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Abstract

Consider a Bayesian setup in which we observe Y ∼ pθ, where θ ∈ Θ, and we have a parametric
family {νh, h ∈ H} of potential prior densities on Θ. A pervasive task is to select a member of that
family, and in non-subjective Bayesian analyses this is typically done by choosing the value of the
hyperparameter h that maximizes some criterion. Arguably the most common way of doing this is
to let m(h) be the marginal likelihood of h, i.e. m(h) =

∫
pθ(y) νh(θ) dθ, and choose the value of h

that maximizes m(·). Unfortunately, except for a handful of textbook examples, analytic evaluation
of arg maxhm(h) is not feasible. We review the literature on estimating it and find that all existing
procedures are either potentially highly inaccurate or don’t scale well with the dimension of h, the
dimension of θ, or both. We present a method for estimating arg maxhm(h), based on Markov chain
Monte Carlo, that applies very generally and scales well with dimension. We provide theorems,
based on empirical process theory, which enable us to obtain confidence sets for arg maxhm(h),
and to determine the Markov chain length needed to estimate arg maxhm(h) to a preset level of
accuracy. Let g be a real-valued function of θ, and let I(h) be the posterior expectation of g(θ) when
the prior is νh. As a byproduct of our approach, we show how to obtain point estimates and globally-
valid confidence bands for the family I(h), h ∈ H. To illustrate the scope of our methodology we
provide three detailed examples, having different characters (two are in the present paper and one is
in a supplementary document).

Key words and phrases: Bayesian model selection, Donsker class, geometric ergodicity, hyper-

parameter selection, Markov chain Monte Carlo, regenerative simulation.

1 Introduction

Consider a Bayesian setup in which we observe Y ∼ pθ, where θ ∈ Θ, and we have a family
{νh, h ∈ H} of potential prior densities on Θ. We observe Y = y, and after having selected
a hyperparameter value h0, Bayesian inference is based on the posterior distribution νh0,y. As is
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well known and we discuss later, inference can depend heavily on the hyperparameter value h that
specifies the prior. The problem of selecting h in a principled manner comes up in a large number
of situations, and below we describe two classes of nontrivial ones. Dirichlet process mixtures
(DPM’s, see Neal (2000) for a review) are Bayesian hierarchical models in which one of the levels
of the hierarchy posits that a probability measure µ is distributed according to a Dirichlet pro-
cess indexed by a base probability measure α and a precision parameter M . The base probability
measure typically is taken from a parametric family {αa, a ∈ A}, so the hyperparameter for the
DPM is h = (M,a). As is well known, when M is large, the model based on a DPM behaves
like a model in which the distribution µ is equal to αa, i.e. the distribution of µ is a point mass
at αa, whereas when M is small, the distribution of µ is more diffuse, or “nonparametric.” Thus,
loosely speaking, the hyperparameter M controls the extent to which the model is parametric or
nonparametric. Related to DPM’s are hierarchical Dirichlet processes (Teh et al., 2006). For the
most commonly-used version of these models, the one used for topic modelling (Blei et al., 2003),
there are two levels in the hierarchy which involve Dirichlet processes. In this case, the hyperpa-
rameter h is the triple consisting of the two precision parameters and the parameter vector of the
base probability measure at the bottom of the hierarchy. In each of these cases, the hyperparameter
plays a crucial role, but the complex nature of the model makes its selection difficult; for example,
for models based on hierarchical Dirichlet processes, there are currently no principled methods for
dealing with the hyperparameters other than by placing a prior on them, an approach which has its
own problems, as we discuss later.

The second situation involving selection of a hyperparameter involves a Bayesian formulation
of the normal means problem introduced in a series of papers by Efron and Morris in the 1970’s
(see for example Efron and Morris (1973)). The setup is the hierarchical model

Xi | θi
ind∼ N (θi, 1), i = 1, . . . , p,

θi
iid∼ N (µ, λ), i = 1, . . . , p,

where µ and λ are unknown. We observe X := (X1, . . . , Xp) and we wish to estimate θ :=

(θ1, . . . , θp). The posterior mean of θi is

θ̂λ,µi =
λ

λ+ 1
Xi +

1

λ+ 1
µ. (1.1)

This gives a class of estimators of θ, indexed by (λ, µ), and the goal is to find the “optimal” value
of (λ, µ). Let R(θ̂λ,µ, θ) denote the risk (under sum of squared errors as loss) of the estimate
θ̂λ,µ = (θ̂λ,µ1 , . . . , θ̂λ,µp ). Note that R(θ̂λ,µ, θ) depends on (λ, µ) and also on θ, which is unknown.
The optimal value of (λ, µ) is taken to be the value that minimizes R(θ̂λ,µ, θ), and this can’t be
obtained since we don’t know θ. Stein’s unbiased risk estimate (SURE, Stein (1981)), denoted
SURE(λ, µ), is a statistic with the property that Eθ[SURE(λ, µ)] = R(θ̂λ,µ, θ), where the notation
Eθ signifies that the expectation is taken under the assumption that Xi

ind∼ N (θi, 1). Since we can’t
obtain arg minλ,µR(θ̂λ,µ, θ), we compute (λ̂opt, µ̂opt) = arg minλ,µ SURE(λ, µ) and use (λ̂opt, µ̂opt)

in place of (λ, µ) in (1.1). The result is an estimator of θ which is very similar to the James-Stein
estimate (James and Stein, 1961).
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The approach of choosing the hyperparameter value by minimizing the SURE is an example
of an empirical Bayes analysis: we use the data to select the hyperparameter of the prior. The
approach is elegant and has been replicated in several situations that are more complex than the
one described above. Unfortunately, it requires that we be able to find a closed-form expression for
an unbiased risk estimate, and for complex models this may be extremely difficult or impossible.
There is another approach, one that does not require us to specify a loss function, and which is
much more commonly used, especially in the machine learning literature. It involves the marginal
likelihood: observing Y = y induces the marginal likelihood function m(h) =

∫
`y(θ)νh(θ) dθ,

where `y(θ) = pθ(y) is the likelihood function, and h is chosen to be arg maxhm(h). Unfortu-
nately, analytic evaluation of m(h) is not feasible except for a handful of textbook examples.

The literature gives several numerical methods for estimating the function m(h) or its argmax.
One of them is the EM algorithm, in which Y is viewed as observed data and θ is viewed as missing
data. Typically, the “complete data likelihood” fh(θ, y) is available in closed form, so the algorithm
can in principle be applied. In most complex problems, however, the E-step in the algorithm is
infeasible, because it requires calculating an expectation with respect to the intractable distribution
νh,y. Several variants of the EM algorithm have been proposed to deal with this difficulty, and
these include Monte Carlo EM (MCEM), originally proposed in Wei and Tanner (1990), in which
the E-step is approximated by a Monte Carlo estimate; and variational EM (VEM), see Beal and
Ghahramani (2003) and also Blei et al. (2017), in which the E-step is approximated by an estimate
produced through variational inference. Unfortunately, the EM algorithm can converge slowly,
and therefore so can its variants, and this problem gets worse with “increasing missingness” (Liu,
1994; van Dyk and Meng, 2001). Thus, when the dimension of θ is large the rate of convergence
can be very problematic, since here θ is what is missing. Also, if the marginal likelihood surface
is multimodal, all EM-type algorithms can fail, with the user having no clue that the estimate
of arg maxhm(h) is only a local mode. Additionally, for both MCEM and VEM, because an
approximation is used at every iteration of the EM algorithm, the theoretical basis for these two
methods is weak. We elaborate on this point in Section 2.4.

Another approach for estimating m(h) relies on importance sampling, and in its simplest form
the approach is described as follows. Assume that all the priors in the family {νh, h ∈ H} are
mutually absolutely continuous, which entails that all the posteriors are also mutually absolutely
continuous. Let h1 ∈ H, and suppose we are able to generate an ergodic Markov chain with
invariant distribution νh1,y. Starting with the equation

∫
[νh,y(θ)/νh1,y(θ)]νh1,y(θ) dθ = 1 and ex-

pressing the statement “the posterior is proportional to the likelihood times the prior” as νh,y(θ) =

(1/m(h))`y(θ)νh(θ), we trivially obtain the equation
∫

[νh(θ)/νh1(θ)]νh1,y(θ) dθ = m(h)/m(h1).
This is an interesting identity because it means that if θ1, θ2, . . . is an ergodic Markov chain with
invariant distribution νh1,y, then

1

n

n∑

i=1

νh(θi)

νh1(θi)

a.s.−→ m(h)

m(h1)
. (1.2)

The significance of the convergence statement (1.2) is that, in principle, with a single Markov chain
run, we can estimate the entire function m(·) up to a multiplicative constant. For the purpose of
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estimating arg maxhm(h), the information in the two functions m(·) and m(·)/m(h1) is identical:
the two functions have the same argmax, and the second derivative matrices of the logarithm of
these two functions are identical. Therefore, the standard point estimates and confidence regions
based on m(·) and m(·)/m(h1) are identical.

