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Abstract

Latent Dirichlet Allocation (LDA) is a heavily-used Bayesian hierarchical model used in

machine learning for modelling high-dimensional sparse count data, for example, text docu-

ments. As a Bayesian model, it incorporates a prior on a set of latent variables. The prior is

indexed by some hyperparameters, which have a big impact on inference regarding the model.

The ideal estimate of the hyperparameters is the empirical Bayes estimate which is, by defini-

tion, the maximizer of the marginal likelihood of the data with all the latent variables integrated

out. This estimate cannot be obtained analytically. In practice, the hyperparameters are chosen

either in an ad-hoc manner, or through some variants of the EM algorithm for which the the-

oretical basis is weak. We propose an MCMC-based fully-Bayesian method for obtaining the

empirical Bayes estimate of the hyperparameter. We compare our method with other existing

approaches both on synthetic and real data. The comparative experiments demonstrate that the

LDA model with hyperparameters specified by our method outperforms models with the hy-

perparameters estimated by other methods. Supplemental materials for the paper are available

online.
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1 Introduction

Latent Dirichlet Allocation (LDA, Blei et al. 2003) is a general probabilistic framework for mod-

elling high-dimensional sparse count data represented by feature counts. It was introduced by Blei

et al. (2003) to discover topics in text documents. Since its introduction, it and its extensions have

been successfully applied to many other data types, such as image-caption data (Blei and Jordan,

2003) and author-document data (Rosen-Zvi et al., 2004), and applications to new problems con-

tinue to arise (the paper has been cited over 23,000 times according to Google Scholar, and the

yearly citation rate is currently increasing). In this paper, we focus on data consisting of a collec-

tion of documents. Suppose we have a corpus of documents, which span several different topics,

such as sports, medicine, politics, etc. We imagine that for each word in each document, there is

a latent (i.e. unobserved) variable indicating a topic from which that word is drawn. The main ob-

jectives in using the LDA model are usually to obtain an interpretable set of topics for the corpus,

and to make inference on the latent topic variables for each document.

To describe the LDA model, we first set up some terminology and notation. There is a vocab-

ulary of V words; typically, this is taken to be the union of all the words in all the documents of

corpus, after removing stop (i.e. uninformative) words. There are D documents in the corpus, and

for d = 1, . . . , D, document d has nd words, wd1, . . . , wdnd
. In total, the corpus has N =

∑D
d=1 nd

words. The order of the words is considered uninformative, and so is neglected. Each word is

represented as a V -dimensional index vector with a 1 at the vth element, where v denotes the term

selected from the vocabulary. Thus, document d is represented by the matrixwd = (wd1, . . . , wdnd
)

and the corpus is represented by the list w = (w1, . . . ,wD). A topic is, by definition, a distribu-

tion over the vocabulary, i.e. a point in SV−1, the (V − 1)-dimensional simplex. The number of

topics, T , is finite and known. For each word wdi, i = 1, . . . , nd and d = 1, . . . , D, zdi is a T -

dimensional index vector which represents the latent variable that denotes the topic from which

wdi is drawn. Let zd = (zd1, . . . , zdnd
) and z = (z1, . . . ,zD). The distribution of zd will depend

on a document-specific variable θd which indicates a distribution on the topics for document d. We

let θ = (θ1, . . . , θD). We will use DirL(a1, . . . , aL) to denote the finite-dimensional Dirichlet dis-

tribution on the simplex SL−1 and MultL(b1, . . . , bL) to denote the multinomial distribution with

number of trials equal to 1 and probability vector (b1, . . . , bL). We will form a T × V matrix β,

whose tth row is the tth topic (how β is formed will be described shortly). Thus, β will consist

of vectors β1, . . . , βT , all lying in SV−1. Formally, the LDA model is described by the following

Bayesian hierarchical model, in which η, α1, α2, . . . , αT > 0 are hyperparameters:
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1. βt
iid∼ DirV (η, . . . , η), t = 1, . . . , T .

2. θd
iid∼ DirT (α1, . . . , αT ), d = 1, . . . , D, and the θd’s are independent of the βt’s.

3. Given θ1, . . . , θD, zdi
iid∼ MultT (θd), for i = 1, . . . , nd, d = 1, . . . , D, and the D matrices

(z11, . . . , z1n1), . . . , (zD1, . . . , zDnD
) are independent.

4. Given β and the zdi’s, wdi is is drawn from the row of β indicated by zdi, independently for

i = 1, . . . , nd, d = 1, . . . , D.

The parameters in the model are β, θ, and z, and we let ψ = (β,θ, z) denote the entire set of

parameters. We also let h = (α1, . . . , αT , η) denote the hyperparameter vector andH = (0,∞)T+1

denote the hyperparameter space. Lines 1–3 of the LDA model description define a prior distri-

bution on the parameters, which we will denote by ν(h), and line 4 gives the likelihood, which we

denote by `w(ψ). We observe the words in the documents of the corpus, and inference regarding

the parameter vector ψ is based on its posterior distribution, which we denote by ν(h)
ψ |w. In order

to use the LDA model, one needs to specify h. This hyperparameter has a big impact on inference

drawn from the model. For example, consider
∫
‖βi − βj‖2 dν

(h)
ψ |w(ψ), the posterior expectation

of the L2 norm between topics i and j, and for some small ε, ν(h)
ψ |w(‖θi − θj‖2 ≤ ε), the posterior

probability that the topic vectors for documents i and j are nearly the same. These are standard

objects of interest, and George and Doss (2018, pages 16–17) have shown that on real corpora

these vary considerably with h. George (2015) showed that in single-membership situations, h

affects the model’s classification performance and its ability to correctly cluster the documents in

the corpus. Therefore, it is important to choose the hyperparameter carefully.

Current schemes for specifying the hyperparameter fall into three groups. The first group

consists of very simple ad-hoc rules that do not depend on the data. These are trivial to implement

but are not based on any statistical principle; and they perform poorly. They are reviewed briefly

in Section 4.1. The second and third group consist of methods that are based on the following idea.

Let mw(h) be the marginal likelihood of the corpus. This is the likelihood of the corpus with all

the latent variables integrated/summed out, i.e. mw(h) =
∫
`w(ψ) dν(h)(ψ). A principled way of

choosing h is to use ĥ = arg maxhmw(h) which is, by definition, the empirical Bayes estimate of

h. Unfortunately, it is impossible to obtain ĥ explicitly: the function m(h) (we drop the subscript

w for simplicity) is analytically intractable.

In approaches from the second group, for each h over a fine grid in H, we run a Monte Carlo

experiment to form an estimate m̂(h) of m(h); we do this separately for each h, and we estimate

arg maxhm(h) via arg maxh m̂(h). Papers that proceed in this way include Chib (1995) and Chib
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and Jeliazkov (2001). We also mention the “harmonic mean estimator” introduced by Newton and

Raftery (1994). There are several significant problems associated with this approach. One is that

convergence can be slow. For example, the harmonic mean estimator typically converges at a rate

which is much slower than n1/2, where n is the Monte Carlo sample size (Wolpert and Schmidler,

2012). Also, the fact that a separate Monte Carlo experiment needs to be run for every h over a

grid in H makes the method very time consuming. Although methods in this group do not work

well in the LDA model (in fact Newton and Raftery (1994) expressed reservations regarding the

harmonic mean estimator in general when they introduced it), we mention them because they are

the ones that are the most frequently used in the machine learning literature; see Wallach et al.

(2009) for a discussion.

The third group consists of methods that use the EM algorithm to find the maximizer of the

marginal likelihood function. Here, the “complete data likelihood” ph(ψ,w) is available directly

from lines 1–4 of the LDA model description, sow may be viewed as “observed data,” and ψ may

be viewed as “missing data.” Unfortunately, the E-step, which is an expectation with respect to the

intractable distribution ν(h)
ψ |w, cannot be carried out exactly, and two variants of the EM algorithm

have been used. One of these is Monte Carlo EM, in which the expectation is approximated by

MCMC. This has been carried out by Wallach (2006), who faced the additional problem that in

her implementation the maximization in the M-step cannot be done in closed form either and an

approximation is used instead. (She used the Collapsed Gibbs Sampler (CGS) of Griffiths and

Steyvers (2004) as her Markov chain and dubbed her scheme “Gibbs-EM.”) George and Doss

(2018) have shown that the performance of Gibbs-EM is mixed: it sometimes gives accurate ap-

proximations, but there are classes of cases where the algorithm converges to a value of h which

is not arg maxhm(h). Another variant is “variational EM” (VEM), in which the E-step is ap-

proximated through variational methods (see Jordan et al. (1999) for an introduction to variational

methods, and Blei et al. (2017) for a recent review). This is the approach that was originally used

by Blei et al. (2003), and it is extremely fast. However, in empirical studies this approach has

not performed well for a variety of corpora. For Gibbs-EM, there are no useful bounds on the

approximation used in the M-step, and for VEM there are no useful bounds on the approximation

used in the E-step. Because the approximations are used at every iteration of the algorithm, there

are no results regarding the theoretical properties of either Gibbs-EM or VEM. A more thorough

discussion of both these variants of the EM algorithm is given in Section 4.1.

A different approach for estimating ĥ = arg maxhm(h) was developed by George and Doss
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(2018). They devised an algorithm based on a combination of MCMC and importance sampling

for forming an estimate of the entire marginal likelihood surface m(h) up to a multiplicative

constant. More specifically, using a single Markov chain—a so-called serial tempering chain—

they form an importance sampling estimate M̂(·) with the property that M̂(h)
a.s.−→ cm(h) si-

multaneously for all h, where c is an unknown constant, and the convergence is as the Markov

chain length tends to infinity. (For the purpose of estimating arg maxhm(h), the fact that c

is unknown is immaterial: arg maxh cm(h) = arg maxhm(h).) Additionally, they show that

arg maxh M̂(h)
a.s.−→ arg maxhm(h). Although their method works well for moderate-size cor-

pora, for large corpora it requires considerable tuning because for such corpora the importance

sampling weights are highly variable. A more detailed discussion of the method and its limitations

is given in Section 4.1.

In this paper we use a “fully-Bayes approach,” not for the purpose of doing a fully-Bayes anal-

ysis, but rather for the purpose of selecting a single value of the hyperparameter h. The approach

is based on ideas in the recent paper by Doss and Linero (2018). Their method, which we now

review, is very general, i.e. it is not developed for any particular model, and whether or not it is

successful is determined by how it is implemented. Very briefly, in the context of the LDA model

the method is as follows. Let H denote the hyperparameter space, and for simplicity we tem-

porarily assume that this is a compact subset of RT+1, for example we assume that H is a large

hypercube. We can then put a uniform prior on H, which we denote by U , and we let u be its

density. This induces a joint distribution on (w,ψ, h), which we will denote by ν. Let ν(ψ,h) |w

denote the posterior distribution of (ψ, h) given w, and let νh |w denote the marginal posterior

distribution of h givenw. Regarding νh |w, the statement “the posterior is proportional to the like-

lihood times the prior” reads as νh |w(h) ∝ m(h)u(h). Since u is the uniform distribution this may

be rewritten as νh |w(h) ∝ m(h), so the mode of νh |w is arg maxhm(h). Now, suppose that we

can construct an ergodic Markov chain (ψ(1), h(1)), (ψ(2), h(2)), . . . whose invariant distribution is

ν(ψ,h) |w. The marginal sequence h(1), h(2), . . . then has invariant distribution equal to νh |w. Any

method for estimating the mode of νh |w from the sequence h(1), h(2), . . . gives rise to an estimate

of arg maxhm(h). (The Doss and Linero (2018) paper is unpublished, but we do not rely on it

except for the idea stated in the present paragraph.)

Now, generally speaking, estimation of the mode of a density is a hard problem. If f is a

density on Rp, the rate of convergence of typical nonparametric estimators of the mode based on

an iid sample of size n is n1/(4+p) (Tsybakov, 1990; Donoho and Liu, 1991) so even in the sim-
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plest case where p = 1, this is the very slow rate of n1/5. In our LDA setup, we are able to

construct an augmentation random vector A such that when we consider the vector (w,ψ, h, A),

the marginal conditional distribution of (ψ, h) given w is equal to ν(ψ,h) |w, and we are able to

construct a uniformly geometrically ergodic Markov chain (ψ(1), h(1), A(1)), (ψ(2), h(2), A(2)), . . .

with invariant distribution ν(ψ,h,A) |w. Moreover, Rao-Blackwellization is possible, i.e. the con-

ditional density of h given (ψ, A) and w is available in closed form, so νh |w may be estimated

by ν̂h |w(h) = (1/n)
∑n

i=1 νh | (ψ=ψ(i),A=A(i),w)(h). This is simply an average, so we have a central

limit theorem that says that for any fixed h, n1/2
(
ν̂h |w(h)−νh |w(h)

)
converges in distribution to a

mean-zero normal random vector. We view ν̂h |w(·) and νh |w(·) as functions, and using tools from

empirical process theory, we establish uniformity in the convergence, i.e. n1/2
(
ν̂h |w(·)− νh |w(·)

)
converges in distribution to a mean-zero Gaussian process indexed by h, and this entails that

n1/2
(
arg maxh ν̂h |w(h) − arg maxh νh |w(h)

)
converges in distribution to a mean-zero normal

random vector; in particular, arg maxh ν̂h |w(h) converges to arg maxh νh |w(h) at the rate of n1/2.

