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Abstract

This document provides proofs for some of the theoretical results in “Scalable Hyperpa-

rameter Selection for Latent Dirichlet Allocation” by Wei Xia and Hani Doss, and also the

results of an additional experiment.

Throughout this document, equations, tables, etc. are labelled with the prefix “S”. We do this

in order to avoid confusion with the equations, tables, etc. of the main paper.

1 Impropriety of the Posterior Induced by the Uniform Prior

on the Hyperparameters

Here we show that if the prior on h is the uniform distribution on (0,∞)T+1 , then the marginal

posterior distribution of (z, h) is improper. The marginal posterior distribution of (z, h) is obtained

by integrating out θ andβ from the full posterior, and may be written explicitly, up to a normalizing

constant, as

ν(z,h) |w(z, h) ∝

[
D∏
d=1

(
Γ
(∑T

t=1 αt
)∏T

t=1 Γ(αt)

∏T
t=1 Γ(ndt + αt)

Γ
(
nd +

∑T
t=1 αt

))][ T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)]
.

(See (2.2).) To show posterior impropriety, we need only show that there exists z such that∫
ν(z,h) |w(z, h) dh =∞, since this implies

∑
z∈Z

∫
ν(z,h) |w(z, h) dh =∞, and in fact, it clearly

suffices to show that ∫ ∞
0

T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)
dη =∞. (S-1.1)
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We rewrite the integrand in (S-1.1) as

T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)
=

(
T∏
t=1

Γ(V η)

Γ(m·t· + V η)

)(
T∏
t=1

V∏
v=1

Γ(m·tv + η)

Γ(η)

)
. (S-1.2)

We then have
T∏
t=1

Γ(V η)

Γ(m·t· + V η)
=

T∏
t=1

1

V η(V η + 1) · · · (V η +m·t· − 1)

=
T∏
t=1

1

V m·t·ηm·t· + o(ηm·t·)
=

1

V NηN + o(ηN)
as η →∞,

(S-1.3)

and
T∏
t=1

V∏
v=1

Γ(m·tv + η)

Γ(η)
=

T∏
t=1

V∏
v=1

η(η+ 1) · · · (η+m·tv − 1) = ηN + o(ηN) as η →∞, (S-1.4)

where x = o(y) means limy→∞ x/y = 0 and we recall thatN =
∑

tm·t· =
∑

t

∑
vm·tv. We now

combine (S-1.2), (S-1.3), and (S-1.4) to get

T∏
t=1

(
Γ(V η)

Γ(η)V

∏V
v=1 Γ(m·tv + η)

Γ(m·t· + V η)

)
=

ηN + o(ηN)

V NηN + o(ηN)
→ 1

V N
as η →∞,

which implies (S-1.1). We conclude that the marginal posterior distribution of (z, h) is improper.

2 Brief Review of Hamiltonian Monte Carlo

Let X be a random variable on Rd with a differentiable density q, known up to a normalizing

constant, i.e. q(x) = p(x)/c, where p(x) is known but c is not, and suppose we wish to sample

from q. In HMC, we introduce an auxiliary variable Y , of the same dimension as X , with the

following properties: Y is independent of X , and Y ∼ N (0,M), where M is a variance matrix,

often taken to be a multiple of the identity matrix. The joint distribution of (X, Y ) is therefore

given by

pX,Y (x, y) ∝ exp
(
log(p(x))− y>M−1y/2

)
.

Define

H(x, y) = − log(pX,Y (x, y)), U(x) = − log(p(x)), and K(y) = y>M−1y/2. (S-2.1)

We then have H(x, y) = U(x) + K(y) + c′, where c′ is a constant which will never play a role,

and so may be ignored.
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The function H is called the Hamiltonian, and in a physical interpretation represents the total

energy of a system consisting of a puck sliding over a frictionless surface of varying heights. At

position x, the height of the surface is− log(p(x)), and the variable y represents the momentum of

the puck. The potential energy, U(x), is proportional to the height at position x. The kinetic energy

is (1/2)mv>v, where v is the velocity vector and m is the mass of the puck. Since momentum y

is given by y = mv, the kinetic energy of the puck with momentum y is K(y) = (1/2)m−1y>y,

which is (1/2)y>M−1y if M = mId×d. The total energy consists of the potential energy U(x)

and the kinetic energy K(y), i.e. H(x, y) = U(x) + K(y). In this system the total energy is

constant, while the potential and kinetic energy depend on the puck’s position. For example, on

a level part of the surface, the puck moves at a constant velocity. If it encounters a rising slope,

the puck’s momentum allows it to continue, with its kinetic energy decreasing and its potential

energy increasing, until the kinetic energy is zero. Then it will slide back down with kinetic energy

increasing and potential energy decreasing.

Define x(t) to be the position of the puck at time t, and define y(t) to be its momentum at time

t. In Hamiltonian dynamics, the pair (x(t), y(t)) satisfies a set of differential equations, given by

dxi
dt

=
∂H

∂yi
, i = 1, . . . , d,

dyi
dt

= −∂H
∂xi

, i = 1, . . . , d.

These determine how the pair (x(t), y(t)) evolves over time. With the specific form of the potential

and kinetic energy functions given by (S-2.1), these equations become

dxi
dt

= (M−1y)i, i = 1, . . . , d,

dyi
dt

=
∂ log(p(x))

∂xi
, i = 1, . . . , d.

(S-2.2)

Given a starting state (x(0), y(0)), this system of equations has a unique solution, which is deter-

ministic, i.e. non-random. Thus, given a starting state (x(0), y(0)), the state at time t, (x(t), y(t)),

is known exactly, and this determines a map Tt from (x, y)-space to itself.

There are three important properties of the Hamiltonian which enable us to construct a Markov

chain having invariant distribution pX,Y (for which the X-marginal is q).