Unfortunately, some of what is said above is too good to be true, and in reality the estimate on
the left side of (1.2) has a serious defect: unless h is close to h1, νh can be nearly singular with
respect to νh1 over the region where the θi’s are likely to be, resulting in a very unstable estimate.
From a practical point of view, this means that there is effectively a “radius” around h1 within
which one can safely move, and there may not exist a single value of h1 that gives rise to estimates
that are stable for all h ∈ H. One way of dealing with this problem is to select J fixed points
h1, . . . , hJ ∈ H that “cover” H in the sense that for every h ∈ H, νh is “close to” at least one
of νh1 , . . . , νhJ . We then develop an importance sampling expression analogous to the left side
of (1.2), where the denominator is based on νh1 , . . . , νhJ . This approach, which is not trivial, can
give a great improvement over the simple importance sampling estimate, and Doss and Park (2018)
developed theory for it. We explain the approach in detail in Section 2.4. Here, we mention only
that it suffers from the curse of dimensionality: when dim(h) is large, it is necessary that J be
huge in order for the points h1, . . . , hJ to adequately cover H, and in Section 2.4 we explain why
this can cause the approach to fail when dim(h) ≥ 3 or even when dim(h) = 2. (Note that here,
dimension refers to the hyperparameter h, whereas for the EM variants discussed earlier, it is the
dimension of θ that causes problems.)

The purpose of this paper is to review the literature on selection of the hyperparameter, and
to present an approach for estimating arg maxhm(h) which scales well with the dimensions of h
and θ. The approach is described as follows. We consider a fully-Bayes model in which we put
a prior distribution on the hyperparameter h. To make the discussion as simple as possible in this
introductory description, we will take the prior on h to be the uniform distribution, although as we
explain in Section 2, ultimately this is not the prior that we will use, and we will need to apply a
minor adjustment to account for this. Let u denote the uniform distribution on h. This prior induces
a joint distribution on (h, θ, Y ), which we will denote by π. Let π(h,θ) | y denote the posterior
distribution of (h, θ) given Y = y, and let πh | y denote the marginal posterior distribution of h given
Y = y. Regarding πh | y, the statement “the posterior distribution is proportional to the likelihood
times the prior” reads as πh | y(h) ∝ m(h)u(h). Since u ∝ 1, this may be rewritten as πh | y ∝ m(h),
so the mode of πh | y is arg maxhm(h). Now, suppose that we can construct a geometrically ergodic
Markov chain (h1, θ1), (h2, θ2), . . . whose invariant distribution is π(h,θ) | y. The marginal sequence
h1, h2, . . . then has invariant distribution equal to πh | y. Any method for estimating the mode of
πh | y from the sequence h1, h2, . . . gives rise to an estimate of arg maxhm(h). Generally speaking,
estimation of the mode is a hard problem, and the optimal rates of convergence are worse than
n1/2. The theory is technical but a typical result states that if f is a density on Rk, then under some
regularity conditions, the optimal convergence rate for estimation of the mode of f based on an
iid sample is n1/(4+k) (Tsybakov 1990, see also Donoho and Liu 1991), so even in the simplest
case where k = 1, this is the very slow rate of n1/5. However, these pessimistic results pertain
only to the case where the only information we have about f is the Monte Carlo information in
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the sample. In Bayesian problems, we typically also have some information concerning π. For
example, the conditional density of h given θ and y may be available, and in this case, Rao-
Blackwellization is possible: πh | y may be estimated by π̂h | y(h) = (1/n)

∑n
i=1 πh | (θ=θi,Y=y)(h).

It turns out that for any fixed h, π̂h | y(h) converges to πh | y(h) at the rate of n1/2—after all, π̂h | y(h)

is simply an average. Using tools from empirical process theory, we show that we have n1/2-
convergence uniformly in h. More precisely, we show that n1/2

(
π̂h | y(·)− πh | y(·)

)
converges to a

mean-zero Gaussian process indexed by h. From this, we show that arg maxh π̂h | y(h) converges
to arg maxhm(h), also at the rate of n1/2, regardless of the dimension of h, and we show how
confidence sets for arg maxhm(h) can be constructed. Standard methods based on gradient-based
approaches can be used to find arg maxh π̂h | y(h) rapidly, even when dim(h) is moderately large.

As will be seen later, our approach may be used for hyperparameter selection problems when
dealing with hierarchical Dirichlet processes and also problems for which it is very difficult or
impossible to obtain an unbiased estimate of risk. Additionally, a by-product of our approach is a
method for simultaneous estimation of a posterior expectation as the hyperparameter varies. More
specifically, let g be some function of θ. In Bayesian sensitivity analysis, we are interested in
I(h) :=

∫
g(θ)νh,y(θ) dθ as h varies continuously. We show that from the single Markov chain

(h1, θ1), (h2, θ2), . . . we can estimate the entire function I(h) as h varies. More specifically, from
the Markov chain we construct an estimator Î(h) and show that n1/2

(
Î(·) − I(·)

)
converges to a

mean-zero Gaussian process indexed by h. We also show how this result can be used to construct
simultaneous confidence intervals for I(h), as h varies continuously overH.

The rest of the paper is organized as follows. Section 2 contains our methodological and theo-
retical results. There, we describe our approach in more detail, and deal with the situation where
the distribution onH is not the uniform. We provide three theorems which give precise statements
of the convergence results mentioned above. And we discuss modifications of our approach for
cases where Rao-Blackwellization is not possible. Section 2 also contains our review of other ap-
proaches for selecting the hyperparameter and a comparison of our approach with these previous
approaches. Section 3 provides two of three illustrations which are chosen to have very different
characters in order to demonstrate the scope of our methodology. The first illustration involves an
empirical Bayes approach to variable selection in regression. We consider an additive regression
model in which each variable is fit using a regression spline. We show how our methodology can
be used to select the significant knots for each predictor variable and, interestingly, also to elimi-
nate variables which are not useful in the regression. The second illustration involves a Bayesian
tree model for regression with many predictors. The model features a hyperparameter that controls
sparsity. We show how our methodology can be used to select the sparsity parameter, and also
show that with this adaptive choice, the model acts appropriately in sparse and nonsparse situa-
tions. The third illustration is in the supplement. In Section S-1 of Doss and Linero (2021) we
discuss an example which involves a robust binary regression model. In this example, we use our
methodology to select the “robustness” parameter, which is a parameter in the model, as opposed to
the hyperparameter of the prior distribution. In Section 3 we also discuss the question of whether
one should do a fully Bayes analysis instead of an empirical Bayes analysis. The proofs of our
theoretical results are in Section S-2 of Doss and Linero (2021).
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2 Estimation of the Marginal Likelihood Function and Its
Argmax

This section consists of four parts. In the first, we explain in detail our approach for obtaining
the maximizer of the marginal likelihood function m(h); in the second, we show how the ideas
underlying our approach can be used to construct simultaneous confidence bands for the poste-
rior expectation of a function of θ as the hyperparameter of the prior varies continuously; in the
third, we discuss the “Importance Weighted Marginal Density Method” of Chen (1994), which is
an alternative to Rao-Blackwellization; and in the fourth, we describe existing methods for hy-
perparameter selection, discussing strengths and weaknesses, and compare our method with the
existing methods (the reader who is interested in understanding and using our methodology but is
not interested in a review and evaluation of other approaches can skip the fourth part without loss).

2.1 The Fully-Bayes Empirical Bayes Method

When h is random, we will use the letter π, with subscripts, to indicate distributions on the triple
(h, θ, Y ), in a self-explanatory manner. Thus, πh will indicate a prior on h, πh | y will indicate
the posterior distribution of h given Y = y, π(h,θ) | y the joint conditional distribution of (h, θ)

given Y = y, etc. (In the beginning of Section 1 we considered the model in which h is not
random, but fixed, and we used the notation νh and νh,y to denote the prior on θ indexed by h,
and the corresponding posterior, respectively. These correspond to πθ |h and πθ | (h,y), respectively.)
The prior πh may be something other than the uniform for several reasons. For example, certain
forms for πh may induce a partial conjugacy structure and thus enable the construction of MCMC
algorithms in which the component updates exploit this conjugacy.

Recall that the marginal likelihood of h is m(h) =
∫
`y(θ)νh(θ) dθ. The posterior distribution

of h given Y = y is πh | y(h) ∝ m(h)πh(h), which we rewrite as πh | y(h)/πh(h) = cm(h), where c
is the constant of proportionality, so we will need the maximizer of πh | y/πh, rather than the mode
of πh | y. Suppose that (h1, θ1), (h2, θ2), . . . is a Markov chain with invariant distribution equal to
π(h,θ) | y. If the conditional density of h given θ and y is available, then from the chain we may form
the Rao-Blackwellized estimate of πh | y given by

π̂h | y(h) =
1

n

n∑

i=1

πh | (θ=θi,Y=y)(h). (2.1)

(Remark: notation of the sort πh(h) or πh | y(h) is unfortunately potentially confusing, with the
lower case letter h playing two distinct roles: as a subscript, it indicates that πh or πh | y is a
density on the random variable h, while as an argument, it indicates that this density is evaluated
at the point h. On occasion, we will use notation of the sort πh(h∗) to indicate the value of the
density πh at the point h∗, when this is necessary to avoid confusion.) For any fixed h, π̂h | y(h)

is an average. Suppose temporarily that (h1, θ1), (h2, θ2), . . . is a sequence of independently and
identically distributed draws from π(h,θ) | y. If

E
(
πh | (θ=θ1,Y=y)(h)

)
= πh | y(h) (2.2)
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and E
([
πh | (θ=θ1,Y=y)(h)

]2)
<∞, then the estimate in (2.1) would be consistent, and also satisfy a

central limit theorem. The second moment assumption is, of course, standard, but statement (2.2)
actually requires an argument, which is given in Section S-2 of Doss and Linero (2021).