This gives a successful implementation of the approach in Doss and Linero (2018). To recapitulate,

the method involves two distinct steps: (1) construct a Markov chain whose invariant distribution

is the posterior distribution of (ψ, h) given w, and (2) develop a procedure for using the output

of the chain to efficiently estimate the marginal posterior density of h. We develop two ways of

carrying out Step 1. The first is based on a combination of Hamiltonian Monte Carlo and the CGS

of Griffiths and Steyvers (2004), and the second is based on an implementation of data augmenta-

tion. We also develop two ways of carrying out Step 2. Then we compare and contrast the various

combinations and make a recommendation for which overall procedure to use.

The paper is organized as follows. In Section 2, we develop two Markov chains on (z, h) with

invariant distribution equal to the marginal posterior distribution of (z, h) given w (we argue that

it is possible to deal with (z, h) instead of with (ψ, h) and that doing so is more convenient). In

Section 3, we present two methods for estimation of the marginal posterior density of h given

w from the output of the Markov chains. Also in Section 3 we give results on consistency and

asymptotic normality of the resulting estimates of arg maxhm(h), and explain how to construct

confidence sets for arg maxhm(h). In Section 4 we give the results of experiments on synthetic

and real data sets, compare and contrast the various methods we propose, also compare them with

other methods in the current literature, and make our recommendations.
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2 Two Markov Chains Whose Invariant Distribution Is the

Posterior Distribution of (z, h)

This section consists of two parts. In Section 2.1 we show how we can use Hamiltonian Monte

Carlo (HMC) in conjunction with the CGS of Griffiths and Steyvers (2004) to develop a Markov

chain with invariant distribution equal to ν(z,h) |w. In Section 2.2 we introduce an augmentation

vector A and develop a chain that runs on the triple (z, h, A), and for which the marginal sequence

(z(1), h(1)), (z(2), h(2)), . . . also has invariant distribution equal to ν(z,h) |w; we also provide a the-

orem that states that this chain is uniformly ergodic. We compare these two chains in Section 4,

where we shall see that which chain is preferable depends on certain features of the corpus, such as

its size. Note that we are dealing with the pair (z, h), whereas the development in Doss and Linero

(2018) deals with the pair (ψ, h), where ψ = (β,θ, z) is the full parameter. However, there is

no problem in working with (z, h) as long as we can efficiently estimate the marginal posterior

density of h given w from the pairs (z(1), h(1)), (z(2), h(2)), . . . by Rao-Blackwellization or some

other method which, as we shall see, is the case.

Before proceeding, we need to establish our notation for distributions, since there are many

distributions involved in our development. When h is not random, we use ν(h) for the prior distri-

bution ofψ and add subscripts as necessary to denote conditional and marginal distributions. Thus

for example, ν(h)
ψ |w denotes the posterior distribution ofψ in the LDA model indexed by h. When h

is random, we use ν for the joint prior distribution of (h,ψ) and again use subscripts as necessary.

So for example, νh denotes the prior distribution of h, and νh |w denotes the marginal posterior

distribution of h. Also, note that ν(h), ν, νh |w, etc. are probability measures; however, we will on

occasion slightly abuse notation and use the same symbol to denote both the probability measure

and its density, if this does not cause confusion. Thus, when we write νh |w(h) ∝ m(h)u(h), this

will be understood to be a statement regarding densities.

In Section 1 we took the prior on h, νh, to be the uniform distribution onH, which we temporar-

ily assumed was a compact set. In fact, we prefer to take H = (0,∞)T+1, and it turns out that the

posterior corresponding to the uniform prior on (0,∞)T+1 is improper. This is shown in Section 1

of Xia and Doss (2019). Therefore we will take νh to be a proper prior. When νh is a proper prior,

we need to take the statement νh |w(h) ∝ m(h)νh(h) and rewrite it as νh |w(h)/νh(h) ∝ m(h),

so we will need to estimate the maximizer of νh |w/νh, rather than the mode of νh |w, but this

does not create any difficulties either with the theory or in practice. We will use gamma priors
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because of their conjugacy properties; specifically, we will take νh(h) = ga,b(η)
∏T

t=1 ga,b(αt),

where ga,b(u) ∝ ua−1 exp(−bu). For small b, g1,b is nearly uniform (in the sense that as b→ 0, g1,b

restricted to a bounded set converges to the uniform distribution on that set). So in our experiments

in Section 4 we will use g1,b with a small b; however, because we are adjusting via division by νh,

any gamma distribution would work.

We digress briefly and consider the following natural question: Since we are dealing with

a fully-Bayes approach, why not stop there, i.e. why do we need to go on and maximize the

marginal likelihood of h to implement an empirical Bayes approach? The fully-Bayes approach,

which goes under the general name of “Bayesian model averaging,” can be very useful. On the

other hand, there are several good reasons why one may want to avoid it. First, to use a fully-

Bayes approach, we must specify the prior on h, and as mentioned in Section 1, this choice can

have a great influence on the analysis. Thus, two different analysts can reach different conclusions.

In contrast, the empirical Bayes approach consists of maximizing the marginal likelihood, which

does not involve any prior on h. Our implementation of the empirical Bayes approach does involve

putting a prior on h, but this is just a mechanism for obtaining the maximizer. To clarify, any prior

on h would yield the same estimate of h, so we are free to use any prior we want, and our choice

is based on convenience. Second, one may wish to do Bayesian model selection, as opposed

to Bayesian model averaging, because the subsequent inference is then more parsimonious and

interpretable. The issues surrounding the choice of empirical Bayes and fully-Bayes inference are

discussed more fully in George and Foster (2000) and Robert (2001, Chapter 7).

Before developing our Markov chain algorithms, we will express the joint distribution of (z, h)

up to a normalizing constant, and in order to do that we need to review some notation which is

standard when using the LDA model. Let ndt =
∑nd

i=1 zdit denote the number of words in document

d assigned to topic t; let mdtv =
∑nd

i=1 zditwdiv denote the number of words in document d for

which the latent topic is t and the index of the word in the vocabulary is v; let m·tv =
∑D

d=1 mdtv

denote the number of words in the corpus for which the latent topic is t and the vocabulary element

is v; and let m·t· =
∑V

v=1m·tv denote the number of words in the corpus for which the latent topic

is t.

For the model in which h is not random, the prior distribution of ψ is given by lines 1–3 of the

LDA model description, and is

ν(h)(ψ) =

[
D∏
d=1

(
Γ
(∑T

t=1 αt
)∏T

t=1 Γ(αt)

T∏
t=1

θndt+αt−1
dt

)][
T∏
t=1

(
Γ(V η)

Γ(η)V

V∏
v=1

βη−1
tv

)]
. (2.1)
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When h is random, the joint prior distribution of (ψ, h) is obtained by multiplying the expression

for ν(h)(ψ) given in (2.1) by
[∏T

t=1 α
a−1
t exp(−bαt)

]
[ηa−1 exp(−bη)]. The joint posterior distri-

bution of (ψ, h) is obtained (up to a normalizing constant) by further multiplying by the likelihood

(given by line 4 of the LDA model description) and, finally, the joint posterior distribution of (z, h)

is obtained by integrating out θ and β. This gives

ν(z,h) |w(z, h) ∝

[
D∏
d=1

(
Γ
(∑T

t=1 αt
)∏T

t=1 Γ(αt)

∏T
t=1 Γ(ndt + αt)

Γ
(
nd +

∑T
t=1 αt

))][ T∏
t=1

αa−1
t exp(−bαt)

]

×

[
T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)]
ηa−1 exp(−bη).

(2.2)

We will construct two MCMC algorithms for sampling from this distribution, and our general

approach is as follows. Write (z, h) = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
, h). The CGS of Griffiths

and Steyvers (2004) runs on the N -dimensional vector (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
), updat-

ing one variable at a time, with β and θ integrated out. Let Qh(z, z
′) denote the Markov transition

function for the CGS for the LDA model indexed by h. The Markov transition function Qh leaves

the posterior distribution ν(h)
z |w invariant; equivalently, Qh leaves νz | (h,w) invariant. Now, suppose

that Pz(h, h′) is a Markov transition function that leaves νh | (z,w) invariant. It then follows that the

composition of Qh and Pz leaves ν(z,h) |w invariant. In other words, if we update z using Qh (in N

steps) and then update h using Pz, then the result is one cycle of a Markov chain whose invariant

distribution is ν(z,h) |w. We will construct two Markov transition functions which leave νh | (z,w)

invariant, one based on Hamiltonian Monte Carlo (Section 2.1), and the other based on data aug-

mentation (Section 2.2). Either of these can be used, in conjunction with the CGS, to produce a

Markov chain on (z, h) with the desired invariant distribution.

Let w(−di) denote the collection of all the words in the corpus except for wdi, and let z(−di)

denote the vector consisting of all the zkl’s except for zdi. Let ndt(−di), m·tv(−di), and m·t·(−di)

be the variables ndt, m·tv, and m·t·, respectively, except that they are based on w(−di) and z(−di),

instead of w and z. The conditional distributions needed to run the CGS are given by

νzdi | (z−(di),h,w)(et) ∝
(

ndt(−di) + αt

nd − 1 +
∑T

t′=1 αt′

)(
m·tv(−di) + η

m·t·(−di) + V η

)
, (2.3)

where et denotes the tth unit vector, i.e. the vector with a 1 at the tth position and 0’s elsewhere.

Formula (2.3) is given without proof in Griffiths and Steyvers (2004). Its derivation is not trivial

and is given, for example, in Chen (2015). In the next two subsections we turn to our methods for

sampling from νh | (z,w).
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We now pause to consider the big picture. We have chosen to use the CGS to sample z. An-

other possibility is to approximate ν(h)
z |w (equivalently νz | (h,w)) via variational methods; see the

Appendix to Blei et al. (2003) for a description. Variational inference has the advantage that it

is very fast, and so can handle very large corpora. Unfortunately, there are no useful theoretical

bounds on the approximation error. If we were to use variational inference to estimate νz | (h,w)

then, because an approximation would be used in every sweep through (z, h), we would have no

guarantee that the resulting sequence (z(1), h(1)), (z(2), h(2)), . . . has ν(z,h) |w as its limiting distri-

bution, and in fact we would have no guarantee that the sequence even has a limiting distribution.

For this reason, we did not use the variational approximation. A viable alternative to using the

CGS is to use the “Grouped Gibbs Sampler,” which is a two-cycle Gibbs sampler that runs on the

pair (z, (β,θ)). This sampler, discussed in Section 5, can handle very large corpora because it is

amenable to distributed computing: given z and w, the θd’s and βt’s are all independent, so can

be updated simultaneously by different processors; and given β, θ, and w, the components of z

are independent, so can also be updated simultaneously by different processors. Although we did

not use it in the present paper, this alternative method of sampling is potentially a good choice,

especially when dealing with large corpora.

2.1 A Markov Chain Based on Hamiltonian Monte Carlo

It is not really possible to explain how HMC can be used to sample h without first explaining what

it is. HMC is a highly-developed methodology, and because the tutorials on it that currently exist

in the literature are quite lengthy and detailed, in Section 2 of Xia and Doss (2019) we review

HMC, and our description is the simplest that enables the reader to understand how we apply it.

The reader who is interested in a more detailed description of HMC is referred to Neal (2011), on

which most of our review is based. Below, we explain how we use HMC to construct a Markov

transition function whose invariant distribution is νh | (z,w).

Application of HMC to Sampling the Hyperparameters in the LDA Model

We now show how HMC can be used to make a draw from νh | (z,w), and for this we need an

expression for νh | (z,w), at least up to a normalizing constant. Note that νh | (z,w) has the same form

as ν(z,h) |w, for which an expression is given in (2.2), except that nd, ndt, m·tv, and m·t·, which

are functions of z, are now viewed as constants (these quantities are defined in the paragraph

above (2.1)). The leapfrog algorithm implicitly assumes that the support of νh | (z,w) is RT+1,
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and in the values for h that it returns, some components may be negative. In fact, the support

of νh | (z,w) is (0,∞)T+1. One way of handling this problem is to simply allow the Metropolis

acceptance probability to deal with it: values of h with negative components are automatically

rejected. Unfortunately, when dim(h) is large, this can lead to an excessively high rejection rate.