P1 Hamiltonian dynamics is reversible, meaning that the maps Tt, t > 0 are invertible.

P2 The energy function is preserved, i.e. H(Tt(x(s), y(s))) = H(x(s), y(s)) for any t and s.

P3 Volume is preserved, i.e. if R is a region in (x, y)-space having volume V , then the image of
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R under Tt also has volume V . This implies that the absolute value of the Jacobian of the map

Tt is 1.

Remark 1 Properties P1–P3 together imply that Hamiltonian dynamics preserves the joint density

pX,Y : if (X0, Y0) ∼ pX,Y , and we apply the map Tt to (X0, Y0), obtaining (Xt, Yt), then (Xt, Yt) ∼
pX,Y .

We now return to the joint density pX,Y . Consider the following sampling scheme. Suppose

that the current state is (X, Y ), and fix some t > 0.

1. We make a draw from the Y -marginal of pX,Y , i.e. make a draw from theN (0,M) distribution.

Denote the result by Y ′.

2. Set (X(0), Y (0)) = (X, Y ′).

A Evolve (X(0), Y (0)) for time t according to Hamiltonian dynamics, i.e. using the solution

to the Hamiltonian equations (S-2.2). This produces (X(t), Y (t)).

B Negate the momentum variable Y (t), repeat Step 2A above, and again negate the resulting

momentum variable.

It is obvious that Step 1 preserves pX,Y . Step 2 also preserves pX,Y , as noted in Remark 1. In fact,

because pX,Y (x(t), y(t)) = pX,Y (x(0), y(0)), Step 2 may be viewed as a Metropolis step for which

the acceptance probability is always 1 (Step 2B ensures that the Metropolis proposal is symmetric,

so there is no need for the Hastings correction in the acceptance probability). Therefore, the transi-

tion consisting of both steps also preserves pX,Y . Consequently, this scheme can be used to form a

Markov chain whose invariant distribution is pX,Y and, assuming we can establish ergodicity, this

chain can be used to estimate the distribution pX,Y and its features.

Unfortunately, the scheme described above is rarely feasible, because the differential equations

given by (S-2.2) cannot be solved explicitly. There are several methods for producing numerical

approximations to the solution, all of which depend on the idea of discretizing time t, introducing

some small step size ε. The most widely used scheme is the so-called leapfrog method. One

iteration of this method maps the state (x(t), y(t)) to (x(t + ε), y(t + ε)), through the following

steps:

y(t+ ε/2) = y(t) + (ε/2)∇x log(p(x)),

x(t+ ε) = x(t) + εM−1y(t+ ε/2),

y(t+ ε) = y(t+ ε/2) + (ε/2)∇x log(p(x(t+ ε))).
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The steps above are repeated for L iterations, after which the momentum variable is negated, the

L iterations are repeated, and the momentum variable is negated again.

Suppose now that we carry out Steps 1 and 2, except that in Step 2, instead of using the exact

solution to the Hamiltonian equations, we use the approximation given by the leapfrog algorithm.

Step 2 will then not preserve the density pX,Y . However, this problem can be dealt with by accept-

ing or rejecting the proposed state with the Metropolis acceptance probability. Let (x∗, y∗) denote

the state produced by the adjusted scheme. We accept (x∗, y∗) with probability

r = min
{

1, exp
(
−H(x∗, y∗) +H(x, y)

)}
, (S-2.3)

where (x, y) denotes the state obtained after Step 1. The scheme consisting of Step 1 and the new

Step 2 preserves pX,Y . Note that if the leapfrog algorithm gives a solution which is close to the

exact solution, then the Hamiltonian for the new position is close to the Hamiltonian for the old

position, so that in (S-2.3), r is close to 1, which is a major advantage of the method. Generally

speaking, HMC makes better use of what is known about the un-normalized density p (including

the gradient of its logarithm) in comparison with random walk Metropolis algorithms. The result

is that it can make proposals that are far from the current state, yet maintain a high acceptance rate,

and thus can greatly outperform random walk Metropolis chains. For details and references, see

Neal (2011).

In practice, the negation of the momentum variable is not needed, because for our particular

choice of K, K(−y) = K(y). One complete cycle of HMC implemented via leapfrog is given by

Algorithm S-1. In the leapfrog algorithm described above, ε and L are parameters of the algorithm.

Generally speaking, if ε is small, then the leapfrog approximation to the exact solution to the

Hamiltonian equations is accurate, and so the acceptance probability is close to 1; but using a

small ε requires more computation. Also, generally speaking, a large value for L results in bigger

moves, and thus smaller correlation between successive moves; on the other hand, using a large

L requires more computation. These two parameters need to be tuned. This can be done by trial

and error, using preliminary runs; see Neal (2011) for guidelines. There is also some recent work

on automatic tuning of these parameters; see Girolami and Calderhead (2011) and Hoffman and

Gelman (2014).
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Algorithm S-1: General Hamiltonian Monte Carlo
Data: Un-normalized density p

Result: A Markov chain (X1, Y1), (X2, Y2), . . . for which the X-sequence has invariant

distribution equal to the normalized p

1 Initialize x(0), ε, L, n;

2 for i = 1, . . . , n do

3 generate y(0) ∼ N (0,M);

4 set x(i) ← x(i−1), x̃← x(i−1), ỹ ← y(0);

5 for j = 1, . . . , L do

6 set ỹ ← ỹ + ε∇x log(p(x̃))/2;

7 set x̃← x̃+ εM−1ỹ;

8 set ỹ ← ỹ + ε∇x log(p(x̃))/2

9 set r = exp
{

log(p(x̃))− 1
2
ỹ>M−1ỹ − log(p(x(i−1))) + 1

2
(y(0))>M−1y(0)

}
;

10 with probability min{1, r} set x(i) ← x̃;

3 Proof of Theorem 1

Uniform ergodicity is equivalent to the so-called Doeblin condition, which is that there exist a

probability measure Π on (Λ,BΛ), an integer m, and a constant ε > 0 such that Pm(λ,C) ≥
εΠ(C) for all λ ∈ Λ and C ∈ BΛ; see Theorem 3 of Athreya et al. (1996). We will prove uniform

ergodicity by establishing a Doeblin condition (with m = 1) stated in terms of the Markov transi-

tion density, i.e. p(λ, λ′) ≥ επ(λ′) for all λ, λ′ ∈ Λ, where p(λ, ·) and π(·) are densities on Λ (with

respect to the natural measure on Λ, namely a product measure involving Lebesgue measure on the

continuous components and counting measure on the discrete components).