We now consider the Markov chain case. Consistency of π̂h | y(h) is guaranteed under the
minimal and easily checkable condition that the chain is Harris ergodic (that is, it is irreducible,
aperiodic, and Harris recurrent; see chapter 17 of Meyn and Tweedie 1993 for definitions). We get
a central limit theorem if

(i) the Markov chain mixes fast enough, and

(ii) the random variable πh | (θ=θ1,Y=y)(h) has a high enough moment.

Weakening condition (i) requires strengthening condition (ii) and vice versa. There are many sets
of conditions, and perhaps the most convenient is one given in Ibragimov and Linnik (1971) and
that involves geometric ergodicity. (The definition of geometric ergodicity of a Markov chain
X1, X2, . . . on the measurable space (X,B) and having Π as an invariant probability measure is
as follows. Let Kn(x,A) be the n-step Markov transition function. The chain is geometrically
ergodic if there exist a constant ρ ∈ [0, 1) and a function M : X → [0,∞) such that for n =

1, 2, . . ., supA∈B |Kn(x,A) − Π(A)| ≤ M(x)ρn for all x ∈ X.) The condition is that the chain
is geometrically ergodic, and for some ε > 0, πh | (θ=θ1,Y=y)(h) has a moment of order 2 + ε, for
some ε > 0 (corollary to Theorem 18.5.3 of Ibragimov and Linnik 1971). Thus, under Harris and
geometric ergodicity and the moment condition stated above, for each h ∈ H,

π̂h | y(h)
a.s.−→ πh | y(h) as n→∞ (2.3)

and
n1/2

(
π̂h | y(h)− πh | y(h)

) d→ N (0, σ2(h)) as n→∞

for some σ2(h) <∞, and consequently, for each h ∈ H, we have

π̂h | y(h)/πh(h)
a.s.−→ cm(h) (2.4)

and
n1/2

(
π̂h | y(h)/πh(h)− cm(h)

) d→ N
(
0, σ2(h)/π2

h(h)
)
, (2.5)

where c is the constant defined right above (2.1).
Our principal objectives are to show that

arg max
h

[π̂h | y(h)/πh(h)]
a.s.−→ arg max

h
m(h) (2.6)

and, more importantly,

n1/2
(

arg max
h

[π̂h | y(h)/πh(h)]− arg max
h

m(h)
)

d→ Ndim(h)(0,Σ) (2.7)

where Σ can be estimated consistently, as this would enable us to construct confidence sets for
arg maxhm(h). A succinct summary of our methodology, including what to do if Rao-Blackwellization
is not feasible, is given at the end of Section 2.3.
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Note that the pointwise convergence statement that π̂h | y(h)/πh(h)
a.s.−→ cm(h) for every h does

not imply convergence of arg maxh[π̂h | y(h)/πh(h)] to arg maxhm(h) in any sense at all. In fact,
even in the very simple case where {fn}∞n=1 and f are deterministic functions defined on [0, 1],
the statement fn(x) → f(x) for every x ∈ [0, 1] does not imply that arg maxx fn(x) converges to
arg maxx f(x). (To get a counterexample, with φµ,v denoting the density of the normal distribution
with mean µ and variance v, consider fn(x) = φ1/n,1/n(x) + (x− .9)2, and f(x) = (x− .9)2.) To
obtain convergence of the argmax, it is necessary to have uniformity in the convergence of fn to f .
Theorem 1 below has two parts. The first gives a version of (2.3) that is uniform in h. Thus, the
first part is a non-trivial generalization of what one gets from the usual strong law of large numbers
in two directions: (i) it gives a convergence statement that is uniform in h, and (ii) it does this for
the Markov chain case. (The first part also gives a version of (2.4) that is uniform in h, which is
an immediate consequence of the version of (2.3) that is uniform in h.) The second part, which is
really a simple consequence of the first part, is assertion (2.6). Theorem 2, which is the result of
principal interest, uses the uniformity in Theorem 1 to arrive at (2.7), and the theorem is followed
by the description of a method for obtaining confidence regions for arg maxhm(h).

Before stating the theorems, we briefly review some basic facts regarding empirical process the-
ory and regeneration sequences that form the underpinnings of the theorems. Suppose (Ω,A, P )

is a probability space, let L1(P ) = L1(Ω,A, P ) be the usual space of measurable functions
f : Ω → R satisfying

∫
|f | dP < ∞, and let L2(P ) be the usual space of square-integrable func-

tions. Assume that X1, X2, . . .
iid∼ P . If f ∈ L1(P ), then the strong law of large numbers (SLLN)

states that (1/n)
∑n

i=1 f(Xi)
a.s.−→ E(f(X)), and if f ∈ L2(P ), the central limit theorem (CLT)

states that n1/2
([

(1/n)
∑n

i=1 f(Xi)
]
−E(f(X))

) d→ N (0, σ2(f)), where σ2(f) is the variance of
f(X) under P . For example, if Ω = R and ft(X) = I(X ≤ t), where I is the indicator function,
then the SLLN states that ∣∣∣∣

1

n

n∑

i=1

ft(Xi)− E(ft(X))

∣∣∣∣
a.s.−→ 0, (2.8)

and the CLT states that

n1/2

(
1

n

n∑

i=1

ft(Xi)− E(ft(X))

)
d→ N (0, σ2(t)). (2.9)

The classical Glivenko-Cantelli theorem asserts that convergence in (2.8) is uniform, i.e.
supt∈R

∣∣(1/n)
∑n

i=1 ft(Xi) − E(ft(X))
∣∣ a.s.−→ 0, and the classical Donsker theorem gives a uni-

form version of (2.9), namely n1/2
([∑n

i=1 f•(Xi)
]/
n − E(f•(X))

) d→ W0(F (•)), where W0(•) is
the Brownian bridge on [0, 1], and F (t) = P (X ≤ t). In empirical process theory, the one-
parameter class of functions {ft, t ∈ R} is replaced with far more general classes (and Ω is not
necessarily R, but can be a more general space). There are two kinds of results. Glivenko-Cantelli
results pertain to classes of functions F ⊂ L1(P ) and these assert statements of the form

sup
f∈F

∣∣∣∣
1

n

n∑

i=1

f(Xi)− E(f(X))

∣∣∣∣
a.s.−→ 0.
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Donsker results pertain to classes of functions F ⊂ L2(P ) and these assert statements of the form

n1/2

(
1

n

n∑

i=1

f(Xi)− E(f(X))

)
d→ W (f),

where W is a mean-zero Gaussian process indexed by f ∈ F . A good review of empirical process
theory is given in Kosorok (2008).

We will be interested in the case where X = (h, θ), P is the conditional distribution of (h, θ)

given Y = y, and our class of functions is
{
πh | (θ,y)(h), h ∈ H

}
. (Recall that these are the

core functions of θ used to construct the Rao-Blackwellized estimate π̂h | y(h) in (2.1), which is an
average, and π̂h | y(h)/πh(h) is what features in (2.4) and (2.5).) Note that for fixed h, πh | (θ,y)(h)

is a random variable, with all the randomness given by θ (see the remark regarding the notation
immediately following (2.1)), and we emphasize this in our notation by writing

fh(θ) = πh | (θ,y)(h). (2.10)

Of course, fh also depends on y, but we have conditioned on y, and this dependence is suppressed
in the notation. Throughout, we make the benign (and checkable) assumption that f•(•) : H×Θ→
R is continuous in h for [πθ | y]-almost all θ. Glivenko-Cantelli results will give statements of the
sort suph∈H

∣∣(1/n)
∑n

i=1 fh(θi)− πh | y(h)
∣∣ a.s.−→ 0, and hence

sup
h∈H

∣∣∣∣
1

n

n∑

i=1

fh(θi)/πh(h)− cm(h)

∣∣∣∣
a.s.−→ 0,

which is precisely the uniformity that what we need in order to establish convergence of the estima-
tor of the argmax; see (2.6). And Donsker theorems ultimately will give results of the sort (2.7).