An alternative solution, which we have taken instead, is to simply apply a component-wise log

transformation. Let h̃ = (A1, . . . , AT , B), where At = log(αt), t = 1, . . . , T , and B = log(η).

We work with the induced distribution on h̃, which is given by

νh̃ | (z,w)(h̃) ∝

[
D∏
d=1

(
Γ
(∑T

t=1 exp(At)
)∏T

t=1 Γ(exp(At))

∏T
t=1 Γ(ndt + exp(At))

Γ
(
nd +

∑T
t=1 exp(At)

))]

×

[
T∏
t=1

exp{(a− 1)At} exp{−b exp(At)}

]
exp
(∑T

t=1At
)

×

[
T∏
t=1

(
Γ(V exp(B))

Γ(exp(B))V

∏V
v=1 Γ(m·tv + exp(B))

Γ(m·t· + V exp(B))

)]
× exp{(a− 1)B} exp{−b exp(B)} exp(B).

(2.4)

Let U(h̃) = − log
(
νh̃ | (z,w)(h̃)

)
, which is the function whose gradient we need in order to run

the leapfrog algorithm. With C denoting the normalizing constant in (2.4), we have

U(h̃) = −
D∑
d=1

[
log

(
Γ

(
T∑
t=1

exp(At)

))
−

T∑
t=1

log
(
Γ(exp(At))

)
+

T∑
t=1

log
(
Γ(ndt + exp(At))

)
− log

{
Γ
(
nd +

∑T
t=1 exp(At)

)}]
− a

∑T
t=1 At + b

∑T
t=1 exp(At)

−
∑T

t=1

[
log
(
Γ(V exp(B))

)
− V log

(
Γ(exp(B))

)
+
∑V

v=1 log
(
Γ(m·tv + exp(B))

)
− log

(
Γ(m·t· + V exp(B))

)]
− aB + b exp(B) + log(C).

(2.5)

We can now get a closed-form expression for the gradient of U (the constant C has no effect on

the gradient of U ), which involves the digamma function Ψ, defined by Ψ(x) = ∂ log(Γ(x))/∂x.
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From (2.5) we get

∂U

∂At
= − exp(At)

{
D
[
Ψ
(∑T

t′=1 exp(At′)
)
−Ψ(exp(At))

]
+

D∑
d=1

[
Ψ(ndt + exp(At))−Ψ

(
nd +

∑T
t′=1 exp(At′)

)]
− b
}
− a,

∂U

∂B
= − exp(B)

{
TV
[
Ψ(V exp(B))−Ψ(exp(B))

]
+

T∑
t=1

V∑
v=1

Ψ(m·tv + exp(B))− V
T∑
t=1

Ψ(m·t· + V exp(B))− b
}
− a.

(2.6)

With formulas (2.5) and (2.6) in place, we can now combine Algorithm S-1 in Section 2 of Xia and

Doss (2019) and the CGS to obtain Algorithm 1, which describes a complete scheme for generating

a Markov chain with invariant distribution equal to ν(z,h) |w. (Note that although HMC is used to

generate from νh̃ | (z,w), because we transform h̃ back to the original scale, the final output of the

algorithm is a sequence whose invariant distribution is νh | (z,w).)

2.2 A Markov Chain Based on Data Augmentation

HMC requires the selection of two tuning parameters. In contrast, data augmentation does not

involve any tuning parameters. The method is described as follows. Suppose that fX is an in-

tractable density on a space X, and suppose that f is a density on the space X × Y with the

following two properties: (i)
∫

Y f(x, y) dy = fX(x) for all x ∈ X, and (ii) simulation from the

associated conditional pdf’s fX |Y and fY |X is feasible. The data augmentation algorithm works

by successively generating from fX |Y and fY |X , obtaining (X1, Y1), (X2, Y2), . . .. This sequence

of pairs is a Markov chain with invariant density f , and the marginal sequence X1, X2, . . . is a

Markov chain with invariant density fX . Transparently, the procedure described above is noth-

ing more than a two-cycle Gibbs sampler. Given an intractable density fX(0) , it is sometimes

possible to devise an augmentation scheme involving k variables X(1), . . . , X(k), and data aug-

mentation is then simply a (k + 1)-cycle Gibbs sampler on the vector (X(0), X(1), . . . , X(k)).

The marginal sequence X(0)
1 , X

(0)
2 , . . . is then not necessarily a Markov chain, but if the Markov

chain (X
(0)
1 , X

(1)
1 , . . . , X

(k)
1 ), (X

(0)
2 , X

(1)
2 , . . . , X

(k)
2 ), . . . is ergodic, then the marginal sequence

X
(0)
1 , X

(0)
2 , . . . has limiting density equal to fX(0) . In the above, fX and f are densities with respect

to Lebesgue measure, but the description can be extended to more general settings. A nice ex-

position to data augmentation is Hobert (2011), which also discusses conditions under which one

11



Algorithm 1: Sampling (z, h)

Data: Observed words w

Result: A Markov chain (z(1), h(1)), (z(2), h(2)), . . . with invariant distribution equal to

ν(z,h) |w

1 Initialize z(0), h(0), ε, L, n. Let h̃(0) = log(h(0)), U(h̃) be defined by (2.5), and∇h̃U(h̃) be

defined by (2.6);

2 for i = 1, . . . , n do

// Update z given h by the CGS

3 for each zdi in z do

4 update zdi using the multinomial distribution νzdi | (z−(di),h,w) given by (2.3);

// Update h given z by HMC

5 generate y(0) ∼ N (0,M);

6 set h̃(i) ← h̃(i−1), h∗ ← h̃(i−1), y∗ ← y(0);

7 for j = 1, . . . , L do

8 set y∗ ← y∗ − ε∇hU(h∗)/2;

9 set h∗ ← h∗ + εM−1y∗;

10 set y∗ ← y∗ − ε∇hU(h∗)/2;

11 set r = exp
{
−U(h∗)− (y∗)>M−1y∗/2 + U(h̃(i−1)) + (y(0))>M−1y(0)/2

}
;

12 with probability min{1, r} set h̃(i) ← h∗;

13 set h(i) = exp(h̃(i));

can establish the needed ergodicity. In our situation, the variable h will play the role of X(0), and

νh | (z,w) will correspond to fX(0) . It is worth emphasizing that data augmentation plays a role only

in the local generation of h in the (z, h) pair.

Our data augmentation scheme is based on a strategy originally used in Escobar and West

(1995) to estimate the posterior distribution of the precision parameter in a mixture of Dirichlet

processes problem in which there is a prior on this parameter. A related strategy was used in

Teh et al. (2006) in the context of hierarchical Dirichlet processes, and the strategy was also used

by Newman et al. (2009) in a version of the hierarchical Dirichlet processes model suitable for

distributed computing. Our scheme is based on the two facts below. Recall that the Beta function

is defined by B(a, b) = Γ(a)Γ(b)/Γ(a + b), for any a, b > 0, and gives the normalizing constant

for the un-normalized density qa−1(1− q)b−1 on (0, 1).

12



Fact 1 For any u > 0 and positive integer n,

Γ(u)

Γ(u+ n)
=
B(u, n)

Γ(n)
=

1

Γ(n)

∫ 1

0

qu−1(1− q)n−1 dq.

For n a positive integer, consider the product u(u + 1) · · · (u + n − 1), which is a polynomial

(in u) of degree n, call it pn(u). The coefficients of this polynomial are called “unsigned Stirling

numbers of the first kind,” and are denoted S(n, i), i = 0, . . . , n, i.e.

pn(u) =
n∑
i=0

S(n, i)ui. (2.7)

Fact 2 For any u > 0 and positive integer n,

Γ(u+ n)

Γ(u)
= u(u+ 1) · · · (u+ n− 1) =

n∑
i=0

S(n, i)ui.

Note that Fact 2 is a tautology.

Let u > 0 and consider the discrete random variable with values in {0, 1, . . . , n} and prob-

ability mass function πu(i) ∝ S(n, i)ui/c, where c is a normalizing constant. Fact 2 states that

Γ(u+ n)/Γ(u) is the normalizing constant, i.e.

πu(i) =
Γ(u)

Γ(u+ n)
S(n, i)ui. (2.8)

The probability mass function πu appears in consideration of samples associated with the Dirichlet

process, as follows. Consider the Dirichlet process D(G, u), where G is the base probability

measure, assumed continuous, and u > 0 is the concentration parameter. Suppose F ∼ D(G, u)

and ξ1, . . . , ξn
iid∼ F . As we will soon see, πu arises as the distribution of the number of distinct

values among ξ1, . . . , ξn. For l = 1, . . . , n, let Yl be the indicator that ξl is not equal to any of

its predecessors. As is well known, Yl ∼ Bernoulli
(
p = u/(u + l − 1)

)
. Therefore, denoting

Y = (Y1, . . . , Yn) and y = (y1, . . . , yn), we have

P (Y = y) =
Γ(u)

Γ(u+ n)
u

Pn
l=1 yl

n∏
l=1

(l − 1)1−yl .

It follows that for I :=
∑n

l=1 Yl, for i = 0, 1, . . . , n, we have

P (I = i) =
∑

Pn
l=1 yl=i

P (Y = y) =
Γ(u)

Γ(u+ n)

∑
y:

Pn
l=1 yl=i

u
Pn

l=1 yl

n∏
l=1

(l − 1)1−yl

=
Γ(u)

Γ(u+ n)
ui

∑
y:

Pn
l=1 yl=i

n∏
l=1

(l − 1)1−yl

=
Γ(u)

Γ(u+ n)
uiS(n, i),

(2.9)
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where the last equality in (2.9) comes from the fact that
∑
y:

Pn
l=1 yl=i

∏n
l=1(l − 1)1−yl is precisely

the coefficient of ui for the polynomial pn defined in (2.7). From (2.9) we see that the distribution

of the random variable I is equal to the distribution πu defined in (2.8). The significance of this is

that if we wish to generate a random variable from the distribution πu, for some u, then we can do

this by simply generating n independent Bernoullis and taking their sum, instead of dealing with

the Stirling numbers, which are computationally expensive to obtain.

We now return to the conditional distribution νh | (z,w) which, as mentioned in the beginning of

Section 2.1, is the same as ν(z,h) |w, except that nd, ndt,m·tv, andm·t· are viewed as fixed constants.

For convenience, we write it explicitly here, so we can notice that for this distribution, α and η are

mutually independent given z and w. We have

νh | (z,w)(h) ∝

[
D∏
d=1

(
Γ
(∑T

t=1 αt
)∏T

t=1 Γ(αt)

∏T
t=1 Γ(ndt + αt)

Γ
(
nd +

∑T
t=1 αt

))][ T∏
t=1

αa−1
t exp(−bαt)

]

×

[
T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)]
ηa−1 exp(−bη)

∝ να | (z,w)(α)× νη | (z,w)(η),

(2.10)

in self-explanatory notation. This conditional independence makes joint sampling of α and η

simple: we sample α and η separately from να | (z,w)(α) and νη | (z,w)(η), respectively. We may

write

να | (z,w)(α) ∝

[
D∏
d=1

(
Γ
(∑T

t=1 αt
)∏T

t=1 Γ(αt)

∏T
t=1 Γ(ndt + αt)

Γ
(
nd +

∑T
t=1 αt

))][ T∏
t=1

αa−1
t exp(−bαt)

]

=

[
D∏
d=1

Γ
(∑T

t=1 αt
)

Γ
(
nd +

∑T
t=1 αt

)][ D∏
d=1

T∏
t=1

Γ(ndt + αt)

Γ(αt)

][
T∏
t=1

αa−1
t exp(−bαt)

]
. (2.11)

Applying Fact 1 to the first term in brackets in (2.11), we get

D∏
d=1

Γ
(∑T

t=1 αt
)

Γ
(
nd +

∑T
t=1 αt

) =
D∏
d=1

[
1

Γ(nd)

∫ 1

0

q
PT

t=1 αt−1
d (1− qd)nd−1 dqd

]
, (2.12)

and applying Fact 2 to the second term in brackets in (2.11), we get

D∏
d=1

T∏
t=1

Γ(ndt + αt)

Γ(αt)
=

D∏
d=1

T∏
t=1

ndt∑
i=0

S(ndt, i)α
i
t. (2.13)

In view of equations (2.12) and (2.13), we see that if we introduce the augmentation variables I =

(I11, . . . , I1T , . . . , ID1, . . . , IDT ) andQ = (Q1, . . . , QD), then να | (z,w)(α) may be re-expressed in
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an augmented form up to a normalized constant as

ν(α,I,Q) | (z,w)(α, i, q)

∝

[
D∏
d=1

q
PT

t=1 αt−1
d (1− qd)nd−1

][
D∏
d=1

T∏
t=1

S(ndt, idt)α
idt
t

][
T∏
t=1

αa−1
t exp(−bαt)

]
. (2.14)

We will now show that (2.14) enables us to obtain closed-form expressions for να | (I,Q,z,w),

νI | (α,Q,z,w), and νQ | (α,I,z,w), which will allow us to successively sample α, I , andQ.