Without loss of generality, we assume that the bounded hyper-rectangle has the form H0 =

[Hl, Hu]
T+1, where Hu > Hl > 0. The Markov transition density p(·, ·) for the data augmentation

chain may be decomposed as

p(λ, λ′) = νz |h(z
′ |h) νI | (h,z)(i

′ |h, z′) νJ | (h,z)(j
′ |h, z′) νQ | (h,z)(q

′ |h, z′)

νR | (h,z)(r
′ |h, z′) νh | (z,I,Q,J ,R)(h

′ | z′, I ′,Q′,J ′,R′),
(S-3.1)

where we have used several conditional independence properties of the data augmentation chain.

All the quantities on the right side of (S-3.1) depend onw, but we have suppressed this dependence

to lighten the notation. The right side of (S-3.1) is the product of six conditional densities. Our
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plan is to obtain lower bounds for the first five of these, having the following form:

νz |h(z
′ |h) ≥ ε1π1(z′), (S-3.2a)

νI | (h,z)(i
′ |h, z′) ≥ ε2π2(i′ | z′), (S-3.2b)

νJ | (h,z)(j
′ |h, z′) ≥ ε3π3(j ′ | z′), (S-3.2c)

νQ | (h,z)(q
′ |h, z′) ≥ ε4π4(q′), (S-3.2d)

νR | (h,z)(r
′ |h, z′) ≥ ε5π5(r′). (S-3.2e)

In (S-3.2), π1(·), π4(·), and π5(·) are single distributions, but π2(· |z′) and π3(· |z′) are distributions

which depend on z′. Also, in (S-3.2), ε1, . . . , ε5 > 0. The fact that π2(· |z′) and π3(· |z′) depend

on z′ does not create a problem, because if we take

π(z′, I ′,Q′,J ′,R′, h′) = π1(z′) π2(i′ | z′) π3(j ′ | z′) π4(q′) π5(r′)

νh | (z,I,Q,J ,R)(h
′ | z′, I ′,Q′,J ′,R′),

(S-3.3)

then it is easy to see that π is a probability measure on Λ. It is a single distribution, i.e. it does

not depend on (z, I,Q,J ,R, h). Thus, taking ε = ε1 · · · ε5, from (S-3.1) and (S-3.2) we get

p(λ, λ′) ≥ επ(z′, I ′,Q′,J ′,R′, h′), i.e. p(λ, λ′) ≥ επ(λ′). We now proceed with the details.

Proof of (S-3.2a) From (2.3), for every d = 1, . . . , D and i = 1, . . . , nd, we have

νzdi | (z(−di),h,w)(et)

=

(
ndt(−di) + αt

nd − 1 +
∑T

t′=1 αt′

)(
m·tv(−di) + η

m·t·(−di) + V η

)[ T∑
s=1

(
nds(−di) + αs

nd − 1 +
∑T

s′=1 αs′

)(
m·sv(−di) + η

m·s·(−di) + V η

)]−1

.

Since
ndt(−i) + αt

nd − 1 +
∑T

t′=1 αt′
≤ 1 and

m·tv(−di) + η

m·t·(−di) + V η
≤ 1,

it follows that

νzdi | (z(−di),h,w)(et) ≥
(

ndt(−di) + αt

nd − 1 +
∑T

t′=1 αt′

)(
m·tv(−di) + η

m·t·(−di) + V η

)
1

T

≥ Hl

N − 1 + THu

· Hl

N + V Hu

· 1

T
.

Therefore,

νz |h(z
′ |h) ≥

D∏
d=1

nd∏
i=1

[
Hl

N − 1 + THu

· Hl

N + V Hu

· 1

T

]
=

[
Hl

N − 1 + THu

· Hl

N + V Hu

· 1

T

]N
= ε1π1(z′),

7



where π1 denotes the uniform distribution on z-space (which has cardinality TN ), and ε1 ={
H2
l /[(N − 1 + THu)(N + V Hu)]

}N .

Proof of (S-3.2b) and (S-3.2c) We first prove (S-3.2b). From (2.16) and (2.8), for every d =

1, . . . , D and t = 1, . . . , T , we have

νIdt | (h,z)(idt |h, z) =


Γ(αt)

Γ(ndt + αt)
S(ndt, idt)α

idt
t if ndt > 0,

δ0(idt) if ndt = 0.

Note that ndt is a function of z. If ndt > 0, then because S(ndt, idt) ≥ 1, we have

νIdt | (h,z)(idt |h, z) ≥ Γ(αt)

Γ(ndt + αt)
αndt
t δndt

(idt) ≥M
Γ(Hl)

Γ(N +Hu)
δndt

(idt),

where M = minα∈[Hl,Hu], i∈{1,...,N} α
i. If ndt = 0, then trivially

νIdt | (h,z)(idt |h, z) = δndt
(idt).

To combine the two cases, we let M∗ = min{1,MΓ(Hl)/Γ(N +Hu)} and write

νIdt | (h,z)(idt |h, z) ≥M∗δdt(idt).