Empirical process theory is fundamentally based on an iid assumption, whereas in our set-
ting, typically the sequence (h1, θ1), (h2, θ2), . . . will be a Markov chain, and the component se-
quence θ1, θ2, . . . will also be a Markov chain. The best way to deal with the family of averages
(1/n)

∑n
i=1 fh(θi), h ∈ H, is through the use of “regenerative simulation.” A regeneration is a

random time at which a stochastic process probabilistically restarts itself; therefore, the tours made
by the process in between such random times are iid. Regeneration sequences are easy to construct
and understand in the setting of Markov chains on a discrete state space. Suppose that α is a point
to which the chain returns infinitely often with probability one. Assume we start the chain at α,
and let 1 = τ0 < τ1 < τ2 < · · · be the times of return to α. For each h ∈ H and r = 1, 2, . . ., let

Sh,r =
τr−1∑

i=τr−1

fh(θi) and Nr = τr − τr−1. (2.11)

These are the sum of fh over the rth tour and the length of the rth tour, respectively. By the Markov
property, the pairs {(Sh,r, Nr)}∞r=1 are iid, and we will show how the iid structure will enable us to
convert Glivenko-Cantelli and Donsker theorems for the iid case to Glivenko-Cantelli and Donsker
theorems for the case of Markov chains satisfying some regularity conditions.
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Before we do this, we remark that in virtually all cases that arise in Bayesian statistics, the state
space is continuous, and there does not exist a point to which the chain returns infinitely often with
probability one. The technique in Athreya and Ney (1978) allows us to construct a sequence of
regeneration times 1 = τ0 < τ1 < τ2 < · · · satisfying E(τr − τr−1) <∞ in a very general setting
that includes Markov chains on a continuous state spaces where the probability of visiting any
particular point is always 0. Markov chains for which there exist such regeneration sequences are
called regenerative. We discuss the regularity conditions needed for the Athreya and Ney (1978)
construction to be feasible after the statements of the theorems.

Suppose now that our Markov chain is regenerative. If we run the chain for R regenerations,
then the total number of cycles is given by n =

∑R
r=1Nr. Also,

∑n
i=1 fh(θi) =

∑R
r=1 Sh,r. These

two facts, which are true by definition, give rise to the key equation

∑n
i=1 fh(θi)

n
=

∑R
r=1 Sh,r∑R
r=1Nr

=

(∑R
r=1 Sh,r

)
/R(∑R

r=1Nr

)
/R

. (2.12)

On the left are the averages of interest, but the θi’s are not independent. On the right, the numerator
is a class of averages of independent quantities, indexed by h, to which we can apply empirical
process results. We have Glivenko-Cantelli theorems for the class of averages

(∑R
r=1 Sh,r

)
/R and

hence for the class of ratios on the right side of (2.12) (the denominator does not depend on h).
And to obtain Donsker theorems for the class of ratios

[(∑R
r=1 Sh,r

)
/R
]/[(∑R

r=1Nr

)
/R
]
, we

apply the delta method to the function t(x, y) = x/y. There are, of course, many details that we
have not discussed, but the present paragraph gives the big picture, and the details are dealt with in
the proofs of the theorems.

Recall that fh is defined by (2.10), and Sh,1 is defined by (2.11). Let M(h) = cm(h) and let
M̂n(h) = π̂h | y(h)/πh(h) (see (2.4)). For a function g : H → R, ∇hg(h) denotes the gradient
vector and ∇2

hg(h) denotes the Hessian matrix. We will refer to the regularity conditions below.
They are discussed after the statements of Theorems 1 and 2.

C1 The hyperparameter spaceH is a convex compact subset of Rk.

C2 The prior πh is twice continuously differentiable onH, and is positive onH.

C3 For every θ, ∇hfh(θ) and ∇2
hfh(θ) exist and are continuous for all h.

C4 The family {fh, h ∈ H} is such that the interchange of order of integration and either first
or second order differentiation is permissible: ∇h

∫
fh(θ)πθ | y(θ) dθ =

∫
∇hfh(θ)πθ | y(θ) dθ

and ∇2
h

∫
fh(θ)πθ | y(θ) dθ =

∫
∇2
hfh(θ)πθ | y(θ) dθ.

C5 The function m(·) is twice continuously differentiable in H, and the k × k Hessian matrix
∇2
hm(arg maxhm(h)) is nonsingular.

C6 Each of M̂n(·), n = 1, 2, . . . and m(·) has a unique maximizer (thus it makes sense to talk
about arg maxh M̂n(h) and arg maxhm(h)).

C7 The sequence {θi}∞i=1 is a geometrically ergodic Markov chain with invariant distribution
equal to πθ | y.

10



C8 For every h ∈ H, there exists ε > 0 such thatE
(
‖∇hfh(θ)‖2+ε

)
<∞, where the expectation

is with respect to πθ | y, and ‖ · ‖ is the Euclidean norm.

C9 E(suph Sh,1) <∞.

C10 E
(
suph |∇2

hSh,1|
)
<∞.

The condition in C10 is of the form E(|A|) < ∞ where A is a k × k matrix, and the statement
E(|A|) <∞ should be taken to mean that the expected value is finite for every component of A.

Theorem 1 Suppose that {θi}∞i=0 is a regenerative Harris ergodic Markov chain.

1. Under C2 and C9, (2.3) holds uniformly in h; consequently, (2.4) holds uniformly in h, i.e.

sup
h∈H

∣∣M̂n(h)−M(h)
∣∣ a.s.−→ 0.

2. Under C1, C2, C6, and C9, arg maxh M̂n(h)
a.s.−→ arg maxhM(h) (which is equivalent to (2.6)).

Theorem 2 Suppose that {θi}∞i=0 is a regenerative Harris ergodic Markov chain. Under C1–C10,

n1/2
(

arg max
h

M̂n(h)− arg max
h

m(h)
)

d→ Nk(0,Σ),

where Σ is a positive definite k × k matrix.

Batch-Based Estimation of Σ and Confidence Regions for arg maxh m(h) The variance
matrix Σ may be estimated in several ways. One way is to exploit the representation of M̂n(h)

as the ratio of two averages, in which the numerator is an average of the iid quantities Sh,r, r =

1, . . . , R (see (2.12) and the proof of Theorem 1). We then produce an argument showing that
arg maxh M̂n(h) inherits the representation in terms of averages, and apply standard methods for
estimating the variance of an average.

Another way, which is much easier and is the one we recommend and we have implemented,
is to use the method of batching, which is described as follows. The sequence θ1, . . . , θn is broken
up into Bn consecutive pieces of equal lengths called batches. Let A[b]

n denote the estimate of the
argmax based on batch b, let Afull

n be the estimate based on the full sequence, and let A be short for
arg maxhm(h). Suppose that the number of batches and the batch length both go to infinity, i.e.
Bn →∞ and n/Bn →∞ as n→∞. We note the following.

1. By Theorem 2, for b = 1, . . . , Bn, the distribution of (n/Bn)1/2(A
[b]
n − A) is approximately

Nk(0,Σ).
2. Under geometric ergodicity, for large n the variables (n/Bn)1/2A

[1]
n , . . . , (n/Bn)1/2A

[Bn]
n are

nearly independent.

If statements 1 and 2 above were exact, as opposed to approximations, then the batch-based esti-
mate defined by

Σ̂n =

∑Bn
b=1(n/Bn)

(
A

[b]
n − Afull

n

)(
A

[b]
n − Afull

n

)>

Bn − 1

11



would be a consistent estimator of Σ, since Σ̂n is (essentially) the sample variance based on the
sequence (n/Bn)1/2A

[1]
n , . . . , (n/Bn)1/2A

[Bn]
n .

In general terms, the literature shows that batch-based estimates are consistent under certain
regularity assumptions. Jones et al. (2006) and Flegal and Jones (2010) establish strong consis-
tency under the condition that {θi}∞i=1 is geometrically ergodic, some moment conditions, and
stipulations regarding the rate at which Bn →∞ (Jones et al. 2006 recommend taking Bn = n1/2,
which is within the range of rates that Jones et al. 2006 and Flegal and Jones 2010 allow); see also
Flegal et al. (2008). Their results pertain to the case where the statistic whose variance we need
to estimate is an average, whereas our statistic is an argmax. However, in view of the fact that
arg maxh M̂n(h) may be represented as an average plus a term that is asymptotically negligible
(this fact is the crux of the proof of Theorem 2), we expect the batch-based estimate to be consis-
tent in our situation also. An additional difference is that in our definition of Σ̂n we have used Afull

n

as the centering value, instead of the traditional A[•]
n := (1/Bn)

∑Bn
b=1 A

[b]
n ; but we do not think that

making this change affects the theory.
If Σ̂n

a.s.−→ Σ, then Σ̂n is invertible for large n. Hence the ellipse E given by E =
{
h :(

arg maxh M̂n(h)−h
)>

Σ̂−1
n

(
arg maxh M̂n(h)−h

)
≤ χ2

k,.95/n
}

is an asymptotic 95% confidence
set for arg maxhm(h). Here, χ2

k,.95 denotes the 0.95 quantile of the chi-square distribution with k
degrees of freedom.

We now remark on the existence of regeneration sequences. First, we note that, at the theo-
retical level, it is a fact that for any chain satisfying our minimal regularity condition of Harris
ergodicity, letting K(x,A) denote its Markov transition function, there exists a j ≥ 1 such that
for the Markov chain driven by the j-step Markov transition function Kj , there is a regeneration
sequence satisfying E(τr − τr−1) < ∞; see Meyn and Tweedie (1993, Theorem 5.2.2). At a
more practical level, Mykland et al. (1995) have provided a very general method, the so-called dis-
tinguished point technique, for constructing regeneration sequences. When the method produces
regeneration times that are reasonably short, estimation of standard errors of (1/n)

∑n
i=1 fh(θi)

becomes trivial, since by (2.12), the problem is reduced to estimating the standard error of ratios
of averages of iid quantities. An often-heard criticism of the method is that it is very hard to tune,
especially in high-dimensional problems. This criticism is irrelevant for us: for our theoretical
development, we need only the existence of the construction, not a construction that is useful in
the practical sense.