Regarding α, from (2.14) we see that

να | (I,Q,z,w)(α) ∝

[
D∏
d=1

qd

]PT
t=1 αt

[
D∏
d=1

T∏
t=1

αidt
t

][
T∏
t=1

αa−1
t exp(−bαt)

]

=
T∏
t=1

[[
D∏
d=1

qd

]αt

α
PD

d=1 idt+a−1
t exp(−bαt)

]

=
T∏
t=1

[
α

PD
d=1 idt+a−1

t exp
{
−
(
b−

∑D
d=1 log(qd)

)
αt
}]
,

(2.15)

which we recognize as a product of T gamma densities. Thus, to sample α, we generate αt from

the gamma distribution with shape parameter a +
∑D

d=1 idt and rate parameter b −
∑D

d=1 log(qd),

independently for t = 1, . . . , T .

Regarding I , from (2.14) we see that

νI | (α,Q,z,w)(i) ∝
D∏
d=1

T∏
t=1

S(ndt, idt)α
idt
t , (2.16)

from which we note that the Idt’s are independent given (α,Q, z,w). It is easy to see that if

ndt = 0, then Idt is deterministically equal to 0. If ndt > 0 then, as we discussed earlier, Idt may

be represented as Idt =
∑ndt

l=1 I
(l)
dt where

I
(l)
dt

indep∼ Bernoulli

(
αt

αt + l − 1

)
, l = 1, . . . , ndt,

and this enables us to easily generate I(l)
dt .

RegardingQ, from (2.14) we see that

νQ | (α,I,z,w)(q) ∝
D∏
d=1

[
q

PT
t αt−1

d (1− qd)nd−1
]
, (2.17)

which we recognize as a product of D beta densities. Thus, to sample Q, we generate Qd ∼
Beta

(∑T
t=1 αt, nd

)
independently for d = 1, . . . , D.
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We now step back and review the big picture. Let us temporarily act as if η is an unknown con-

stant, i.e. in our fully-Bayes model we need to estimate the posterior distribution of (z,α). Recall

thatN =
∑D

d=1 nd. What we have described is a Gibbs sampler that runs on the (N+T+DT+D)-

dimensional vector (z,α, I,Q), where z is updated according to the CGS of Griffiths and Steyvers

(2004), and α, I , and Q are updated as described in the three preceding paragraphs. From the

Markov chain (z(1),α(1), I(1),Q(1)), (z(2),α(2), I(2),Q(2)), . . ., we may estimate the posterior dis-

tribution of (z,α) given w by considering the marginal sequence (z(1),α(1)), (z(2),α(2)), . . .. To

estimate the posterior density of α, we may use Rao-Blackwellization, which uses the sequence

(z(1), I(1),Q(1)), (z(2), I(2),Q(2)), . . . through (2.15). The inclusion of η, discussed next, does not

make any conceptual changes to the big picture.

We now turn to sampling from νη | (z,w). For this purpose we introduce the augmentation vari-

ables J = (J11, . . . , J1V , . . . , JT1, . . . , JTV ) andR = (R1, . . . , RT ), in order to re-express νη | (z,w)

in augmented form as

ν(η,J ,R) | (z,w)(η, j, r) ∝

[
T∏
t=1

rV η−1
t (1− rt)m·t·−1

][
T∏
t=1

V∏
v=1

S(m·tv, jtv)η
jtv

]
ηa−1 exp(−bη),

(2.18)

which is analogous to (2.14).

For sampling η, from (2.18) we see that

νη | (R,J ,z,w)(η) ∝ ηa+
PT

t=1

PV
v=1 jtv−1 exp

{
−
(
b− V

∑T
t=1 log(rt)

)
η
}
, (2.19)

which we recognize as a gamma distribution with shape parameter a +
∑T

t=1

∑V
v=1 jtv and rate

parameter b− V
∑T

t=1 log(rt).

For sampling J , from (2.18) we see that

νJ | (η,R,z,w)(j) ∝

[
T∏
t=1

V∏
v=1

S(m·tv, jtv)η
jtv

]
.

This distribution is analogous to νI | (α,Q,z,w), which is given by (2.16). The Jtv’s are independent,

and can be generated as follows. If m·tv = 0, then Jtv is deterministically equal to 0. If m·tv > 0,

then Jtv may be represented as Jtv =
∑m·tv

l=1 J
(l)
tv , where

J
(l)
tv

indep∼ Bernoulli

(
η

η + l − 1

)
, l = 1, . . . ,m·tv.

For samplingR, from (2.18) we see that

νR | (η,J ,z,w)(r) ∝

[
T∏
t=1

rV η−1
t (1− rt)m·t·−1

]
,
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which we recognize as a product of T beta densities. Consequently, to sample R we generate

Rt
indep∼ Beta(V η, m·t·), t = 1, . . . , T .

The data augmentation algorithm runs on the parameter λ = (z, I,Q,J ,R, h). Let P denote

the Markov transition function for the algorithm, i.e. P (λ0, ·) is the distribution of λ1 given λ0,

and let P k(λ0, ·) denote the k-step Markov transition function. Also, let Λ denote the set of all

possible values of λ, and BΛ be the associated Borel sigma-field. Theorem 1 establishes uniform

ergodicity, which is the very strong condition that there exist constants M > 0 and c > 0 such

that ‖P k(λ0, ·)− νλ |w(·)‖TV ≤M(1− c)k for all initial λ0 ∈ Λ, where the total variation distance

‖ · ‖TV denotes the supremum over BΛ (the geometric rate of convergence does not depend on the

initial starting point λ0).

Theorem 1 LetH0 be a bounded hyper-rectangle, and assume that the support of the prior on h is

contained inH0. Then the data augmentation chain is uniformly ergodic.

The proof of the theorem is in Section 3 of Xia and Doss (2019). We believe that the HMC

chain is geometrically ergodic, but this chain is very difficult to analyze, and we have not been able

to establish the result.

3 Efficient Estimation of the Empirical Bayes Choice of the Hy-

perparameter

This section is structured as follows. In Section 3.1 we develop two methods for estimation

of the marginal posterior density νh |w(h); one is based on Rao-Blackwellization, and the other

is based on an extension of Rao-Blackwellization, introduced by Chen (1994), and which is

applicable when Rao-Blackwellization is not feasible. Each of these gives rise to an estima-

tor of arg maxhm(h). In Section 3.2 we show how to use these methods to obtain confidence

sets for arg maxhm(h), and our general approach is as follows. Recall from Section 2 that

νh |w(h)/νh(h) ∝ m(h). To avoid distracting minor complications, in this preamble we will as-

sume that νh is the uniform prior, so that the preceding relation becomes simply νh |w(h) ∝ m(h).

Suppose that for each fixed h, ν̂h |w(h), our estimate of νh |w(h), takes the form of an average, so

that by the strong law of large numbers in the form of the ergodic theorem and by a central limit

theorem for Markov chains we have

ν̂h |w(h)
a.s.−→ νh |w(h) and n1/2

(
ν̂h |w(h)− νh |w(h)

) d→ N (0, σ2(h)). (3.1)
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Now, generally speaking, consistency and asymptotic normality of ν̂h |w(h) for each fixed h is

not sufficient to entail that arg maxh ν̂h |w(h) converges to arg maxh νh |w(h) in any sense at all.

In fact, even for deterministic real-valued functions fn and f defined on H, the pointwise con-

vergence condition fn(h) → f(h) for each h ∈ H does not imply that arg maxh fn(h) →
arg maxh f(h), and a simple counterexample to show this is given in the Appendix of George

and Doss (2018). To obtain consistency and asymptotic normality of arg maxh ν̂h |w(h) as an es-

timator of arg maxh νh |w(h), one needs very strong regularity conditions. These are discussed

in detail in Section 3.2, but here we mention that the main ones are geometric ergodicity of the

Markov chain being used, and a significant strengthening of (3.1) to the uniform versions

sup
h
|ν̂h |w(h)− νh |w(h)| a.s.−→ 0 (3.2)

and

n1/2
(
ν̂h |w(·)− νh |w(·)

) d→ G(·), (3.3)

where G(·) is a mean 0 Gaussian process indexed by h ∈ H. In Section 4 of Xia and Doss (2019)

we establish (3.2) and (3.3) for the estimate based on Rao-Blackwellization, using methods from

empirical process theory. Combining this with the uniform ergodicity of the data augmentation

chain asserted by Theorem 1, we obtain consistency and asymptotic normality of the estimate of

arg maxh νh |w(h) based on the data augmentation chain and Rao-Blackwellization. This is stated

formally as Theorem 2. A corresponding result for the case of the estimate based on Chen’s (1994)

method is given by Theorem 3.

3.1 Two Methods for Estimation of the Marginal Posterior Density of the

Hyperparameter

Estimation of νh |w via Rao-Blackwellization

Rao-Blackwellization is immediate from the data augmentation scheme described in Section 2.2.

Recall that we use ga,b to denote the gamma density with shape parameter a and rate parameter

b. The data augmentation scheme gives the sequence (z(k),α(k), I(k),Q(k), η(k),J (k),R(k)), k =

1, . . . , n, from which we may form

ν̂h |w(h) =
1

n

n∑
k=1

νh | (w,z(k),I(k),Q(k),J(k),R(k))(α, η)

=
1

n

n∑
k=1

{[
T∏
t=1

g
a+

PD
d=1 I

(k)
dt , b−

PD
d=1 log(Q

(k)
d )

(αt)

]
g
a+

PT
t=1

PV
v=1 J

(k)
tv , b−V

PT
t=1 log(R

(k)
t )

(η)

} (3.4)
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(see (2.15) and (2.19)), which uses only the I , Q, J , and R components of the sequence. Note

that if we use the data augmentation chain, then the I,Q,J ,R variables are already available.

If we use the HMC chain, it is still possible to do Rao-Blackwellization: from the sequence

{(z(k), h(k)), k = 1, . . . , n} produced by HMC, we can generate the augmentation variables

{(I(k),Q(k),J (k),R(k)), k = 1, . . . , n}, as explained in Section 2.2, and use these to compute

the estimator in (3.4).

Estimation of νh |w Through the Importance Weighted Marginal Density Method of Chen

Suppose that (X1, Y1), (X2, Y2), . . . is a Markov chain with invariant density fX,Y on a space X ×
Y where Y is Euclidean. For the purpose of estimating the marginal density fY , Chen (1994)

introduced a generic procedure, the so-called Importance Weighted Marginal Density Estimation

Method, which is described as follows for our context, in which z corresponds toX , h corresponds

to Y , and our Markov chain is (z(1), h(1)), (z(2), h(2)), . . .. Let Z be the set of possible values of z

and let {ωz(·), z ∈ Z} be a family of densities onH. To estimate νh |w we use the estimator ν̂h |w

whose value at h∗ is given by

ν̂h |w(h∗) =
1

n

n∑
i=1

ωz(i)(h(i))
ν(z,h) |w(z(i), h∗)

ν(z,h) |w(z(i), h(i))
. (3.5)

Note that to calculate (3.5), we need only to know ν(z,h) |w up to a normalizing constant, and

this is given by the expression on the right side of (2.2). A proof that for every h∗, ν̂h |w(h∗)

converges almost surely to νh |w(h∗) is given in Section 5 of Xia and Doss (2019). In princi-

ple, any family {ωz, z ∈ Z} of densities can be used in (3.5), but Chen (1994) showed that

the choice ωz = νh | (z,w) is optimal in the sense of minimizing the asymptotic variance and,

moreover, for this choice the estimator reduces to the Rao-Blackwellized estimate ν̂RB
h |w(h∗) =

(1/n)
∑n

i=1 νh | (z(i),w)(h
∗). Thus, the general estimate (3.5) is to be used only in cases where

νh | (z,w) is unknown, so that ordinary Rao-Blackwellization is not possible. (In our situation,

νh | (z,w) is analytically intractable—see (2.10)—and we are able to do Rao-Blackwellization only

because we have available a scheme for data augmentation.)

For the case where νh | (z,w) is not known or is analytically intractable, Chen (1994) suggested

that we consider a parametric family {fφ, φ ∈ Φ} of distributions on Z ×H, run a pilot Markov

chain with invariant distribution ν(h,z) |w, and use it to estimate the mean and covariance matrix

of ν(h,z) |w. The parameter φ is then chosen so that the mean and covariance matrix of fφ match

those of the estimate of ν(h,z) |w. We then take ωz to be fφh |z for each z. In our situation, the very
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high dimension of z precludes estimating the covariance matrix of (z, h). So instead we consider

a family of distributions on h (and not on (z, h)) and further restrict each fφ to be a product of

univariate densities: fφ(α, η) =
[∏T

t=1 f
φt(αt)

]
fφT+1(η). From our pilot chain on (z, h), we form

an estimate of the mean and variance of each component of h, and select φt, t = 1, . . . , T + 1 to

match these estimates. We took fφt to be gamma densities. Perhaps surprisingly, this quite simple

procedure seems to work very well.