Therefore,

νI | (h,z)(i |h, z) =
D∏
d=1

T∏
t=1

νidt | (h,z)(idt |h, z) ≥
[
M∗]DT D∏

d=1

T∏
t=1

δdt(idt),

and this establishes (S-3.2b) with π2(i′ | z′) =
∏D

d=1

∏T
t=1 δdt(i

′
dt) and ε2 =

[
M∗]DT . The proof

of (S-3.2c) is very similar and is omitted.

Proof of (S-3.2d) and (S-3.2e) We begin with (S-3.2d). From (2.17), we have

νQ | (h,z)(q |h, z) =
D∏
d=1

[
Γ
(∑T

t=1 αt + nd
)

Γ
(∑T

t=1 αt
)
Γ(nd)

q
PT

t=1 αt−1
d (1− qd)nd−1

]

≥
D∏
d=1

[
q

PT
t=1 αt−1

d (1− qd)nd−1
]

≥
D∏
d=1

[
qTHu−1
d (1− qd)nd−1

]
=

[
D∏
d=1

Γ(THu)Γ(nd)

Γ(THu + nd)

][
D∏
d=1

Γ(THu + nd)

Γ(THu)Γ(nd)
qTHu−1
d (1− qd)nd−1

]
= ε4π4(q),
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where ε4 =
∏D

d=1

[
Γ(THu)Γ(nd)/Γ(THu + nd)

]
, and π4 denotes the product of D beta densities

with parameters THu and nd. This gives (S-3.2d). The proof of (S-3.2e) is very similar and is

omitted.

To wrap up, combining (S-3.2a)–(S-3.2e), we have shown that the Markov transition density

p(·, ·) given by (S-3.1) satisfies a Doeblin condition with π given by (S-3.3) and ε = ε1 · · · ε5, and

we conclude that the data augmentation chain is uniformly ergodic.

4 Proof of Theorem 2

The proof of Theorem 2 is based on results in Doss and Park (2018), who use empirical process

theory to obtain uniformity in the strong law of large numbers and the central limit theorem ((3.2)

and (3.3) in our context). Let ξ = (z, I,Q,J ,R) (so ξ consists of all the components of λ except

for h), and let fh(ξ) = νh | (w,ξ)(h)/νh(h), where νh | (w,ξ)(h) has the form of the quantity inside the

braces in (3.4). Note that m̂n(h) is an average of the functions fh(ξ(k)), k = 1, . . . , n. Empirical

process theory asserts uniformity in the strong law and the central limit theorem under very strong

regularity conditions, of which the main ones, in our context, are that E
(
suph fh(ξ)

)
< ∞ and

E
(
suph f

2
h(ξ)

)
< ∞. Doss and Park (2018) consider a set of regularity conditions which, in our

context, are A1–A4, and additionally the following.

B1 The Markov chain ξ(1), ξ(2) . . . is geometrically ergodic.

B2 For each h ∈ H, there exists ε > 0 such that E
(
‖∇hfh(ξ)‖2+ε

)
<∞.

B3 For some d ≥ 1, there exist h1, . . . , hd ∈ H and constants c1, . . . , cd, such that

sup
h
fh(ξ) ≤

d∑
j=1

cjfhj
(ξ) for all ξ ∈ Ξ.

B4 For some d ≥ 1, there exist h1, . . . , hd ∈ H and constants c1, . . . , cd, such that

sup
h
‖∇hfh(ξ)‖∞ ≤

d∑
j=1

cj‖∇hfhj
(ξ)‖∞ for all ξ ∈ Ξ.

B5 For some d ≥ 1, there exist h1, . . . , hd ∈ H and constants c1, . . . , cd, such that

sup
h
‖∇2

hfh(ξ)‖∞ ≤
d∑
j=1

cj‖∇2
hfhj

(ξ)‖∞ for all ξ ∈ Ξ.
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In B4 and B5, ‖ · ‖∞ is defined by ‖x‖∞ = maxi |xi| and ‖x‖∞ = maxij |xij|, respectively.

Doss and Park (2018) show (see their Theorem 4 and Remarks 1 and 5) that if Conditions A1–A4

and B1–B5 are satisfied, then statements (3.2) and (3.3) regarding uniformity in the strong law and

central limit theorem are true, and the conclusions of our Theorem 2 hold. Therefore, to prove

Theorem 2, we will establish Conditions B1–B5. Condition B1 is implied by Theorem 1, which

asserts the stronger statement of uniform ergodicity of the data augmentation chain. We will first

establish B3–B5 (with d = 1), and then deal with B2.

Proof of B3 We may write fh(ξ) in simplified form as

fh(ξ) = C(ξ) exp
{
J̃ log(η)− V R̃η +

T∑
t=1

[
Ĩt log(αt)− Q̃αt

]}
,

where C(ξ) denotes the normalizing constant of νh |w,ξ, Ĩt =
∑D

d=1 Idt, Q̃ = −
∑D

d=1 log(Qd),

J̃ =
∑T

t=1

∑V
v=1 Jtv, and R̃ = −

∑T
t=1 log(Rt). For simplicity, we have omitted the normalizing

constant of the prior νh, and this is without loss of generality because this constant depends only on

the prespecified values a and b. Without loss of generality, we assume that the compact set H has

the form H = [Hl, Hu]
T+1, where Hu > Hl > 0. Note that Q̃, R̃ > 0 and that Ĩt, J̃ ∈ {1, . . . , N}

for t = 1, . . . , T (recall that N =
∑D

d=1 nd). For any ξ ∈ Ξ we have

fh(ξ) ≤ C(ξ) exp
{
J̃ log(Hu)− V R̃Hl +

∑T
t=1

[
Ĩt log(Hu)− Q̃Hl

]}
= C(ξ) exp

{
J̃ log(Hl)− V R̃Hl +

∑T
t=1

[
Ĩt log(Hl)− Q̃Hl

]
+ log(Hu/Hl)

[
J̃ +

∑T
t=1 Ĩt

]}
≤ C(ξ) exp

{
J̃ log(Hl)− V R̃Hl +

∑T
t=1

[
Ĩt log(Hl)− Q̃Hl

]
+ log(Hu/Hl)(T + 1)N

}
= c∗fh∗(ξ), (S-4.1)

where c∗ = (Hu/Hl)
exp[(T+1)N ] and h∗ = (Hl, . . . , Hl). This establishes B3 with d = 1.