Conditions C1–C10 Conditions C1 and C3–C6 are standard. C2 is fairly benign and is likely
to be satisfied by most priors in common use, possibly after a redefinition of H. The geometric
ergodicity condition C7 and the moment condition C8 are typical of the sort needed for proving
CLT’s for averages, and we recall that in the fixed h regime, the Rao-Blackwell estimate (2.1) is
just that, a (single) average.

We now discuss C9 and C10. Given a family of functions gh : Θ → R, Glivenko-Cantelli the-
orems are uniform SLLN’s, and Donsker theorems are “uniform CLT’s,” i.e. theorems that assert
convergence to Gaussian processes indexed by h ∈ H, as opposed to convergence to a multivariate
normal random variable. The regularity conditions of substance are E(suph |gh(θ)|) < ∞ and
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E
(
suph |gh(θ)|2

)
<∞, for Glivenko-Cantelli and Donsker theorems, respectively (there are other

conditions, but they are very easily checked in Bayesian problems, where the prior is indexed by a
finite-dimensional parameter). The conditions that these expectations are finite are far more strin-
gent than the conditions suphE(|gh(θ)|) < ∞ and suphE

(
|gh(θ)|2

)
< ∞. The difficulty is even

more severe because in our situation, the functions we’re dealing with are {Sh,1, h ∈ H}. For any
h, Sh,1 is a sum of the functions fh(θi) over a random number of indices i (see (2.11)), so verifi-
cation of a condition of the form E(suph |Sh,1|) <∞ could potentially be extremely problematic,
and we now address this issue. Consider the conditions below:

CC1
∫
fh(θ)πθ | y(θ) dθ < ∞ for all h ∈ H, and for some d ≥ 1, there exist h1, . . . , hd ∈ H and

constants c1, . . . , cd such that suph fh(θ) ≤
∑d

j=1 cjfhj(θ) for all θ ∈ Θ.

CC2
∫
|∇hfh(θ)|πθ | y(θ) dθ < ∞ for all h ∈ H, and for some d ≥ 1, there exist h1, . . . , hd ∈ H

and constants c1, . . . , cd such that suph |∇hfh(θ)| ≤
∑d

j=1 cj|∇hfhj(θ)| for all θ ∈ Θ.

CC3
∫
|∇2

hfh(θ)|πθ | y(θ) dθ < ∞ for all h ∈ H, and for some d ≥ 1, there exist h1, . . . , hd ∈ H
and constants c1, . . . , cd such that suph |∇2

hfh(θ)| ≤
∑d

j=1 cj|∇2
hfhj(θ)| for all θ ∈ Θ.

(In CC2 and CC3, the inequality signs are taken to mean component-wise inequalities.) CC2 is not
relevant for Theorems 1 and 2, but we mention it because it will be needed later for Theorem 3.

Obviously, CC1 implies E(suph fh(θ)) <∞, CC2 implies E(suph |∇hfh(θ)|) <∞, and CC3
implies E

(
suph |∇2

hfh(θ)|
)
< ∞. But much more can be said: CC1 implies E(suph Sh,1) <∞,

CC2 implies E(suph |∇hSh,1|) <∞, and CC3 implies E
(
suph |∇2

hSh,1|
)
<∞. We will prove the

first of these assertions. Let T1 denote the set of indices that comprise the first tour. We have

Sh,1 =
∑

i∈T1

fh(θi) ≤
∑

i∈T1

d∑

j=1

cjfhj(θi) =
d∑

j=1

cj
∑

i∈T1

fhj(θi) for any h ∈ H. (2.13)

We may replace Sh,1 with suph Sh,1 on the left side of (2.13), and then taking expectations, we ob-
tain EP (suph Sh,1) =

∑d
j=1 cjEP

(∑
i∈T1 fhj(θi)

)
=
∑d

j=1 cjEπθ | y(fhj(θ))EP (N1) < ∞, where
EP denotes expectation with respect to the Markov chain. The other two assertions are proved in
essentially the same way. To summarize: establishing C9–C10 reduces to checking CC1 and CC3,
and these are typically not difficult to check using the compactness of H. (And we will see later
one of the principal regularity conditions required for Theorem 3 reduces to checking CC2.)

2.2 Simultaneous Estimation of a Family of Posterior Expectations

Let g be a function of θ, and let I(h) =
∫
g(θ)νh,y(θ) dθ =

∫
g(θ)πθ | (h,y)(θ) dθ be the posterior

expectation of g(θ) when the prior on θ is νh. Suppose we are interested in the family I(h) as h
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varies continuously. For any h ∈ H, we have
∫
g(θ)πθ | (h,y)(θ) dθ =

πh | y(h)
∫
g(θ)πθ | (h,y)(θ) dθ

πh | y(h)
(2.14a)

=

∫
g(θ)πθ | (h,y)(θ)πh | y(h) dθ

πh | y(h)
(2.14b)

=

∫
g(θ)π(θ,h) | y(θ, h) dθ

πh | y(h)
(2.14c)

=

∫
[g(θ)πh | (θ,y)(h)]πθ | y(θ) dθ

πh | y(h)
=:

N(h)

πh | y(h)
. (2.14d)

Now suppose, as we did before, that we can construct a geometrically ergodic Markov chain
(h1, θ1), (h2, θ2), . . . whose invariant distribution is π(h,θ) | y; and also suppose, as before, that
the conditional density of h given θ and y is available. The numerator, N(h), and denominator,
πh | y(h), of (2.14d) may be estimated (using only the θ-component of the chain) by

N̂n(h) :=
1

n

n∑

i=1

g(θi)πh | (θ=θi,y)(h) and π̂h | y(h) =
1

n

n∑

i=1

πh | (θ=θi,y)(h), (2.15)

respectively, where π̂h | y(h) was defined earlier (see (2.1)). Therefore, we may estimate I(h) by
the ratio of N̂n(h) and π̂h | y(h), i.e. estimate I(h) via

În(h) =

∑n
i=1 g(θi)πh | (θ=θi,y)(h)∑n

i=1 πh | (θ=θi,y)(h)
. (2.16)

It is interesting to note that if we let wh,i =
[
πh | (θ=θi,y)(h)

/∑n
j=1 πh | (θ=θj ,y)(h)

]
, then the wh,i’s

are weights, and În(h) =
∑n

i=1 g(θi)wh,i, i.e. În(h) has the interpretation as a weighted average of
the g(θi)’s, with weights given by the wh,i’s.

For any fixed h, În(h)
a.s.−→ I(h). To see this informally, note that N̂n(h)

a.s.−→ N(h) and
π̂h | y(h)

a.s.−→ πh | y(h), because N̂n(h) and π̂h | y(h) are averages over an ergodic Markov chain.
Also, for fixed h, n1/2

(
În(h) − I(h)

)
is asymptotically normal. Informally, this is because under

regularity conditions on the mixing rate of the Markov chain and some moment conditions, the
bivariate vector n1/2

(
N̂n(h)−N(h), π̂h | y(h)−πh | y(h)

)
is asymptotically jointly bivariate normal,

by the Markov chain CLT. Asymptotic normality of n1/2
(
În(h) − I(h)

)
follows from the delta

method applied to the function t(x, y) = x/y. However, we will be interested in versions of
these consistency and asymptotic normality statements that are uniform in h. For example, if
dim(h) = 1, in order to form simultaneous confidence bands for I(h) (or regions, if dim(h) > 1),
we need the asymptotic distribution of În(h), viewed as a process in h. The uniform versions of
these convergence statements are given by Theorem 3, whose proof uses results from empirical
process theory.

Before stating the theorem, we give some definitions and state the assumptions we will need.
Let C(H) be the space of all continuous functions x : H → R, with the topology induced by
the sup norm metric ρ: for x, y ∈ C(H), ρ(x, y) = ‖x− y‖∞ = suph |x(h) − y(h)|. For a
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regenerative Markov chain θ1, θ2, . . . with regeneration times 1 = τ0 < τ1 < τ2 < · · · satisfying
E(τr − τr−1) < ∞, the sequence Sh,r, r = 1, 2, . . . was defined by (2.11), and in analogy, we
define

Th,r =
τr−1∑

i=τr−1

g(θi)fh(θi), for h ∈ H, r = 1, 2, . . .

We will refer to the following assumptions.

D1 πh | y(·) is continuous and positive onH.

D2 For every θ,∇hfh(θ) exists and is continuous for all h.

D3 The families {fh, h ∈ H} and {gfh, h ∈ H} are such that the order of integration and
differentiation can be interchanged, i.e. ∇h

∫
fh(θ)πθ | y(θ) dθ =

∫
∇hfh(θ)πθ | y(θ) dθ, and

∇h

∫
g(θ)fh(θ)πθ | y(θ) dθ =

∫
∇h[g(θ)fh(θ)]πθ | y(θ) dθ.

D4 For every h ∈ H, there exists ε > 0 such that E
(
f 2+ε
h (θ)

)
<∞ and E

(
(g(θ)fh(θ))

2+ε
)
<∞,

where the expectations are with respect to πθ | y.

D5 For every h ∈ H, there exists an ε > 0 such that E
(
‖∇hfh(θ)‖2+ε

)
< ∞ and

E
(
‖∇h[g(θ)fh(θ)]‖2+ε

)
<∞, where the expectations are with respect to πθ | y.