Xia (2018) presents a third method for estimating the marginal posterior density of h, based

on averaging Markov transition densities. In its current implementation, this approach is very

computationally intensive and is not competitive with the other methods.

3.2 Consistency and Asymptotic Normality of the Estimate of the Empirical

Bayes Choice of the Hyperparameter

The main result in this section is Theorem 2, which establishes consistency and asymptotic nor-

mality of the estimate of arg maxhm(h) that is based on the data augmentation chain and Rao-

Blackwellization (3.4). The theorem also states that the estimate of the covariance matrix of the

estimate of arg maxhm(h) constructed through the method of batching is consistent, and this im-

plies that we can construct asymptotically valid 95% confidence sets for arg maxhm(h). (The

method of batching for the present setup is reviewed right after the statement of the theorem.) In

the theorems, p is the dimension of h: p = 2 if we take the distribution of the θd’s to be a symmetric

Dirichlet, and p = T + 1 if we allow this distribution to be an arbitrary Dirichlet. Theorem 2 refers

to the regularity conditions below.

A1 The hyperparameter spaceH is compact.

A2 The maximizer of m(·) is unique (thus it makes sense to talk about arg maxhm(h)).

A3 The maximizer of m(·) is inH.

A4 The function m(·) is twice continuously differentiable in H, and the p × p Hessian matrix

∇2
hm(arg maxhm(h)) is nonsingular.

Theorem 2 Suppose that λ1, λ2, . . . are generated according to the data augmentation algorithm,

let ν̂h |w(h) be given by (3.4), let m̂n(h) be given by m̂n(h) = ν̂h |w(h)/νh(h), and suppose that

for each n, the maximizer of m̂n(·) is unique. Further, assume that Conditions A1–A4 hold. Then:

1. arg maxh m̂n(h)
a.s.−→ arg maxhm(h).

20



2. n1/2
(
arg maxh m̂n(h)− arg maxhm(h)

) d→ Np(0,Σ) for some positive definite matrix Σ.

3. Let Σ̂n be the estimate of Σ obtained by the method of batching. Then Σ̂n
a.s.−→ Σ, and in

particular Σ̂n is invertible for large n. Consequently, the ellipse E given by

E =
{
h : (arg maxh m̂n(h)− h)>Σ̂−1

n (arg maxh m̂n(h)− h) ≤ χ2
p,.95/n

}
is an asymptotic 95% confidence set for arg maxhm(h). Here, χ2

p,.95 denotes the 0.95 quantile

of the chi-square distribution with p degrees of freedom.

The proof of the theorem is in Section 4 of Xia and Doss (2019). Theorem 2 (and Theorem 3

below) may be used to determine the minimal Markov chain length that is needed to obtain an

acceptably narrow confidence region for arg maxhm(h). The method of batching for estimation

of Σ is as follows. The data augmentation scheme gives the sequence λ(1), . . . , λ(n). The se-

quence is broken up into J consecutive pieces of equal lengths called batches. For j = 1, . . . , J ,

let A[j] be the estimate of arg maxhm(h) produced from batch j, and let A[ ] be the estimate of

arg maxhm(h) produced from the entire sequence. The batch-based estimate is simply Σ̂n =

(n/J)
{

[1/(J − 1)]
∑J

j=1

(
A[j] − A[ ]

)(
A[j] − A[ ]

)>}. (The quantity inside the braces is essen-

tially sample covariance matrix of A[1], . . . , A[J ], except that we use A[ ] instead of the average of

A[1], . . . , A[J ] as the centering value; and the term n/J is a correction to account for the fact that the

A[j]’s are each formed from a sample of size n/J , not n.) Estimates of the covariance matrix based

on batching are consistent under very general conditions which include that J → ∞ as n → ∞.

The literature recommends taking J = n1/2; see Flegal et al. (2008) and also Jones et al. (2006).

Theorem 3 The conclusions of Theorem 2 remain true if ν̂h |w is given by (3.5).

The proof of the theorem is in Section 6 of Xia and Doss (2019).

4 Evaluation of the Fully-Bayes Empirical Bayes Method

This section consists of three parts. In Section 4.1 we review current methods for approximating

arg maxhm(h). Because of the need to understand the strengths and deficiencies of these methods,

it is essential to have a clear understanding of how these methods work, so our review is necessarily

fairly detailed. In Section 4.2 we compare our approach with these methods, and evaluate it on

synthetic and real data sets. In Section 4.3 we compare the empirical Bayes and fully Bayes

methods. This is a comparison of two statistical procedures, as opposed to a comparison of two
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numerical methods. The reader who is interested in understanding and using our methodology but

is not interested in a review and evaluation of other approaches can read only Section 4.2.1 without

loss.

4.1 Existing Methods for Approximating the Maximum Marginal Likeli-

hood Estimator of the Hyperparameter

As mentioned in Section 1, the maximizer of the marginal likelihood of the hyperparameter can be

expected to have good statistical properties, and here we review the literature on approximations

of this estimator. But before we do this, we mention various ad-hoc rules for choosing h that have

been presented in the literature; these deal with the case where the distribution of the θd’s is a

symmetric Dirichlet, indexed by a single parameter α, so that h = (α, η), i.e. dim(h) = 2. The

rules are as follows: hDG = (0.1, 50/T ), used in Griffiths and Steyvers (2004); hDA = (0.1, 0.1),

used in Asuncion et al. (2009); and hDR = (1/T, 1/T ), used in the Gensim topic modelling

package (Řehůřek and Sojka, 2010), a well-known package used in the topic modelling community.

Gibbs-EM In Gibbs-EM, the E-step of the EM algorithm is approximated by the CGS of Griffiths

and Steyvers (2004). There are several problems with Gibbs-EM (at least for the version imple-

mented by Wallach (2006)): (1) the approximation is used in the E-step at every iteration of the

algorithm; (2) as with all EM-based methods, the algorithm can converge to a local maximum; and

(3) an approximation is used in the M-step. Of these, the third appears to be the most serious, and

we now discuss it in more detail and explain the problem. At the kth iteration, we must maximize

with respect to h the expectation Eh(k)

(
log(ph(z,w))

)
, where ph(z,w) is the joint distribution of

(z,w) under the LDA model indexed by h, and the subscript to the expectation indicates that the

expectation is taken with respect to νh(k)

z |w. A Markov chain z1, . . . ,zmk
with invariant distribution

equal to the posterior distribution of z givenw is generated, and we want to maximize the function

G(h) = (1/mk)
∑mk

i=1 log(ph(zi,w)), which is a proxy for the expectation above. The maximiza-

tion is done by solving the equation ∇G(h) = 0 using fixed-point iteration, and because ∇G(h)

is computationally intractable, Minka’s (2003) approximation is used (in effect, a lower bound to

G(h) is found, and the lower bound is what is maximized). George and Doss (2018) have shown

that when both components of arg maxhm(h) are bigger than 1, the Minka (2003) approximation

is very poor, and in Section 4.2 we show that in this case, even when a huge sample size is used

for the CGS, Gibbs-EM converges to a value which is far from arg maxhm(h).
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VEM Conceptually, the estimate of arg maxhm(h) given by VEM is obtained as follows. If h(k)

is the current value of h, the E-step of the EM algorithm is to calculate Eh(k)

(
log(ph(ψ,w))

)
,

where ph(ψ,w) is the joint distribution of (ψ,w) under the LDA model indexed by h, and the

subscript to the expectation indicates that the expectation is taken with respect to νh
(k)

ψ |w. This

step is infeasible because νh(k)

ψ |w is analytically intractable. We consider {qφ, φ ∈ Φ}, a (finite-

dimensional) parametric family of analytically tractable distributions on ψ, and within this family,

we find the distribution, say qφ∗ , which is “closest” to νh(k)

ψ |w. Let Q(h) be the expected value of

log(ph(ψ,w)) with respect to qφ∗ . We view Q(h) as a proxy for Eh(k)

(
log(ph(ψ,w))

)
, and the

M-step is then to maximize Q(h) with respect to h, to produce h(k+1). The maximization is done

analytically. While VEM can handle very large corpora with many topics, there is no theoretical

reason to expect the sequence h(k) to converge to arg maxhm(h). And if the likelihood surface is

multimodal, then it can fail to find the global maximum (as is the case for all EM-type algorithms

and also gradient-based approaches).

Importance Sampling and Serial Tempering This approach was developed by George and Doss

(2018), who showed that it greatly outperforms both Gibbs-EM and VEM. It is based on the

observation that if c is a constant, then the information regarding h given by the two functions

m(h) and cm(h) is the same: the same value of h maximizes both functions, and the second

derivative matrices of the logarithm of these two functions are identical. In particular, the Hessians

of the logarithm of these two functions at the maximum (i.e. the observed Fisher information)

are the same and, therefore, the standard point estimates and confidence regions based on m(h)

and cm(h) are identical. The relevance of this observation is as follows. Let h1 ∈ H be fixed

but arbitrary, and suppose that ψ1, . . . ,ψn are the initial segment an ergodic Markov chain with

invariant distribution ν(h1)
ψ |w. Recall that `w(ψ) is the likelihood function. Note that m(h), which is

given by m(h) =
∫
`w(ψ) dν(h)(ψ), is the normalizing constant in the statement “the posterior is

proportional to likelihood times the prior,” i.e. ν(h)
ψ |w(ψ) = `w(ψ) ν(h)(ψ)/m(h). For any h ∈ H,

consider the quantity (1/n)
∑n

i=1 ν
(h)(ψi)/ν

(h1)(ψi). As n→∞, we have

1

n

n∑
i=1

ν(h)(ψi)

ν(h1)(ψi)

a.s.−→
∫

ν(h)(ψ)

ν(h1)(ψ)
ν

(h1)
ψ |w(ψ) dψ (4.1a)

=
m(h)

m(h1)

∫
`w(ψ)ν(h)(ψ)/m(h)

`w(ψ)ν(h1)(ψ)/m(h1)
ν

(h1)
ψ |w(ψ) dψ (4.1b)

=
m(h)

m(h1)

∫ ν
(h)
ψ |w(ψ)

ν
(h1)
ψ |w(ψ)

ν
(h1)
ψ |w(ψ) dψ =

m(h)

m(h1)
. (4.1c)
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The significance of (4.1) is that it shows that we can estimate the entire family {m(h)/m(h1), h ∈
H} with a single Markov chain run. Since m(h1) is a fixed constant, as noted above, the two func-

tions m(h) and m(h)/m(h1) give exactly the same information about h. The usefulness of (4.1)

stems from the fact that the average on the left side involves only the priors, so we effectively

bypass having to deal with the posterior distributions.

Actually, the statement that (4.1) shows that we can estimate all of {m(h)/m(h1), h ∈ H}
with a single Markov chain run is too good to be true, and in reality the estimate on the left side

of (4.1a) has a serious defect: unless h is close to h1, ν(h) can be nearly singular with respect to

ν(h1) over the region where the ψi’s are likely to be, resulting in a very unstable estimate. From a

practical point of view, this means that there is effectively a “radius” around h1 within which one

can safely move, and there may not exist a single value of h1 that gives rise to estimates that are sta-

ble for all h ∈ H. One way of dealing with this problem is to select J fixed points h1, . . . , hJ ∈ H
that “cover” H in the sense that for every h ∈ H, ν(h) is “close to” at least one of ν(h1), . . . , ν(hJ ).

We then replace ν(h1) in the denominator by
∑J

j=1 bjν
(hj), for some suitable choice of positive

constants b1, . . . , bJ . Operating intuitively, we say that for any h ∈ H, because there exists at least

one j for which ν(h) is close to ν(hj), the variance of ν(h)(ψ)
/[∑J

j=1 bjν
(hj)(ψ)

]
is small; hence

the variance of ν(h)(ψ)
/[∑J

j=1 bjν
(hj)(ψ)

]
is small simultaneously for all h ∈ H. Whereas for the

estimates (4.1a) we need a Markov chain with invariant distribution is ν(h1)
ψ |w, in the present situa-

tion we need a Markov chain whose invariant distribution is a mixture of ν(h1)
ψ |w, . . . , ν

(hJ )
ψ |w. This ap-

proach may be implemented by a methodology called serial tempering (Marinari and Parisi (1992);

Geyer and Thompson (1995)). Serial tempering produces an estimator M̂n(h) with the property

that for each h, as n→∞, M̂n(h)
a.s.−→ cm(h) for some constant c. So to estimate arg maxhm(h),

we use arg maxh M̂n(h). A key issue with the methodology involves the choice of the “skeleton

points” h1, . . . , hJ : in order that arg maxh M̂n(h) accurately estimate arg maxhm(h), it is nec-

essary that h1, . . . , hJ be close to arg maxhm(h), but arg maxhm(h) is unknown, leading to a

circular problem. George and Doss (2018) propose an iterative scheme for selecting the skeleton

points. While the scheme works well for moderate-size corpora, whether it works for large corpora

is not clear, and how well it works for corpora with a large number of topics is also not clear.