Proof of B4 The partial derivative of fh with respect to η is given by

∂fh(ξ)

∂η
=
(
J̃/η − V R̃

)
fh(ξ), (S-4.2)

and the partial derivatives of fh with respect to αt, t = 1, . . . , T are

∂fh(ξ)

∂αt
=
(
Ĩt/αt − Q̃

)
fh(ξ).

10



We now consider the partial derivative with respect to η. For any ξ ∈ Ξ we have

|∂fh(ξ)/∂η| =
∣∣(J̃/η − V R̃)fh(ξ)∣∣

≤ max
{∣∣(J̃/Hl − V R̃

)
fh(ξ)

∣∣, ∣∣(J̃/Hu − V R̃
)
fh(ξ)

∣∣}
≤
∣∣(J̃/Hl − V R̃

)
fh(ξ)

∣∣+
∣∣(J̃/Hu − V R̃

)
fh(ξ)

∣∣
=

(
1 +

∣∣∣∣ J̃/Hu − V R̃
J̃/Hl − V R̃

∣∣∣∣) · ∣∣(J̃/Hl − V R̃
)
fh(ξ)

∣∣.
It is easy to see that for any fixed J̃ ∈ {1, . . . , N},∣∣∣∣ J̃/Hu − V R̃

J̃/Hl − V R̃

∣∣∣∣→ Hl

Hu

as R̃→ 0 and
∣∣∣∣ J̃/Hu − V R̃
J̃/Hl − V R̃

∣∣∣∣→ 1 as R̃→∞. (S-4.3)

Let gJ̃(R̃) =
∣∣(J̃/Hu − V R̃

)/(
J̃/Hl − V R̃

)∣∣. Since gJ̃ is continuous, (S-4.3) implies that gJ̃ is

uniformly bounded on (0,∞). LettingMT+1 be a bound, and with c∗ and h∗ defined as in the proof

of B3, for all ξ ∈ Ξ we have

|∂fh(ξ)/∂η| ≤ (1 +MT+1)
∣∣(J̃/Hl − V R̃

)
fh(ξ)

∣∣
≤ (1 +MT+1)c∗

∣∣(J̃/Hl − V R̃
)
fh∗(ξ)

∣∣
= c∗(1 +MT+1)|∂fh∗(ξ)/∂η|,

(S-4.4)

where the second inequality comes from (S-4.1), and the equality results from (S-4.2) after we

recall that h∗ = (Hl, . . . , Hl).

Similarly, for any t = 1, . . . , T , there exists Mt such that

|∂fh(ξ)/∂αt| ≤ c∗(1 +Mt)|∂fh∗(ξ)/∂αt| for all ξ ∈ Ξ. (S-4.5)

We conclude that

‖∇hfh(ξ)‖∞ ≤ c1∗‖∇hfh∗(ξ)‖∞ for all ξ ∈ Ξ,

where c1∗ = c∗maxt=1,...,T+1{1 +Mt}. This proves B4 with d = 1.

Proof of B5 To prove B5, we will find bounds on the absolute values of the second-order partial

derivatives ∂2fh(ξ)/∂αt∂η, ∂2fh(ξ)/∂αt∂αt′ (t 6= t′), ∂2fh(ξ)/∂η
2, and ∂2fh(ξ)/∂α

2
t , and we will

proceed in this order. In what follows, c∗ and Mt are defined as in the proofs of B3 and B4.

For ∂2fh(ξ)/∂αt∂η, we first note that

∂2fh(ξ)

∂αt∂η
=

(
J̃

η
− V R̃

)
∂fh(ξ)

∂αt
. (S-4.6)
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Therefore, we have∣∣∣∣∂2fh(ξ)

∂αt∂η

∣∣∣∣ =

∣∣∣∣( J̃η − V R̃
)
∂fh(ξ)

∂αt

∣∣∣∣
≤
∣∣∣∣( J̃

Hl

− V R̃
)
∂fh(ξ)

∂αt

∣∣∣∣+

∣∣∣∣( J̃

Hu

− V R̃
)
∂fh(ξ)

∂αt

∣∣∣∣
=

(
1 +

∣∣∣∣ J̃/Hu − V R̃
J̃/Hl − V R̃

∣∣∣∣) · ∣∣∣∣( J̃

Hl

− V R̃
)
∂fh(ξ)

∂αt

∣∣∣∣
≤ (1 +MT+1)c∗(1 +Mt)

∣∣∣∣( J̃

Hl

− V R̃
)
∂fh∗(ξ)

∂αt

∣∣∣∣
= c∗(1 +MT+1)(1 +Mt)

∣∣∣∣∂2fh∗(ξ)

∂αt∂η

∣∣∣∣,
where the second inequality comes from (S-4.5) and the definition of MT+1, and the last equality

comes from (S-4.6) and the fact that h∗ = (Hl, . . . , Hl).

Similarly, we can prove that for t 6= t′,∣∣∣∣∂2fh(ξ)

∂αt∂αt′

∣∣∣∣ =

∣∣∣∣( Ĩt′αt′ − Q̃
)
∂fh(ξ)

∂αt

∣∣∣∣ ≤ c∗(1 +Mt′)(1 +Mt)

∣∣∣∣∂2fh∗(ξ)

∂αt∂αt′

∣∣∣∣.
For ∂2fh(ξ)/∂η

2, we have

∂2fh(ξ)

∂η2
= − J̃

η2
fh(ξ) +

(
J̃

η
− V R̃

)
∂fh(ξ)

∂η
=

(
J̃
(
J̃ − 1

)
η2

− 2V J̃R̃

η
+ V 2R̃2

)
fh(ξ).