D6 E
(
suph ‖∇hSh,1‖2

)
<∞.

D7 E
(
suph ‖∇hTh,1‖2

)
<∞.

For Theorem 3, recall that π̂h | y(·), N(·), and N̂n(·) are defined by (2.1), (2.14d), and (2.15),
respectively, and that În(·) = N̂n(·)/π̂h | y(·).

Theorem 3 Suppose that {θi}∞i=0 is a regenerative Harris ergodic Markov chain, and assume C1,
C7, and D1–D7. Then:

1. sup
h∈H

∣∣În(h)− I(h)
∣∣ a.s.−→ 0.

2. n1/2
(
π̂h | y(h)− πh | y(h)

) d→ P(·), (2.17)

n1/2
(
N̂n(·)−N(·)

) d→ N(·), (2.18)

n1/2
(
În(·)− I(·)

) d→ I(·), (2.19)

where P, N, and I are mean 0 Gaussian processes indexed by H, and the convergence takes
place in C(H).

In Part 2 of the theorem, (2.17) and (2.18) may be viewed as lemmas that are needed to
prove (2.19), which is the result of principal interest. As will emerge in the proof of the theo-
rem, it is possible to give explicit expressions for the covariance function of I(·) in terms of first
and second moments of certain random variables and, in principle, it is possible to estimate these
moments and hence the covariance function of I(·). However, to use this covariance function to

15



form simultaneous confidence bands (or sets) for I(h), we would also need the distribution of
suph∈H |I(h)|, which is extremely complicated, even for the simplest parametric models. A con-
venient alternative way to form simultaneous confidence bands for I(h) is through the method of
batching, which we describe in the paragraph below.

Batch-Based Simultaneous Confidence Bands for the Family {I(h), h ∈ H} The map
K : C(H) → [0,∞) defined by K(x) = suph∈H |x(h)| is continuous, so by (2.19) in Theorem 3,
suph n

1/2|În(h) − I(h)| d→ suph |I(h)|. Suppose that the distribution of suph |I(h)| is continu-
ous. For α ∈ (0, 1), let qα be such that P (suph |I(h)| ≤ qα) = 1 − α. If qα was known, then
P
(
suph n

1/2|În(h)− I(h)| ≤ qα
)
→ P (suph |I(h)| ≤ qα) = 1− α, i.e.

P

(
În(h)− qα

n1/2
≤ I(h) ≤ În(h) +

qα
n1/2

for all h ∈ H
)
→ 1− α.

The difficulty is that the distribution of suph |I(h)| is analytically intractable, so qα is not known.
The method of batching can be used to estimate it. As before, the sequence θ1, . . . , θn is broken
up into Bn consecutive batches of equal lengths. Let Î(m)(h) be the estimate of I(h) formed
from the bth batch and, as before, suppose that as n → ∞, Bn → ∞ and n/Bn → ∞. We
will write B instead of Bn. For b = 1, . . . , B, let Sb = suph(n/B)1/2|Îb(h) − I(h)|. Then,
because the batch length is large, the distribution of Sb is approximately equal to that of suph |I(h)|.
Therefore, we may estimate qα by the (1−α)-quantile of the sequence S1, . . . , SB. Unfortunately,
the Sb’s are not available, because they involve I(h), which is unknown. So instead we use Sb =

suph(n/B)1/2|Îb(h) − Î(h)|, in which we have substituted Î(h) for I(h). To conclude, let S[1] ≤
S[2] ≤ · · · ≤ S[B] denote the ordered values of the sequence S1, . . . ,SB. We estimate qα via
S[(1−α)B], and our simultaneous (1 − α)-level confidence band for {I(h), h ∈ H} is

{
Î(h) ±

S[(1−α)B]/n
1/2, h ∈ H

}
.

Remark 1 There is a highly-developed theory on the consistency of estimates based on batching,
including results on the optimal rate at which Bn →∞. However, this theory is focused primarily
on the case where we are estimating a variance, whereas in the present situation, we are estimating
the quantile of the distribution of the supremum of a stochastic process. There are some differ-
ences; for example, theoretically we need to show that substitution of Î(h) for I(h) in going from
Sm to Sm does not cause any difficulties, and on the practical side, the rate at which Bn goes to
infinity may differ because here we are estimating a moderately large quantile. Establishing the
theoretical validity of the batch-based simultaneous confidence bands and providing theoretical
and empirical results on the optimal rate at which Bn →∞ are interesting open problems.

Remark 2 Result (2.17) is of interest in its own right: together with the method of batching, it
enables us to form simultaneous confidence bands for the marginal posterior density of h. More-
over, there is nothing intrinsic about h being a hyperparameter in the model. Result (2.17) and
the construction of the batch-based confidence band apply in any situation where we have a mul-
tivariate parameter θ = (θ1, . . . , θk) and we wish to form a simultaneous confidence band for the
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posterior density of θj for some j. The conditions needed are those stated in Theorem 3 (except
for those that involve the function g), and we need a proof that the simultaneous confidence bands
are asymptotically valid.

2.3 An Alternative to Rao-Blackwellization

Suppose that (U1, V1), (U2, V2), . . . is a Markov chain with invariant density fU,V on a space U× V
where V is Euclidean. For the purpose of estimating the marginal density fV , Chen (1994) in-
troduced the so-called Importance Weighted Marginal Density Estimation (IWMDE) method, a
very general procedure which can be applied in cases where Rao-Blackwellization is not feasi-
ble. In our context, in which θ corresponds to U , h corresponds to V , and our Markov chain
is (h1, θ1), (h2, θ2), . . ., the method is described as follows. Let {wθ(·), θ ∈ Θ} be a family of
densities onH. To estimate πh | y we use the estimator π̂iwmde

h | y whose value at h∗ is given by

π̂iwmde
h | y (h∗) =

1

n

n∑

i=1

wθi(hi)
π(θ,h) | y(θi, h∗)

π(θ,h) | y(θi, hi)
. (2.20)

Note that to calculate (2.20), we need only that π(θ,h) | y is known up to a normalizing constant,
and this is typically the case in Bayesian problems, where the posterior is proportional to the
likelihood times the prior. Chen (1994) required that the family {wθ(·), θ ∈ Θ} correspond to
a joint distribution on (θ, h); more precisely, he required that there exist a joint density Wθ,h on
(θ, h), and that wθ(h) = Wh | θ(h), in self-explanatory notation. Actually, no such stipulation is
needed, and in Section S-2 of Doss and Linero (2021) we show that under the minimal condition
that for each θ, wθ is a density onH, π̂iwmde

h | y (·) is an unbiased estimate of πh | y(·).
In principle, any family {wθ(·), θ ∈ Θ} of densities can be used in (2.20), but Chen (1994)

showed that the choice wθ(·) = πh | (θ,y)(·) is optimal in the sense of minimizing the asymp-
totic variance and, moreover, for this choice the estimator reduces to the Rao-Blackwell estimate
π̂RB
h | y(h∗) = (1/n)

∑n
i=1 πh | (θi,y)(h∗). This leads to the heuristic that the family {wθ(·), θ ∈ Θ}

should be taken to be as close to πh | (θ,y)(·) as possible.
For every fixed h∗ ∈ H, consider the function f iwmde

h∗
: Θ×H → R defined by

f iwmde
h∗ (θ, h) = wθ(h)

π(θ,h) | y(θ, h∗)

π(θ,h) | y(θ, h)
. (2.21)

The IWMDE is π̂iwmde
h | y (h∗) = (1/n)

∑n
i=1 f

iwmde
h∗

(θi, hi). Our statement that π̂iwmde
h | y (·) is an unbiased

estimate of πh | y(·) may be written as Eπ(θ,h) | y(f
iwmde
h∗

(θ, h)) = πh | y(h∗), and Theorems 1, 2 and 3
hold for the IWMDE: we simply replace fh∗(θ) = πh | (θ,y)(h∗) (see (2.10)) with f iwmde

h∗
(θ, h) de-

fined by (2.21), and definitions and assumptions involving fh∗ are now taken to refer to the function
f iwmde
h∗

. Additionally, the requirement that θ1, θ2, . . . is a geometrically ergodic Markov chain with
invariant distribution equal to πθ | y now is replaced by the requirement that (h1, θ1), (h2, θ2), . . . is
a geometrically ergodic Markov chain whose invariant distribution is π(h,θ) | y.

Our methodology is summarized as follows.
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1. Choose a prior for h. The methodology is invariant to this choice, and different priors give rise
to the same answers in the limit, so the selection should be based on convenience, for example
exploiting any conjugacy or partial conjugacy in the problem.

2. Generate a suitably ergodic Markov chain on (h, θ) with invariant distribution equal to the
posterior distribution of (h, θ) given Y = y.

3. If the conditional distributions needed for Rao-Blackwellization are available, then calculate
the Rao-Blackwellized estimate 2.1. If the conditionals are not available, then use the IWMDE
(whose variance is greater than that of the Rao-Blackwellized estimate).

4. Adjust the Rao-Blackwellized estimate or the IWMDE via division by πh(·), and find the
argmax of this ratio, which is an estimate of arg maxhm(h).