4.2 Evaluation and Comparison with Existing Methods

This section consists of four parts. In Section 4.2.1 we compare Markov chains on (z, h) in terms

of mixing rates and execution time. The chains we discuss are the two developed in this paper
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(based on HMC and data augmentation), and also a chain based on slice sampling, which we in-

clude for the sake of completeness. Very briefly, the HMC chain turns out to be the overall winner.

Therefore, in our subsequent sections it is the one on which we focus when we compare the fully-

Bayes empirical Bayes method (for which we use the acronym FBEB) with other methods. In

Sections 4.2.2 and 4.2.3 we compare our FBEB method with existing methods, and before doing

so, we first discuss the criteria we use for the comparison. Our first criterion is simply estima-

tion accuracy: our FBEB approach gives one way to estimate arg maxhm(h), and we compare

it with the methods described in Section 4.1, namely Gibbs-EM, VEM, and the method based on

importance sampling via serial tempering. For unity of notation, we will denote these estimators

by ˆ̂hFBEB, ˆ̂hGEM, ˆ̂hVEM, and ˆ̂hISST, respectively, and we will use the acronyms in the subscripts to

denote the corresponding methods. (As a remark on notation, we note that arg maxhm(h) is an es-

timate of the true value of h, i.e. the h used to generate the corpus, so this empirical Bayes estimate

should be called ĥ; and ˆ̂hFBEB, ˆ̂hGEM, ˆ̂hVEM, and ˆ̂hISST are all estimates of ĥ, hence the need for the

“double hat”: it reminds us that we are estimating an estimator.) Our first goal is to compare these

as estimators of ĥ = arg maxhm(h). This requires us to know the true value of arg maxhm(h),

or at least have a tight confidence region for it with theoretically guaranteed coverage probability.

Our second criterion is model fit (or predictive accuracy): we wish to select the value of h, say

hopt, for which the LDA model indexed by hopt outperforms LDA models indexed by any other

value of h. These two criteria are not the same. (This is analogous to a variable selection situation

in linear regression. One goal is to identify those regression coefficients which are exactly zero,

and a distinct goal is to select a set of variables for which the corresponding model has the best

predictive ability. See Yang (2005) for a discussion of these points.) In Sections 4.2.2 and 4.2.3 we

compare our FBEB method with existing methods under our first and second criteria, respectively.

Finally, in Section 4.2.4 we discuss scalability and the advantages of FBEB over ISST for large

corpora. With the exception of the last part of Section 4.2.2, in our evaluations we will always take

the prior distribution of the θd’s to be a symmetric Dirichlet. In Section 5 we return to the issue of

feasibility of FBEB for large corpora.

Before we start on these four subsections, we illustrate the role of the hyperparameter in in-

ference, by considering two corpora with different characters. These corpora are taken from the

20Newsgroups dataset, which is often used for benchmarking in topic modelling. Corpus C-A

consists of articles from six of the 20 topics, while Corpus C-B consists of articles from five sub-

categories of the single topic Computers (and when fitting the LDA model, we took the number
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of topics to be T = 6 for corpus C-A, and T = 5 for Corpus C-B). Thus, corpus C-A consists

of documents which are easy to distinguish from each other, while C-B consists of documents

which are difficult to distinguish from each other. Table 1 gives relevant information on these two

corpora. We applied the methodology developed in this paper to produce plots of estimates of the

marginal likelihood surface (up to a constant) for each corpus, and Figure 1 gives the results. Re-

call that if U ∼ DirT (ε, . . . , ε), then in the limiting case where ε→ 0, U tends to be a vector with

one of its components being equal to 1, and the rest 0, and the location of the 1 is uniform over

{1, . . . , T}. The surface for corpus C-A suggests a value of α equal to .06, correctly reflecting the

fact that documents in C-A will have a single topic. On the other hand, for corpus C-B the topics

are close to each other, which makes the topic for a given word more uncertain; as a consequence,

a given document may have several topics. The larger value for α suggested by the plot for corpus

C-B (α = .093) reflects that fact. To produce Figure 1, we used HMC chains of lengths 10,000,

number of leapfrog steps L = 2, and stepsizes ε = 0.0035 and 0.005 for corpora C-A and C-B,

respectively. Here and in the rest of the paper, we arrived at the values for L and ε by following the

recommendations in Neal (2011, Section 5.4.2). Specifically, in preliminary runs involving short

chains, we set L = 2 and adjusted ε so that the acceptance rate was about 0.65; increasing L did

not help much, and only slowed down the algorithm.

Corpus Categories T D V N

C-A comp.sys.ibm.pc.hardware (189), misc.forsale (167), 6 1114 6,394 74,607

soc.religion.christian (192), talk.politics.guns (196),

rec.sport.baseball (184), sci.space (186)

C-B comp.graphics (167), comp.os.ms-windows.misc (188), 5 928 3,567 45,571

comp.sys.ibm.pc.hardware (192), comp.windows.x (194),

comp.sys.mac.hardware (187)

Table 1: Two corpora created from the 20Newsgroups dataset. The columns labeled T , D, V , and

N give the number of topics, number of documents, vocabulary size, and total number of words,

respectively, for each corpus, and the numbers shown in parentheses next to the category names

are the number of documents associated with the corresponding categories.
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Figure 1: Estimate of marginal likelihood surface (up to a constant) for two corpora. The surface

on left is for a corpus for which topics are very distinct, and the surface on the right is for a corpus

for which topics are closer to each other. The α-values suggested by the plots correctly reflect

the fact that for the first corpus one expects each document to have a single topic, whereas for the

second corpus one expects the documents to have several topics.

4.2.1 Statistical and Computational Efficiency of Three Markov Chains on (z, h)

Recall that the Markov chain developed in Section 2.1 updates (z, h) by updating z via the CGS

and updating h via HMC. An alternative for the h-update is slice sampling (Neal, 2003), and

because slice sampling has been used for the LDA model before (Wallach, 2008)—although for

a purpose different than ours—it is natural to ask how it would perform in the present setting, so

we include it in our comparison. In this section we compare the HMC-based chain, the augmented

collapsed Gibbs sampler developed in Section 2.2, and the chain based on slice sampling (we

will use the acronyms HMC, ACGS, and SS, respectively) based on two criteria: mixing rate and

execution time. To this end, we generated artificial corpora from LDA models with configuration

parameters set as follows. All of them had V = 200 and nd = 80, and the corpora were in three

groups:

• T = 5; D = 100, 300, 500; nine hyperparameters given by Table 2 below;

• T = 10; D = 100; nine hyperparameters given by Table 2;

• T = 15; D = 100; nine hyperparameters given by Table 2.

So there were 45 corpora. Each chain was run for 10,000 cycles for each corpus.

To compare mixing rates of several Markov chains, quantities such as asymptotic variances and

auto-correlation functions (ACF’s) are often used. Unfortunately, the very high dimension of (z, h)
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HP name (α, η) HP name (α, η) HP name (α, η)

h1 (0.5, 0.5) h4 (1.0, 0.5) h7 (2.0, 0.5)

h2 (0.5, 1.0) h5 (1.0, 1.0) h8 (2.0, 1.0)

h3 (0.5, 2.0) h6 (1.0, 2.0) h9 (2.0, 2.0)

Table 2: Names and values for nine hyperparameters.

precludes computing these for each component of this parameter. An attractive alternative is to

consider, for a chain of length n, the posterior densities ν(z,h) |w(z(1), h(1)), . . . , ν(z,h) |w(z(n), h(n)),

and compute these quantities for this sequence (on the log scale). Thus, letting π1, . . . , πn be the

logarithms of these posterior densities, we can compare the ACF’s of π1, . . . , πn for the chains.

Also, letting π̄(n) = (1/n)
∑n

i=1 πi, we can compare the asymptotic variance of π̄(n) across the

chains. Actually, we will consider the so-called “efficiency factor,” defined as follows. Suppose

that n1/2(π̄(n) −E(π1))
d→ N (0, σ2), and let τ 2 be the variance that we would get if the chain was

an iid sequence. The ratio τ 2/σ2 is called the efficiency factor. It may be estimated by standard

spectral methods, and this is implemented, for example, by the R package mcmcse (Flegal et al.,

2016). The posterior density is a single univariate quantity, and is known except for a normalizing

constant. The fact that we don’t know this constant is immaterial, since on the log scale the constant

becomes an additive constant, which affects neither the ACF’s nor the variances.

Figure 2 gives plots of the efficiency factor for each of the three Markov chains, and for the

45 corpora. The plots show that the HMC chain is the clear winner: it has the largest efficiency

factor in all cases, often by a large margin. A general pattern is that the superiority of the HMC

chain greatly increases as the number of documents in the corpus increases (see plots a, b, and

c), while its superiority decreases slightly as the number of topics increases (see plots c, d and e).

The superiority of the HMC chain is understated by the plots, as these are on the log scale. The

SS chain is nearly uniformly the worst, sometimes by a large margin. Figure 3 gives plots of the

ACF for the three chains and two of the corpora. The message here mirrors the message given by

the plots of the efficiency factors for these two corpora and for the other corpora also (plots not

shown). The HMC chain wins overall, sometimes by a very large margin; and the SS chain is the

worst, its ACF sometimes dying down very slowly.

Figure 4 gives results on execution time for the three algorithms and the five (T,D) combi-

nations (it turned out that the hyperparameter has essentially no effect on execution time), on a

3.70GHz quad core Intel Xeon Processor E5-1630V3. A summary of the results is as follows.
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Execution times are smallest for SS uniformly. However, the times for the other two are not much

bigger, and the ratio of largest to smallest is always less than 2; therefore, the effect of execution

time is rather small when compared to the effect of mixing rate. When we take both mixing rate

and execution time into account, the HMC chain turns out to be the overall winner, and the SS

chain is worst overall. In some experiments involving a large number of documents and a large

number of topics, the ACGS chain matched or slightly outperformed the HMC chain in terms of

both efficiency factor and ACF. The HMC chain requires tuning, whereas the DA chain does not.

The amount of time required for tuning is document specific, so our recommendation for large

corpora is to try the HMC chain first, and in the event that tuning is time consuming, use the DA

chain.

4.2.2 Comparison of All Methods for Estimating arg maxhm(h) Based on Estimation Ac-

curacy

To compare ˆ̂hFBEB, ˆ̂hISST, ˆ̂hGEM, and ˆ̂hVEM, we created a synthetic corpus generated according to the

LDA model with D = 100, T = 4, V = 20, nd = 80 for all d, and htrue = (αtrue, ηtrue) = (.2, .8).

This is a very small corpus, and we chose a corpus of this size in order to be able to include the

ISST method, whose implementation is very time consuming. (The relative merits of the four

estimators do not change much as we change the size of the corpus.) The estimates ˆ̂hFBEB, ˆ̂hISST,
ˆ̂hGEM, and ˆ̂hVEM were computed using the following specifications.

ˆ̂hFBEB We used an ACGS chain of length 105, 10 times, using 10 different seeds, obtaining 10

estimates, which we call ˆ̂h
[1]
FBEB, . . . ,

ˆ̂h
[10]
FBEB. These were obtained from the Rao-Blackwellized

estimates (3.4), as described in the statement of Theorem 2. According to Theorem 2, the

independent variables ˆ̂h
[1]
FBEB, . . . ,

ˆ̂h
[10]
FBEB are approximately bivariate normally distributed with

mean vector arg maxhm(h). Therefore, they can be used to form a 95% confidence ellipse for

arg maxhm(h), based on Hotelling’s T 2 distribution (this ellipse is simply the two-dimensional

analogue of the standard t-interval, which is based on the t-distribution).

We repeated this, but using the HMC chain, with number of leapfrog steps L = 2 and step size

ε = 0.025, and (3.5) instead of (3.4), obtaining a second confidence ellipse. Strictly speaking,

the theoretical validity of this confidence ellipse requires that we have a version of Theorem 2

that applies to the case where we use the HMC chain, and (3.5) instead of (3.4), and we have not

established such a theorem. Nevertheless, it is useful to consider this confidence ellipse.
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Figure 2: Efficiency factors for the HMC, ACGS, and SS chains on the log scale, for 45 corpora.

The HMC chain has the largest efficiency factor almost uniformly, sometimes by large margins.