In the equation above, the coefficient of fh(ξ) may be viewed as a quadratic polynomial in 1/η.

The value of η minimizing it is η′ =
(
J̃ − 1

)
/
(
V R̃
)
, and at that point the value of the coefficient

is −V 2R̃2/
(
J̃ − 1

)
. Therefore, the absolute value of the maximum must occur at Hu, Hl, or η′.
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Consequently,∣∣∣∣∂2fh(ξ)

∂η2

∣∣∣∣ ≤ ∣∣∣∣( J̃
(
J̃ − 1

)
H2
l

− 2V J̃R̃

Hl

+ V 2R̃2

)
fh(ξ)

∣∣∣∣+

∣∣∣∣( J̃
(
J̃ − 1

)
H2
u

− 2V J̃R̃

Hu

+ V 2R̃2

)
fh(ξ)

∣∣∣∣
+

∣∣∣∣V 2R̃2

J̃ − 1
fh(ξ)

∣∣∣∣
=

(
1 +

∣∣∣∣ J̃
(
J̃ − 1

)
/H2

u − 2V J̃R̃/Hu + V 2R̃2

J̃
(
J̃ − 1

)
/H2

l − 2V J̃R̃/Hl + V 2R̃2

∣∣∣∣) · ∣∣∣∣( J̃
(
J̃ − 1

)
H2
l

− 2V J̃R̃

Hl

+ V 2R̃2

)
fh(ξ)

∣∣∣∣
+

∣∣∣∣ V 2R̃2/
(
J̃ − 1

)
J̃
(
J̃ − 1

)
/H2

l − 2V J̃R̃/Hl + V 2R̃2

∣∣∣∣ · ∣∣∣∣( J̃
(
J̃ − 1

)
H2
l

− 2V J̃R̃

Hl

+ V 2R̃2

)
fh(ξ)

∣∣∣∣
≤ (1 + c′ + c′′)c∗

∣∣∣∣( J̃
(
J̃ − 1

)
H2
l

− 2V J̃R̃

Hl

+ V 2R̃2

)
fh∗(ξ)

∣∣∣∣
= c∗(1 + c′ + c′′)

∣∣∣∣∂2fh∗(ξ)

∂η2

∣∣∣∣
= M ′

T+1

∣∣∣∣∂2fh∗(ξ)

∂η2

∣∣∣∣,
where M ′

T+1 = c∗(1 + c′ + c′′). Here, c′ and c′′ satisfy∣∣∣∣ J̃
(
J̃ − 1

)
/H2

u − 2V J̃R̃/Hu + V 2R̃2

J̃
(
J̃ − 1

)
/H2

l − 2V J̃R̃/Hl + V 2R̃2

∣∣∣∣ ≤ c′ and
∣∣∣∣ V 2R̃2/(J̃ − 1)

J̃
(
J̃ − 1

)
/H2

l − 2V J̃R̃/Hl + V 2R̃2

∣∣∣∣ ≤ c′′

for all J̃ and R̃ in their range. The existence of c′ and c′′ is established through arguments similar

to those used in the proof of B4.

Similarly, we can show that for t = 1, . . . , T , there exists M ′
t such that∣∣∣∣∂2fh(ξ)

∂α2
t

∣∣∣∣ ≤M ′
t

∣∣∣∣∂2fh∗(ξ)

∂α2
t

∣∣∣∣.
Combining all the inequalities for the second-order partial derivatives, we conclude that

‖∇2
hfh(ξ)‖∞ ≤ c2∗‖∇2

hfh∗(ξ)‖∞ for all ξ ∈ Ξ, where

c2∗ = max
{
c∗(1 +Mt)(1 +Mt′), M

′
t , for t, t′ = 1, . . . , T + 1 and t 6= t′

}
.

Proof of B2 Recall that fh(ξ) = νh | (w,ξ)(h)/νh(h) where νh | (w,ξ)(h) is the product of T + 1

gammas (see the quantity inside the braces in (3.4)). We may express this function as fh(ξ) =

13



gT+1,ξ(η)
∏T

t=1 gt,ξ(αt), where

gT+1,ξ(η) =
Γ(a)

ba

(
b+ V R̃

)a+J̃

Γ
(
a+ J̃

) ηJ̃ exp
(
−V R̃η

)
,

gt,ξ(αt) =
Γ(a)

ba

(
b+ Q̃

)a+Ĩt

Γ
(
a+ Ĩt

) αĨtt exp
(
−Q̃αt

)
, t = 1, . . . , T.

(S-4.7)

Our plan is to show that ∂fh(ξ)/∂η and ∂fh(ξ)/∂αt are uniformly bounded, and because the set

of possible values of Ĩt and J̃ is finite, it suffices to show that for fixed values of Ĩt and J̃ these

partial derivatives are uniformly bounded as Q̃ and R̃ vary. To find uniform bounds on ∂fh(ξ)/∂η

and ∂fh(ξ)/∂αt, we will make use of the inequalities for these partial derivatives in terms of the

values of these partial derivatives at h∗ which we obtained in the proof of B4. We have

gT+1,ξ(Hl) =
Γ(a)

ba
H J̃
l

Γ
(
a+ J̃

) (b+ V R̃
)a+J̃

exp
(
V HlR̃

) ≤MT+1(J̃) <∞ for all ξ ∈ Ξ.