5. Form confidence sets for arg maxhm(h) via the method of batching.

2.4 Comparison with Other Methods

Here we discuss current schemes for estimating arg maxhm(h), which are schemes for imple-
menting the empirical Bayes method. The number of such schemes is very large, so we limit our
review to the methods that are the most competitive, and also to those that are frequently used in
the machine learning literature, whether or not these are competitive. Our discussion spans three
groups.

Direct Monte Carlo Estimation of the Marginal Likelihood Function In approaches from this group,
for each h over a fine grid in H, we run a Monte Carlo experiment to form an estimate m̂(h)

of m(h); we do this separately for each h, and we estimate arg maxhm(h) via arg maxh m̂(h).
Papers that proceed in this way include Chib (1995), Chib and Jeliazkov (2001), and Newton and
Raftery (1994) which introduced the “harmonic mean estimator.” These approaches do not scale
well with dim(h), because the size of the grid needed to coverH grows exponentially with dim(h).
We mention them here simply because the machine learning literature frequently uses them, and
this includes the harmonic mean estimator even though, typically, for each h, the harmonic mean
estimator ofm(h) converges at a rate that is much slower than n1/2 (Wolpert and Schmidler, 2012).

EM-Based Approaches As mentioned in the Introduction, the basic EM algorithm is rarely fea-
sible, except in simple problems, and the principal variants are MCEM and VEM. In MCEM, the
E-step is replaced by a Monte Carlo estimate, so an error is introduced at every iteration, and there
is no reason to expect that the algorithm will converge at all, let alone to the true maximizer of the
likelihood. In fact, Wei and Tanner (1990) recognized this problem and suggested that the Markov
chain length be increased at every iteration of the EM algorithm. Let mk denote the Markov chain
length at the kth iteration. Fort and Moulines (2003) showed that a minimal condition for conver-
gence is that mk → ∞ at the rate of ka, for some a > 1 (they do not give guidelines for choosing
a). MCEM has been shown to perform very poorly in some cases. For example, George and
Doss (2018), who deal with latent Dirichlet allocation (which is used in topic modeling and where
dim(θ) is very high), showed poor performance of MCEM even when a is taken to be 2.
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The estimate of arg maxhm(h) produced by VEM is obtained as follows. If hk is the current
value of h, the E-step of the EM algorithm is to calculate Ehk

(
log(ph(θ, y))

)
, where ph(θ, y) is the

joint distribution of (θ, y) under the model indexed by h, and the subscript to the expectation indi-
cates that the expectation is taken with respect to νhk,y (recall that the ν-notation refers to the model
where h is not random, and νhk,y is the posterior distribution of θ given Y = y when the prior on θ
is νhk). This step is infeasible because νhk,y is analytically intractable. We consider {qψ, ψ ∈ Ψ},
a (finite-dimensional) parametric family of analytically tractable distributions on θ, and within this
family, we find the distribution, say qψk , which is closest to νhk,y in the sense of minimizing the
Kullback-Leibler (KL) divergence: ψk = arg minψ KL(qψ‖νhk,y). Let Q(h) be the expected value
of log(ph(θ, y)) with respect to qψk . We view Q(h) as a surrogate for Ehk

(
log(ph(θ, y))

)
, and the

M-step is then to maximize Q(h) with respect to h, to produce hk+1. The maximization is done
analytically.

Suppose that θ = (θ1, . . . , θp) for some p. In mean-field variational inference, the version of
variational inference that is most commonly used, the distributions qψ are all products of marginal
densities, i.e. under qψ, θ1, . . . , θp are independent. At each iteration of VEM, the minimization
step is carried out through an iterative scheme. At convergence of this scheme, what is obtained
is a member, qψk , of the parametric family. Let PΘ be the space of distributions on Θ (endowed
with some topology, which will not concern us here), let ρ be any given metric on PΘ, and let
htrue = arg maxhm(h) denote the target of the EM scheme. Also, let δ = infψ∈Ψ ρ(νhtrue,y, qψ).
Unless νhtrue,y corresponds to a product measure, we necessarily have δ > 0. Variational inference is
very useful because it is fast and can handle very large datasets (and stochastic variational inference
(Hoffman et al., 2013) can scale variational inference to massive data). On the other hand, even if
at each outer iteration of VEM the inner iterative scheme was run long enough for convergence to
take place, we would still have ρ(νhtrue,y, qψk) ≥ δ > 0, and therefore, there is no reason to think
that the sequence h1, h2, . . .will converge to htrue. George and Doss (2018) have documented cases
(in the latent Dirichlet allocation model) where the sequence produced by VEM converges, but to
a value that is far from htrue, and that the predictive accuracy of the model that results from VEM is
worse than that of the scheme that uses a combination of importance sampling and serial tempering
MCMC.

Importance Sampling Through Serial Tempering MCMC As discussed in Section 1, to construct
the “naive” estimate of m(h) (up to a constant), we select a point h1 ∈ H, generate an ergodic
Markov chain θ1, θ2, . . . with invariant distribution νh1,y, and form the estimate on the left of (1.2).
The estimate has high variance if νh and νh1 are nearly mutually singular. In serial tempering
MCMC (Marinari and Parisi, 1992; Geyer and Thompson, 1995), we select hyperparameter points
h1, . . . , hJ ∈ H that “cover” H well, and the goal is to generate a Markov chain whose invariant
distribution is a mixture of the νhj ,y’s. The updates will sample different components of this mix-
ture, with jumps from one component to another. Define L = {1, . . . , J}; the elements of L will
be called “labels.” We will sometimes write νj instead of νhj . This is a slight abuse of notation,
but we use do it in order to avoid having double and triple subscripts.

The serial tempering chain is really a data augmentation chain that runs on the product space
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L × Θ, and we now describe it. Let Γ(j, ·) be a Markov transition function on L. We typically
take Γ(j, ·) to be the uniform distribution on Nj , where Nj is a set consisting of the indices of
the hl’s which are close to hj . For each j ∈ L, let Φj be a Markov transition function on Θ

with invariant distribution νhj ,y. Also, let ζ1, . . . , ζJ > 0. These are tuning parameters which we
discuss shortly. The serial tempering chain can be viewed as a two-block Metropolis-Hastings (i.e.
Metropolis-within-Gibbs) algorithm, and is run as follows. Suppose that the current state of the
chain is (Li−1, θi−1).

• A new value j ∼ Γ(Li−1, ·) is proposed. We set Li = j with the Metropolis probability

ρζ = min

{
1,

Γ(j, Li−1)

Γ(Li−1, j)

νj(θi−1)/ζj
νLi−1

(θi−1)/ζLi−1

}
, (2.22)

and with the remaining probability we set Li = Li−1.

• Generate θi ∼ ΦLi(θi−1, ·).

By standard arguments, the density pζ given by pζ(j, θ) ∝ `y(θ)νj(θ)/ζj is an invariant density for
the serial tempering chain. The θ-marginal of pζ is

fζ(θ) = (1/cζ)
J∑

j=1

`y(θ)νj(θ)/ζj, where cζ =
J∑

j=1

m(hj)/ζj.

Suppose that (L1, θ1), (L2, θ2), . . . is a serial tempering chain, as described above, and suppose that
we have established that it is ergodic. To estimate m(h) up to a multiplicative constant, consider

M̂ζ(h) =
1

n

n∑

i=1

νh(θi)

(1/J)
∑J

j=1 νj(θi)/ζj
.

For any h ∈ H, we have

M̂ζ(h)
a.s.−→
∫

νh(θ)

(1/J)
∑J

j=1 νj(θ)/ζj

∑J
j=1 `y(θ)νj(θ)/ζj

cζ
dθ =

∫
`y(θ)νh(θ)

cζ/J
dθ =

m(h)

cζ/J
(2.23)

This means that for any vector ζ , the family
{
M̂ζ(h), h ∈ H

}
can be used to estimate the family

{m(h), h ∈ H}, up to a single multiplicative constant.
We now discuss the choice of ζ . Ideally, we would take ζj = cm(hj), where c is a constant,

for then fζ would be the desired mixture fζ(θ) = (1/J)
∑J

j=1 νhj ,y(θ). But, of course, the m(hj)’s
are unknown. The convergence statement (2.23) enables us to use an iterative scheme for selecting
ζ: if ζ(t) is the current value of ζ , for each j = 1, . . . , J , M̂ζ(t)(hj)

a.s.−→ (J/cζ(t))m(hj) =: ζ
(t+1)
j ,

and (ζ
(t+1)
1 , . . . ζ

(t+1)
J ) is close to a multiplicative constant times (m(h1), . . . ,m(hj)), as desired.

Details on the iterative scheme, including how to assess its convergence are given in the review
paper Geyer (2011).

Serial tempering is a member of a wider family of MCMC schemes called simulated temper-
ing. These, as well as the closely related “umbrella sampling,” all involve selecting J grid points
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h1, . . . , hJ ∈ H, and considering the priors νh1 , . . . , νhJ and the corresponding posteriors. All
these schemes are reviewed in Geyer (2011). When compared to the simple importance sampling
method discussed in Section 1 (see (1.2)), importance sampling via serial tempering and its rela-
tives enable us to reliably estimate the marginal likelihood (up to a constant) for a much greater
range of hyperparameter values. These methods have been used successfully in Geyer and Thomp-
son (1995), and also in Buta and Doss (2011), Roy (2014), and Roy et al. (2018), among many
others papers. Nevertheless, importance sampling via serial tempering suffers from two significant
deficiencies. One is caused by the dimension of h: for the method to work properly, the number of
hyperparameter points J must grow exponentially with dim(h).