ˆ̂hISST We used the serial tempering chain, as described in George and Doss (2018). We used 20

iterations of their scheme for choosing the set of skeleton points, and this set turned out to be

a 7 × 9 grid of 63 values over the region (η, α) ∈ [.6, .9] × [.1, .3]. We used a Markov chain

length of 100,000, and as for FBEB, we repeated this a total of 10 times, obtaining 10 estimates,

which we call ˆ̂h
[1]
ISST, . . . ,

ˆ̂h
[10]
ISST, and we used these to construct a 95% confidence ellipse. (The

theoretical validity of this confidence ellipse is supported by Theorem 1 and Remark 3 of that
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Figure 3: ACF’s for the three Markov chains and two corpora configurations. Configuration 1:

T = 5, D = 500, α = 2, η = .5; configuration 2: T = 5, D = 300, α = 1, η = 2. The ACF’s die

down fastest for the HMC chain and slowest for the SS chain.
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Figure 4: Execution time in seconds for 10,000 iterations for HMC, ACGS, and SS chains, for five

corpus configurations.

paper.)

ˆ̂hGEM We used 50 iterations of the EM algorithm, and within each iteration, we ran a CGS of

length 120,000 (discarding the first 2000 as burn-in) to approximate the E-step. We repeated this

a total of 10 times, using 10 different starting values and 10 different seeds.

ˆ̂hVEM We used 100 iterations of the EM algorithm, and within each iteration, the E-step was ap-

proximated via 100 variational inference iterations. We repeated this a total of 10 times, using 10
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different starting values.

Figure 5 gives the results, but before looking at them we clarify what is the target of estimation.

The following facts are obvious, but it is perhaps worthwhile to state them explicitly. Here, htrue =

(αtrue, ηtrue) = (.2, .8) is the value used to generate the synthetic corpus. The maximum marginal

likelihood estimate ĥ := arg maxhm(h) depends on the corpus, and in general is not equal to htrue

(although it is likely to be close to it). The quality of the estimates ˆ̂hFBEB, ˆ̂hISST, ˆ̂hGEM, and ˆ̂hVEM is

determined by how close these are to ĥ, not by how close they are to htrue. The left panel of Figure 5

shows the estimates produced by the four methods: FBEB (through both HMC and ACGS), ISST,

GEM, and VEM, 10 points for each, for a total of 50 points, and we see that the 30 points produced

by FBEB and ISST are so close to each other that they are visually indistinguishable. The right

panel gives a zoomed version of the plot, magnifying the region which contains the FBEB and ISST

points, and gives the three confidence ellipses. The two panels together show the following. GEM

greatly outperforms VEM. Nevertheless, the GEM estimates are not close to being within any of

the 95% confidence ellipses. It appears that the problem is with the maximization step which, as

explained in Section 4.1, is done through an approximation. VEM does poorly, and the estimates

strongly depend on the starting value. The estimates are so poor that they do not even appear in

the zoomed version of the plot. The HMC ellipse is more narrow than the ACGS ellipse (which is

consistent with the results of Section 4.2.1 that show that the HMC chain has better mixing), and

the ISST ellipse is more narrow than both of these. However, the ellipses are comparable in size,

so that the decision of which method is preferable depends on computational efficiency. This issue

is discussed in detail in Section 4.2.4.

Estimation of arg maxhm(h) When the Prior on the θd’s Is an Asymmetric Dirichlet Our

initial motivation for this work was our desire to handle the case where α = (α1, . . . , αT ) and

the αt’s are not assumed to be equal, so that dim(h) = T + 1. When dim(h) is large and the

corpus is large, the EM algorithm is expected to have poor performance: the rate of convergence is

determined by the amount of missing information (Meng and Van Dyk, 1997), and in our situation

this is ψ, which has high dimension. And for serial tempering to work, we need that every h value

in the relevant part of the hyperparameter space be close to at least one point in the skeleton set

{h1, . . . , hJ}, which forces the size of this set to be astronomical (this is the curse of dimension-

ality). On the other hand, for the FBEB method to work well, the main requirement is that we

can devise a Markov chain on (z, h) (or on (ψ, h)) for which the h component mixes well. There
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Figure 5: Estimates and confidence ellipses for arg maxhm(h) produced by the FBEB, ISST,

GEM, and VEM methods. Left panel shows the point estimates. The FBEB and ISST points are

so close that they seem to merge into a single point. Right panel is a zoomed version of a small

region of the left panel that contains these 30 points, and gives the confidence ellipses. The GEM

points are not close to being in any of the ellipses, and the VEM points are not even in the plot.

is now a highly-developed literature, spanning over more than two decades, on the construction

of Markov chains on high-dimensional state spaces with good mixing properties, and we can take

advantage of this literature.

Care must be exercised, however, when dealing with the case where the αt’s are not assumed

to be equal. Suppose that the prior on (α1, . . . , αT ) is a symmetric function of (α1, . . . , αT ), i.e.

it is invariant under permutations of α1, . . . , αT (this is the situation for the prior we use in this

paper, which is a product of gammas, all of them equal). In this case, since the likelihood func-

tion is symmetric in (α1, . . . , αT ), so is the marginal likelihood, and therefore so is the posterior.

Thus any reasonable estimator of (α1, . . . , αT ) obtained from the posterior will be symmetric in

(α1, . . . , αT ); so if the corpus is generated according to an LDA model for which the components

of αtrue are not all equal, then αtrue cannot be “retrieved” from the posterior, even if the number of

documents in the corpus is arbitrarily large. Therefore, without a mechanism for ensuring identi-

fiability, it is not appropriate to use an asymmetric Dirichlet as the prior on the θd’s. In practical

terms, suppose that there are only two topics, call them βS and βM , where βS gives most of its

mass to sports-like words, and βM gives most of its mass to medical words. It is not the case that

we can claim that βS = β1 and βM = β2 any more than we can claim βS = β2 and βM = β1. One

way of handling this situation when dealing with the β-part of a Markov chain with the posterior

as its invariant distribution is to “align” the β’s. (This general situation, referred to as the “label-
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switching problem,” is a well-known issue in Bayesian mixture modelling, and there is a literature

on this topic; see Celeux et al. (2000), and also Jasra et al. (2005) for a review.) The alignment can

be done as follows. Let β(b) denote the first β-value after the burn-in period. We take the ordering

of the β’s in β(b) as our “baseline.” If β(i) is any subsequent β-value, we form the discrepancy

matrix D, whose (r, s) entry is ‖β(i)
r − β(b)

s ‖1, where ‖ · ‖1 is the `1 norm in RV . Let Dr1s1 be the

smallest element of this matrix. We set s1 to be the topic label for β(i)
r1 . We eliminate the r1 row

and s1 column of this matrix, and repeat the procedure above on the reduced matrix. This process

continues, and we sequentially determine the labels for all the topics in β(i).

We now evaluate the performance of the FBEB method for the case of a multidimensional α.

To this end, we formed three synthetic corpora, generated according to LDA models for which the

components of α are not all equal. The dimensions of α were 4, 8, and 12. Table 3 gives the

configuration parameters for the corpora, including the true values of the hyperparameter used to

generate the corpora. We implemented the FBEB method, using ACGS chains of length 11,000,

from which we discarded 1,000 as burn-in, and thinned the remaining 10,000 by a factor of 5, so

effectively having a sample of size 2,000. The argmax of the estimate of the marginal likelihood

function was obtained using the R package optimx (Nash and Varadhan, 2011), and Table 3 also

gives these estimates. In the table, htrue denotes the value of h used to generate the synthetic corpus,

and ˆ̂hFBEB is the estimator of ĥ = arg maxhm(h). From the table, we see that ˆ̂hFBEB is plausibly

performing remarkably well. (We wrote “plausibly” because, as remarked earlier, ˆ̂hFBEB is really

an estimate of ĥ, which is unknown, and not of htrue. Of course, because the three corpora are large,

we expect ĥ to be very close to htrue.) The experiments needed to produce the data for corpora 1–3

took 15.1, 24.0, and 55.6 minutes, respectively.

We did not do experiments with large T , as it is inappropriate to use asymmetric Dirichlets

with a large T . When T is large, to estimate arg maxhm(h) accurately would require very large

Markov chain lengths, but this is not the main issue, which is that even if we were to be able to

calculate arg maxhm(h) exactly, arg maxhm(h) itself would not be an accurate estimate of htrue

unless the number of documents was huge. (To be clear, we are not saying that it is inappropriate

to use an LDA model with a large T ; we are saying that it is inappropriate to use asymmetric

Dirichlets with a very large T .) Xia (2018) discusses this issue in more detail.
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Corpus 1 D = 2000, V = 1000, nd = 80 for all d, T = 4

h α1 α2 α3 α4 η

htrue 0.2 0.4 0.6 0.8 0.5
ˆ̂hFBEB 0.185 0.386 0.590 0.787 0.513

Corpus 2 D = 4000, V = 1000, nd = 80 for all d, T = 8

h α1 α2 α3 α4 α5 α6 α7 α8 η

htrue 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.5
ˆ̂hFBEB 0.102 0.202 0.299 0.424 0.491 0.605 0.690 0.833 0.499

Corpus 3 D = 8000, V = 1000, nd = 80 for all d, T = 12

h α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 η

htrue 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0.5
ˆ̂hFBEB 0.117 0.230 0.273 0.386 0.484 0.620 0.686 0.817 0.939 0.965 1.135 1.223 0.491

Table 3: Estimates of ĥ = arg maxhm(h) for three synthetic corpora generated according to LDA

models with components of α not all equal.

4.2.3 Comparison of all Methods for Selecting the Hyperparameter Based on Posterior Pre-

dictive Likelihood

The criterion for model fit (or predictive accuracy) that we will use is the “Posterior Predictive

Likelihood” (PPL) score. It is inversely related to the so-called perplexity score which is some-

times used in the machine learning literature. When applied in the LDA context, the PPL score

is obtained as follows. For d = 1, . . . , D, let w(−d) denote the corpus consisting of all the docu-

ments except for document d. To evaluate a given model (in our case the LDA model indexed by a

given h), in essence we see how well the model based on w(−d) predicts document d, the held-out

document. We do this for d = 1, . . . , D, and take the geometric mean (Wallach et al., 2009). We

formalize this as follows. The predictive likelihood of h for the held-out document is

Ld(h) =

∫
`wd

(ψ) dν
(h)
ψ |w(−d)

(ψ), (4.2)

where `wd
(ψ) is the likelihood of ψ for the held-out document d, and ν(h)

ψ |w(−d)
is the posterior

distribution of ψ given w(−d). We form the score S(h) =
[∏D

d=1 Ld(h)
]1/D (the reason for tak-
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ing the geometric mean is that this keeps the score stable as document length changes). Two

different values of hyperparameter h are compared via their scores. Of course, Ld(h) is analyti-

cally intractable, but it may be estimated by MCMC if we can generate an ergodic Markov chain

ψ1,ψ2, . . . with invariant distribution ν(h)
ψ |w(−d)

. The CGS gives only a Markov chain z1, z2, . . .

with invariant distribution ν(h)
z |w(−d)

. However, the sequence z1, z2, . . . may be easily augmented

to a sequence (z1,β1,θ1), (z2,β2,θ2), . . . with invariant distribution ν(h)
ψ |w(−d)

, because the condi-

tional distribution of (β,θ) given z andw(−d) is available in closed form as a product of Dirichlets.

Explicit expressions are given in George and Doss (2018). We then approximate the integral by

(1/n)
∑n

i=1 `wd
(ψi), where ψi = (zi,βi,θi). Care needs to be exercised, because in (4.2) the

variable ψ in the term `wd
(ψ) has a dimension that is different than that of the variable ψ in the

rest of the integral. Chen (2015) gives a careful description of an MCMC scheme for estimating

the integral in (4.2), and his scheme is the one that we use.

For our comparisons, we consider three real corpora. Two of these are from Wikipedia, and one

is a subset of the 20Newsgroups dataset, which is often used for benchmarking in topic modelling.

Corpus C-1 This is a subset of the articles under the Wikipedia category Birds of Prey, and consists

of all articles under the seven subcategories Eagles, Falco (genus), Falconry, Harriers, Hawks,

Kites, and Owls. When fitting the LDA model, we took the number of topics T to be seven.

Corpus C-2 This is a subset of the articles under the Wikipedia category Whales, and consists of

all articles under the six subcategories Baleen Whale, Dolphins, Killer Whale, Oceanic Dolphins,

Whaling, and Whale Products. When fitting the LDA model, we set T = 6.

Corpus C-3 This is a subset of the articles under the 20Newsgroups super-category Computers

and consists of all articles from the five categories comp.graphics, comp.os.ms-windows.misc,

comp.windows.x, comp.sys.ibm.pc.hardware, and comp.sys.mac.hardware. When fitting the

LDA model, we set T = 5.