The existence of the finite upper bound MT+1(J̃) is easy to establish and this is done as in the

proof of B4. Similarly, for any t = 1, . . . , T , there exists Mt(Ĩt) <∞ such that

gt,ξ(Hl) ≤Mt(Ĩt) <∞ for all ξ ∈ Ξ. (S-4.8)

We now consider the partial derivatives. We have∣∣∣∣∂fh(ξ)∂η

∣∣∣∣ ≤ c∗(1 +MT+1)

∣∣∣∣( J̃

Hl

− V R̃
)
fh∗(ξ)

∣∣∣∣
≤ c∗(1 +MT+1)

∣∣∣∣Γ(a)

ba
H J̃
l

Γ(a+ J̃)

(
b+ V R̃

)a+J̃(
J̃/Hl − V R̃

)
exp
(
V HlR̃

) ∣∣∣∣ T∏
t=1

Mt(Ĩt)

≤ c∗(1 +MT+1)M ′
T+1(J̃)

T∏
t=1

Mt(Ĩt),

where the first inequality is from the second inequality in (S-4.4), the second inequality comes

from (S-4.7) and (S-4.8), and the third inequality comes from the fact that there exists a finite

M ′
T+1(J̃) satisfying∣∣∣∣Γ(a)

ba
H J̃
l

Γ
(
a+ J̃

) (b+ V R̃
)a+J̃(

J̃/Hl − V R̃
)

exp
(
V HlR̃

) ∣∣∣∣ ≤M ′
T+1(J̃) for all R̃.

We conclude that there exists M̃T+1 > 0 such that |∂fh(ξ)/∂η| ≤ M̃T+1 for all ξ ∈ Ξ. Similarly,

we can prove that for any t = 1, . . . , T , there exists M̃t such that |∂fh(ξ)/∂αt| ≤ M̃t for all ξ ∈ Ξ.

These last two statements immediately imply that B2 holds.
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5 Consistency of the Importance Weighted Marginal Density

Estimator

Let h∗ ∈ H be fixed, and let {ωz, z ∈ Z} be a family of densities on H. We do not require

that this be the family of conditional densities corresponding to some joint distribution on Z ×H;

we require only that for each z ∈ Z , ωz is a density on H. The Markov chain based on HMC

and the chain based on data augmentation both satisfy the conditions of Theorem 2 of Athreya

et al. (1996). Consequently, for µ denoting the product of counting measure on Z and Lebesgue

measure onH, we have

ν̂h |w(h∗)
a.s.−→
∫
ωz(h)

ν(z,h) |w(z, h∗)

ν(z,h) |w(z, h)
ν(z,h) |w(z, h) dµ(z, h)

=

∫ ∑
z

ωz(h)
ν(z,h) |w(z, h∗)

ν(z,h) |w(z, h)
ν(z,h) |w(z, h) dh

=
∑

z

{
ν(z,h) |w(z, h∗)

∫
ωz(h) dh

}
=
∑

z

ν(z,h) |w(z, h∗)

= νh |w(h∗),

where the third equality is due to the fact that for each z, ωz is a density onH.

6 Proof of Theorem 3

The data augmentation algorithm gives a sequence λ(1), . . . , λ(n), where the λ’s have the general

form λ = (z, I,Q,J ,R, h̃). Let ζ be the subvector of λ given by ζ = (z, h̃). Letting fh(ζ) =

ν̂h |w(h)/ν̂(h), where ν̂h |w is now given by (3.5), we see that m̂n(h) is an average of the functions

fh(ζ
(k)), k = 1, . . . , n. As in the proof of Theorem 2, we need to check Conditions B2–B5 and,

again, we will first establish B3–B5 (with d = 1), and then deal with B2.

Proof of B3 We first express fh(ζ) as fh(ζ) = C(ζ)gz(h), where C(ζ) = ωz(h̃)/ν(z,h) |w(z, h̃)

and gz(h) = ν(z,h) |w(z, h)/νh(h), so that by (2.2), gz(h) is given by

gz(h) =

[
D∏
d=1

Γ
(∑T

t=1 αt
)

Γ
(
nd +

∑T
t=1 αt

)][ D∏
d=1

T∏
t=1

Γ(ndt + αt)

Γ(αt)

][
T∏
t=1

Γ(V η)

Γ(m·t· + V η)

]

×

[
T∏
t=1

V∏
v=1

Γ(m·tv + η)

Γ(η)

]
.

(S-6.1)
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We then consider the component-wise monotonicity in h = (α1, . . . , αT , η) of the functions inside

the brackets. We have

D∏
d=1

Γ
(∑T

t=1 αt
)

Γ
(
nd +

∑T
t=1 αt

) =
D∏
d=1

1(∑T
t=1 αt + nd − 1

)
· · ·
(∑T

t=1 αt
) ,

and it is easy to see that for each t = 1, . . . , T , this product is monotonically decreasing in αt with

all the other variables fixed. Also,

D∏
d=1

T∏
t=1

Γ(ndt + αt)

Γ(αt)
=

D∏
d=1

T∏
t=1

(αt + ndt − 1) · · ·αt,

and for each t = 1, . . . , T , this product is monotonically increasing in αt with all the other variables

fixed. For the functions involving η the results are analogous. Recall that H is assumed compact,

and without loss of generality has the form H = [Hl, Hu]
T+1 with 0 < Hl < Hu. Also, redefine

h∗ by h∗ = (Hu, . . . , Hu). We then have

fh(ζ) ≤ C(ζ)

[
D∏
d=1

Γ
(
THl

)
Γ
(
nd + THl

)][ D∏
d=1

T∏
t=1

Γ(ndt +Hu)

Γ(Hu)

][
T∏
t=1

Γ(V Hl)

Γ(m·t· + V Hl)

]
[

T∏
t=1

V∏
v=1

Γ(m·tv +Hu)

Γ(Hu)

]

= fh∗(ζ)

