		+	+	+	+	
		1.80	1.95	2.10	2.25	

Two-way ANOVA: Looks versus gender-1, region-1

Source	DF	SS	MS	F	P	
gender-1	1	48.992	48.9919	48.30	0.000	
region-1	2	6.134	3.0672	3.02	0.050	
Interactio	on 2	1.306	0.6532	0.64	0.526	
Error	366	371.210	1.0142			
Total	371	427.642				
S = 1.007	R-Sq =	13.20%	R-Sq(ad	j) = 12	.01%	
		Individ	ual 95% C	Is For	Mean Bas	ed on
		Pooled	StDev	10 101	nean bab	
gender-1	Mean	+-	+		+	+
bov	2 52151				(*_)
airl	1 79570	(* _ * _)		(,
9	1,0000	·+-	+		+	+
		1.80	2.1	0	2.40	2.70
		Individ	ual 95% C	Is For	Mean Bas	ed on
		Pooled	StDev			
region-1	Mean	+		+	+	+
Rural	2.08871	(*)		
Suburban	2.04839	(_*	-)		
Urban	2.33871		(–		*	-)
		+		+	+	+
		2.0	0 2.	20	2.40	2.60

Can "Low-Fat" Nutrition Labels Lead to Obesity?

BRIAN WANSINK and PIERRE CHANDON JOURNAL OF MARKETING RESEARCH, NOVEMBER 2006

Study examines whether low-fat nutrition labels increase the actual consumption of hedonic chocolate candies by overweight and normal-weight consumers. To achieve this, we asked adult family members (53% males, 31 years old, 25.3 body mass index [BMI]) participating in a university open house to serve themselves unusual colors of M&M's (gold, teal, purple, and white), which were clearly labeled either as "New Colors of Regular M&M's" (regular-label condition) or as "New 'Low-Fat' M&M's" (low-fat-label condition). We then measured how many calories of M&M's they ate.

Two-way ANOVA: Consumption versus BodyMass, Label

a				_	-
Source	DF.	SS	MS	F.	P
BodyMass	1	11458.2	11458.2	12.34	0.001
Label	1	35581.2	35581.2	38.32	0.000
Interaction	1	9030.0	9030.0	9.72	0.004
Error	36	33430.5	928.6		
Total	39	89500.0			
S = 30.47	R-Sq	= 62.65%	R-Sq(a	dj) = 5	9.53%

	BodyMass			
Label	overweight	regular weight		
"regular" m&m's	Mean=191.6 Stdev=45.0 N= 10	Mean=187.80 Stdev=17.37 N=10		
"low fat" m&m's	Mean=281.3 Stdev=34.6 N=10	Mean=217.40 Stdev=13.56 N=10		