Table 4 gives some information on these three corpora.

We computed an estimate Ŝ(h) of S(h), where h ranges over the seven cases

ˆ̂hFBEB,
ˆ̂hISST,

ˆ̂hGEM,
ˆ̂hVEM, hGS, hA-etal, and hRS, (4.3)

where the last three refer to the values used in Griffiths and Steyvers (2004), Asuncion et al. (2009),

and Řehůřek and Sojka (2010), respectively, and ˆ̂hFBEB refers to the value computed when we use

HMC in our FBEB scheme. The specifications used to compute the first four estimates in (4.3)

are similar to those described in Section 4.2.2, except for the following: for ˆ̂hFBEB and ˆ̂hISST we
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Corpus Categories T D V N

C-1 Eagles (62), Falco (genus) (45), Falconry (52), 7 294 1,369 114,056

Harriers (21), Hawks (16), Kites (22), Owls (76)

C-2 Baleen Whale (40), Dolphins (10), Killer Whale (11), 6 153 712 52,107

Oceanic Dolphins (50), Whaling (32),

Whale Products (10)

C-3 comp.graphics (50), comp.os.ms-windows.misc (49), 5 244 1,114 8,829

comp.sys.ibm.pc.hardware (49), comp.windows.x (47),

comp.sys.mac.hardware (49)

Table 4: Corpora created from Wikipedia pages and the 20Newsgroups dataset. The columns

labeled T , D, V , and N give the number of topics, number of documents, vocabulary size, and

total number of words, respectively, for each corpus, and the numbers shown in parentheses next

to the category names are the number of documents associated with the corresponding categories.

used 10,000 iterations after discarding 1000 as burn-in; for ˆ̂hGEM we used 100 EM iterations, and

within each we used 2000 iterations of the CGS to approximate the E-step; and for ˆ̂hVEM we used

100 EM iterations, and within each we used 20 variational inference iterations to approximate the

E-step. (The specifications used in Section 4.2.2 were a bit extravagant, and because we now need

to make comparisons of execution time, we are using more realistic numbers.) Table 5 gives S(h)

as h ranges over the last six values in (4.3), for the three corpora. The ratios are standardized by

S
(ˆ̂hFBEB

)
, i.e. the table actually gives the ratios S(h)/S

(ˆ̂hFBEB
)
. The main message from the table

is as follows. Generally, ˆ̂hFBEB and ˆ̂hISST do best and are comparable, so that the choice of which

to use should be based on computational considerations; ˆ̂hGEM and ˆ̂hVEM do worse; and all ad-hoc

choices have very poor performances.

4.2.4 Comparison in Terms of Scalability

As we saw in Sections 4.2.2 and 4.2.3, by both our criteria, the ad-hoc choices perform very poorly,

so they should not be used; the EM-based methods do not perform well (and this is especially true

of VEM); and the two MCMC-based methods perform well and are comparable, so which one to

use boils down to computational considerations, and this is what we discuss next.

There are two problems that cause ISST to be slow. First, for the method to work well,

arg maxhm(h) should be close to at least one point in the skeleton set; second, at the same time,
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Corpus ˆ̂hISST
ˆ̂hGEM

ˆ̂hVEM hGS hA-etal hRS

C-1 2.35 e−01 2.78 e−01 1.70 e−01 1.23 e−13 5.23 e−06 6.81 e−03

C-2 4.43 e−01 1.18 e−01 8.37 e−02 2.34 e−13 2.26 e−05 3.72 e−03

C-3 1.44 e+01 1.18 e−01 5.04 e−01 6.64 e−03 2.41 e−02 8.09 e−01

Table 5: Ratios S(h)
/
S(

ˆ̂
hFBEB) for six choices of h, for three corpora. A small number indicates

a lack of fit, thus a poor choice of h. On the whole, the MCMC methods do best, the EM-based

methods are worse, and all ad-hoc choices are abysmal. Notation: 6.59 e−01 = 6.59× 10−01.

the points in the skeleton set cannot be far from each other, or else the chain does not mix well

(George and Doss, 2018). A look at Figure 1 enables us to appreciate the problem. If for corpus

C-A (for which the marginal likelihood surface is on the left) we position the skeleton set in, say,

the region (α, η) ∈ (.1, .17)×(.17, .18) (the Southeast part of the displayed (α, η) region), the near

singularity of ν(h) for h in the vicinity of arg maxhm(h) and all the ν(hj)’s will cause the estimator

of the marginal likelihood surface for h in the vicinity of arg maxhm(h) to have an extremely

large variance; and this problem would be far worse if the skeleton grid was in a small region

surrounding the “distant” point (α, η) = (1, 1). The iterative scheme of George and Doss (2018)

initializes a wide skeleton set, and using this skeleton set computes an estimate of the marginal

likelihood surface m(h) over the convex hull of the skeleton set. For the next iteration, we form a

new skeleton set, centered at the current value of the estimate of arg maxhm(h), and the skeleton

set is made more narrow. This process continues until the estimate of arg maxhm(h) stabilizes.

In contrast, for the FBEB method, assuming that our Markov chain mixes well, in essence we get

a sample h(1), . . . , h(n) approximately distributed according to ν(h)
h |w(·) ∝ m(·), so the general lo-

cation of arg maxhm(h) can be obtained by inspection (visual inspection, in fact, if dim(h) = 2),

and there is no need for an iterative scheme. The second reason why ISST can be slow is that after

the Markov chain ψ1, . . . ,ψn has been obtained, the method requires the calculation of the ratios

ν(h)(ψi)
/[∑J

j=1 bjν
(hj)(ψi)

]
, i = 1, . . . , n (see Section 4.1), and here the constants b1, . . . , bJ are

tuning parameters, which must be obtained via a time-consuming iterative procedure.

Table 6 gives the times needed for the FBEB and ISST methods, and also for the GEM and

VEM methods, for corpora C-1–C-3. The left part of the table gives the actual times, and the right

part gives the times standardized by the FBEB time, for ease of comparison. The variable niter is

the number of iterations needed for ISST; this is typically about 20. As can be seen from the table,
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the time needed to implement FBEB is very substantially less than the time needed for ISST, and

is only about a single order of magnitude larger than the time needed for VEM. As is discussed in

Section 5, when suitably adjusted, FBEB can handle large corpora.

Corpus ˆ̂hFBEB
ˆ̂hISST

ˆ̂hGEM
ˆ̂hVEM

C-1 14.33 1016.11× niter 56.95 1.21

C-2 5.65 185.83× niter 24.38 0.89

C-3 3.81 70.33× niter 6.78 0.34

Corpus ˆ̂hFBEB
ˆ̂hISST

ˆ̂hGEM
ˆ̂hVEM

C-1 1 71× niter 4.0 0.084

C-2 1 33× niter 4.3 0.158

C-3 1 18× niter 1.8 0.089

Table 6: Execution times, in minutes, for four estimators of arg maxhm(h). The table on left gives

the actual times, and the table on right gives the times standardized by the time for ˆ̂
hFBEB. The time

for ˆ̂
hISST depends on niter, the number of iterations needed to set the skeleton grid.

4.3 Comparison of the Empirical Bayes and Fully Bayes Methods

It is natural to ask how our FBEB approach compares with a fully Bayesian approach in which we

put a prior on h. Such a comparison is quite different from those in Sections 4.2.2–4.2.4: in those

sections, all the contenders were numerical implementations of the empirical Bayes method. On

the other hand, a comparison of the FBEB and fully-Bayes methods is really a comparison of two

different statistical procedures. Furthermore, “fully-Bayes” does not refer to a single procedure,

but rather to a family of procedures, one for each prior on h. In this section, we consider the case

where h is two-dimensional, h = (α, η), and we consider the family of gamma priors: α, η iid∼ ga,b.

Our criterion for comparison is the PPL score discussed in Section 4.2.3.

Recall that for a given value of h, the PPL score for the model indexed by h is S(h) =[∏D
d=1 Ld(h)

]1/D, where Ld(h) is given by (4.2). In order to carry out our comparison, we need

to define the score for the fully-Bayesian case. For any a and b, let ν(a,b)
(ψ,h) |w(−d)

denote the poste-

rior distribution of (ψ, h) given w(−d) when the prior on h is ga,b. The analogue of (4.2) for the

fully-Bayes case is

Ld(a, b) =

∫
`wd

(ψ) dν
(a,b)
(ψ,h) |w(−d)

(ψ),

and the analogue of S(h) is Sd(a, b) =
[∏D

d=1 Ld(a, b)
]1/D. As for the fixed-h case, Ld(a, b) is

analytically intractable. We estimate it by MCMC in a way that is very similar to the way we

estimated Ld(h). In a little more detail, let (ψ(1), h(1)), (ψ(2), h(2)), . . . be a Markov chain whose

invariant distribution is ν(a,b)
(ψ,h) |w(−d)

. We estimate Ld(a, b) by L̂d(a, b) = (1/n)
∑n

i=1 `wd
(ψ(i)),
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and estimate the score Sd(a, b) by
[∏D

d=1 L̂d(a, b)
]1/D. We compare the empirical Bayes and fully

Bayes methods through the ratio S(ĥ)/Sd(a, b), where ĥ is the empirical Bayes estimate of h or,

to be more precise, the estimate of this ratio. The plots in Figure 6 give graphs, from two different

angles, of this ratio, as a ranges from .1 to 2.0 by increments of .1 and b ranges from .01 to .5 by

increments of .01, for a total of 1000 values. (Significantly, this range for (a, b) “nearly includes”

the value (a, b) = (0, 0), which corresponds to a standard non-informative prior p(u) ∝ (1/u),

an improper prior that is a common choice.) The plot shows that the empirical Bayes method

outperforms the fully Bayes method for most of the cases and when it does not, it is not by much.

We now briefly remark on how the plots were constructed. We ran 1000 experiments, one

for each (a, b) pair and, because the experiments are independent, the resulting figure was very

ragged: even when two (a, b) pairs are close, the estimates of the ratios of the scores for these

pairs don’t need to be close. We can deal with this difficulty using standard regression methods, in

which we use the following model: Calculated Ratio of Scores = f(a, b)+ ε, where f is unknown.

The function f can be estimated nonparametrically by bivariate splines, or by using generalized

additive models. The plots in Figure 6 actually result from applying the R function gam to the

1000 experimental points.
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Figure 6: Smoothed estimates of the ratio of the PPL for the model based on the empirical Bayes

choice of h to that of the fully Bayes model using ga,b priors for α and η, from two different views.

The plots show that the empirical Bayes model does better or not much worse over the entire (a, b)

range.
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5 Discussion

Our methodology handles corpora for which either D or T or both are large, whereas as we have

shown, competing methods do not. In Xia and Doss (2019, Section 7) we give the results of an

experiment that shows that it gives accurate estimates of the posterior distribution for corpora of a

hundred thousand documents. Whether we can handle a given corpus depends on whether MCMC

methods can handle that corpus, and we now elaborate on what we mean by this. We have used

the CGS, which runs through the vector z = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD
), updating each

variable sequentially, with β and θ integrated out. So there is a node for each word in the corpus,

and this makes the CGS very slow. George (2015) (see also Doss and George (2018)) considered

another Markov chain for estimating the posterior distribution of ψ = (β,θ, z): we look at the

pair (z, (β,θ)), and the chain is a two-cycle Gibbs sampler that alternates between updating z and

updating (β,θ). The conditional distributions ν(h)
z | (β,θ,w) and ν(h)

(β,θ) | (z,w) are available in closed

form; they may be found in Doss and George (2018), for example. This “Grouped Gibbs Sampler”

has the very attractive feature that it can be parallelized: given (β,θ) (andw), the components of z

are all independent, so can be updated simultaneously by different processors; and given z (andw),

the θd’s and βt’s are all independent, so also can be updated simultaneously by different processors.

Moreover, contrary to a widely-held view, the mixing rate for this sampler is comparable to that of

the CGS (Doss and George, 2018). When we use this Gibbs sampler, FBEB can handle corpora

with up to hundreds of thousands of documents, depending on how many processors are available.

We believe that the FBEB method can be developed for other topic models, where the dimen-

sion of the hyperparameter is high enough to preclude the use of competing approaches. Hierar-

chical Dirichlet processes (Teh et al., 2006) and the Correlated Topics Model (Blei and Lafferty,

2007) are prominent examples of such topic models.

Supplementary Materials

R Code and Data The supplemental files for this article include files containing R code and data

for reproducing all the empirical studies in the paper. The Readme file contained in the zip

file gives a description of all the other files in the archive. (shs-lda-code.zip, zip archive)

Appendix The supplemental files include a document which gives the following: (i) a review of

Hamiltonian Monte Carlo, (ii) a section showing feasibility of our method on large corpora,
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(iii) proofs of Theorems 1–3, and (iv) some minor theoretical details. (shs-lda-supp.pdf)
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