[
D∏
d=1

Γ(nd + THu)

Γ(nd + THl)

Γ(THl)

Γ(THu)

][
T∏
t=1

Γ(m·t· + V Hu)

Γ(m·t· + V Hl)

Γ(V Hl)

Γ(V Hu)

]
(S-6.2a)

≤ fh∗(ζ)

[
Γ(N + THu)

Γ(THl)

]D[
Γ(N + V Hu)

Γ(V Hl)

]T
(S-6.2b)

= c∗fh∗(ζ), (S-6.2c)

where (S-6.2a) comes from the definition of h∗ given above, (S-6.2b) results from the inequalities

0 ≤ nd ≤ N, d = 1, . . . , D, and 0 ≤ m·t· ≤ N, t = 1, . . . , T , and in (S-6.2c) c∗ is defined by

c∗ =
[
Γ(N + THu)/Γ(THl)

]D[
Γ(N + V Hu)/Γ(V Hl)

]T . This gives B3.

Proof of B4, B5, and B2 The hyperparameter h is given by h = (α1, . . . , αT , η), but for conve-

nience, we will temporarily denote it by h = (h1, . . . , hT+1). The function gz(·), defined in (S-6.1),

is a product of ratios of polynomials in h, and over the compact domain of h, these ratios are

bounded above and are non-zero. Consequently, for any z ∈ Z and any t = 1, . . . , T + 1,

∂gz(h)/∂ht is continuous in h. Therefore, there exists hz(t) that maximizes |∂gz(h)/∂ht|. Be-

cause Z is finite, there exists z(∗t) and a corresponding hz(∗t) such that |∂gz(∗t)(hz(∗t))/∂ht)| =
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maxz |∂gz(hz(t))/∂ht|. Define M (t)
u = |∂gz(∗t)(hz(∗t))/∂ht|. We then have∣∣∣∣∂gz(h)

∂ht

∣∣∣∣ ≤ ∣∣∣∣∂gz(hz)

∂ht

∣∣∣∣ ≤ ∂gz(t)(h(t))

∂ht
= M (t)

u for all z ∈ Z, h ∈ H.

Using a similar argument, we can show that there exists M (t)
l > 0 such that

M
(t)
l ≤

∣∣∣∣∂gz(h)

∂ht

∣∣∣∣ for all z ∈ Z, h ∈ H.

We now consider fh(ζ). Choose an arbitrary h0 ∈ H. For any t = 1, . . . , T + 1, we have∣∣∣∣∂fh(ζ)

∂ht

∣∣∣∣ =

∣∣∣∣C(ζ)
∂gz(h)

∂ht

∣∣∣∣ ≤ C(ζ)M (t)
u ≤ C(ζ)

M
(t)
u

M
(t)
l

∣∣∣∣∂gz(h0)

∂ht

∣∣∣∣ =
M

(t)
u

M
(t)
l

∣∣∣∣∂fh0(ζ)

∂ht

∣∣∣∣. (S-6.3)

We conclude that

‖∇hfh(ζ)‖∞ ≤M‖∇hfh0(ζ)‖∞,

where M = max
{
M

(t)
u /M

(t)
l , t = 1, . . . , T + 1

}
. This proves B4.

The proof of B5 is very similar and is omitted. Condition B2 is trivially satisfied because

by (S-6.3), ∂fh(ζ)/∂ht has a uniform upper bound.

7 Feasibility for Large Corpora

Here we describe an experiment involving a large number of documents. The experiment has

only one purpose, namely to demonstrate that our method can handle large corpora. It does not

do a comparison with other methods, because a thorough comparison has already been done in

Sections 4.2.2–4.2.4, and also because it is not possible to compare our method with ISST, since

ISST does not easily handle corpora of the size we use.

In the experiment, we generated artificial corpora from LDA models with configuration pa-

rameters set as follows. All of them had D = 105, T = 50, V = 3,000, and nd = 200 for each

document in the corpus, and we used the nine values of htrue given in the first row of Table S-1.

For each corpus, we applied our method, implemented via HMC, and formed ˆ̂h. Our goal was to

demonstrate that ˆ̂h does a good job of estimating ĥ = arg maxhm(h). We have here the subtle

point mentioned before, that ĥ is unknown. So instead, we show that ˆ̂h does a good job of estimat-

ing htrue, the rationale for this being that ĥ is the maximum likelihood estimator of htrue, and when

D is large, ĥ is very close to htrue. Table S-1 gives the results. The second row shows that ˆ̂h is very

close to htrue in all cases, which shows that our method is working well. The third row gives the
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execution times (in hours) for our method. These are long, but they can be massively reduced if we

use parallelization (see Section 5 of Xia and Doss (2018)). (Interestingly, applying our procedure

to a random subsample of only 5% or 10% of the documents in each corpus produces essentially

the same estimates, so the execution times can also be reduced in that way.)

In our experiments we used synthetic corpora, as opposed to real corpora, because for synthetic

corpora we know the true hyperparameter, i.e. the hyperparameter value under which the corpus is

generated, so there is no ambiguity in reporting and interpreting our results.

(αtrue, ηtrue) (.2, .2) (.2, .7) (.7, .2) (.4, .4) (.7, .7) (.5, .5) (1.0, .5) (1.0, 1.0) (1.0, 1.5)

(ˆ̂α, ˆ̂η) (.2, .2) (.2, .7) (.7, .2) (.4, .4) (.65, .66) (.5, .51) (.95, .46) (.95, .96) (.95, 1.46)

Time (h) 55.9 53.7 54.1 53.8 53.6 50.27 54.6 54.8 53.9

Table S-1: Performance of the FBEB method on large synthetic corpora (D = 105) generated

under nine different values of the hyperparameter. The method does an excellent job of estimating

htrue, and hence also of estimating ĥ, in all nine cases.
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