A second difficulty is caused by the fact that, in some situations, the number of latent variables
grows with the data sample size. A problem can then occur even if dim(h) = 1. If the data
sample size is large, νh and νh1 are distributions on a high-dimensional parameter, and they can
be nearly singular with respect to each other even if h and h1 are close. (As a simple analogy,
consider the case of the N (h, 1) family: if h is close to h1, then N (h, 1) is close to N (h1, 1), but
for large m, the m-fold product of N (h, 1) is not close to the m-fold product of N (h1, 1).) An
acute version of this situation was encountered by George and Doss (2018) in their work on the
latent Dirichlet allocation model, where the dimension of the parameter is often in the millions. In
the robit regression illustration of Section S-1 of Doss and Linero (2021), we provide a different
kind of example of a situation where h and h1 are close, but νh and νh1 are not. When νhi and
νhj are nearly singular with respect to each other even when hi and hj are close, serial tempering
does not work. This is because there are no good values for J , the number of grid points. If J
is small, the distributions νhi and νhj are far apart, and in the serial tempering chain, the proposal
j ∼ Γ(Li−1, ·) is almost always rejected (see (2.22)), so the chain does not mix well. On the other
hand, if J is taken to be large enough so that the distributions νhi and νhj are close enough that
the label variable has a reasonable chance of changing, it becomes difficult to traverse the entire
label space: to go from any given label to a label that is distant, it is necessary to go through many
intermediate labels, again causing the chain to not mix well. In the robit regression illustration, the
fully-Bayes empirical Bayes method works very well, but none of the other methods do.

We have discussed the shortcomings of serial tempering, but the two issues we have mentioned
(namely the near mutual singularity of νhi and νhj for i 6= j, and the requirement that J grows
exponentially with dim(h)) apply to other forms of simulated tempering, as well as to umbrella
sampling.

3 Illustrations

We provide three illustrations of our methodology, with three different purposes. The first in-
volves many hyperparameters, and we show that because our fully-Bayes empirical Bayes (FBEB)
approach can handle a high-dimensional hyperparameter, it actually gives rise to new statistical
methodology, namely a new way to do variable selection in nonparametric regression. The second
illustration deals with the Dirichlet additive trees model mentioned in Section 1. Although it in-
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volves only a single hyperparameter, none of the existing methods (see Section 2.4) can be used
to estimate it, because of the inherent complexity of this model. In the third illustration, which
is in Section S-1 of Doss and Linero (2021), we use our FBEB methodology to select the likeli-
hood function, as opposed to a hyperparameter of the prior, and this shows that in some cases our
methodology can be used, effectively, to do model selection. Before proceeding, we mention two
points regarding computational considerations.

Computation of the Argmax When dim(h) is 1 or 2, we can simply evaluate our estimate of πh | y(·)
over a fine grid and find the maximizer via a grid search; and we can even plot the estimate and
inspect it visually. When dim(h) > 2, suppose first that Rao-Blackwellization is possible, in which
case our estimate of πh | y(·) is given by (2.1) (we’re temporarily assuming that the prior on h is
the uniform). Thus, we seek arg maxh(1/n)

∑n
i=1 πh | (θ=θi,y)(h). Now, if the function πh | (θ,y)(·) is

available in closed form, then so is its derivative, and therefore the derivative of π̂h | y(·) in (2.1) is
available in closed form. This means that all gradient-based optimization methods are available to
us. (If the prior on h is not the uniform, we make the obvious adjustment.) If Rao-Blackwellization
is not feasible, then we need to use Chen’s (1994) method, but the comments above still apply.

Construction of a Markov Chain on (θ, h) In many situations, for the model in which h is a fixed
constant, there will already exist a Markov transition function Φh(·, ·) on Θ-space with πθ | (h,y)

as invariant density. In this case, we may be able to use Hamiltonian Monte Carlo (HMC, see,
e.g. Neal 2011 for a review) to construct a Markov transition function Ψθ(·, ·) on H-space with
πh | (θ,y) as invariant density. The only requirement that we need in order to implement HMC is
that we know ∇h log(πh | (θ,y)(h)). Now typically, πh | (θ,y) is available in closed form, except for a
normalizing constant that may involve θ and y, but does not involve h. So, except for pathological
models in which there are non-differentiability issues, ∇h log(πh | (θ,y)(·)) exists and is available
in closed form. The chain that alternates between Φh draws and Ψθ draws then has π(θ,h) | y as
invariant density.

3.1 Variable Selection in Bayesian Nonparametric Additive Regression

Bayesian approaches to model selection provide a natural way of simultaneously treating both
model and parameter uncertainty. In a linear regression situation, we have a response variable
Y and a set of predictors X1, . . . , Xp, each a vector of length m. For γ ⊆ {1, . . . , p} we have
a potential model given by Y = 1mβ0 + Xγβγ + ε, where 1m is the vector of m 1’s, Xγ is the
design matrix whose columns consist of the predictor vectors corresponding to the subset γ, βγ is
the vector of coefficients for that subset, and ε ∼ Nm(0, σ2I). We view γ as a binary vector of
length p, whose j th component, γj , is 1 if variable j is in the model, and 0 otherwise. The unknown
parameter is θ = (γ, σ, β0, βγ), which includes the indicator of the subset of variables that go into
the linear model.

In a common formulation of the Bayesian approach, the prior on θ is given by a hierarchy in
which we first choose the indicator γ from some distribution, a “non-informative prior” is given
to (σ2, β0), and given γ and σ, we choose βγ from some proper distribution. The distribution for
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γ is the so-called independence Bernoulli prior—each variable goes into the model with a certain
probability w, independently of all the other variables—and the distribution for βγ is taken to be
Zellner’s g-prior (see (3.1b) below). Let pγ =

∑p
j=1 γj denote the number of variables in the model

indexed by γ. In detail, this common formulation is described as follows:

Y ∼ Nm(1mβ0 +Xγβγ, σ
2I), (3.1a)

βγ ∼ Npγ
(
0, gσ2(X>γ Xγ)

−1
)
, (3.1b)

(σ2, β0) ∼ p(β0, σ
2) ∝ 1/σ2, (3.1c)

γ ∼ wpγ (1− w)p−pγ . (3.1d)

In (3.1), each line is understood to be a distributional statement conditional on all the variables
specified in the lines below it. Zellner’s g prior is indexed by a hyperparameter g, which plays an
important role in variable selection: generally speaking, when g is large the prior is concentrated
on models with few variables and large regression coefficients, and when g is small the prior is
concentrated on large models with small coefficients. The hyperparameter w in (3.1d) has the
opposite effect, with small w favoring models with only a few variables, and large w favoring
models with many variables. The interplay between w and g is not well understood. The prior is
improper because the prior on (σ2, β0) is improper (see (3.1c)); however, the posterior distribution
of θ is proper.

The posterior distribution of θ given Y may be estimated by MCMC schemes which run on
the variable γ = (γ1, . . . , γp), with (β0, βγ, σ) integrated out. Because the state space for γ is
finite, the Markov chains are uniformly ergodic. The original papers which develop such schemes
are Madigan and York (1995), Smith and Kohn (1996), Clyde et al. (1996), and Raftery et al.
(1997), and there have been many enhancements since. Model (3.1) was considered by Liang
et al. (2008), who showed that g-priors with a fixed g give rise to posteriors with paradoxical
(and highly undesirable) properties. They propose to use mixtures of g-priors; specifically, they
advocate “hyper-g” priors (which we discuss shortly), and show that if we use them, the paradoxes
do not arise.

Smith and Kohn (1996) considered the case where some variables need to be treated nonlin-
early, and so considered the additive model Yl = β0 +

∑p
j=1 fj(xlj) + εl, l = 1, . . . ,m, in which

the fj’s are represented by regression splines: fj(x) =
∑K

k=1 βjkBjk(x), where Bj1, . . . , BjK , are
cubic regression splines with evenly-spaced knots. The model may then be expressed as

Y = 1mβ0 +

p∑

j=1

fj + ε, where fj = Bjβj, (3.2)

where Bj is an m × K matrix with (`, k)th entry Bjk(xj`) and βj = (βj1, . . . , βjK)>. We can
also write Y = 1mβ0 + Bβ + ε, where B = [B1, . . . , Bp], and β = (β>1 , . . . , β

>
p )>, this last

representation fitting in with the usual formulation of a linear model.
When estimating the parameters of the spline model (3.2), one option is to use a relatively

small number of knots, positioned at evenly spaced points along the predictor axes, and to choose
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the number of knots via cross-validation (or some model selection criterion). A second option is to
use a large number of knots but then apply `1 penalization on the regression coefficients. This has
the advantage that it captures local curvature better. Using `1 penalization sets some of the knot
coefficients to 0 and therefore leads to knot selection. The approach of Smith and Kohn (1996)
is, effectively, a Bayesian version of the second option. If in model (3.1) we replace (3.1b) with
the statement that βγ is distributed according to a hyper-g prior, then the model is indexed by the
hyperparameter w. Smith and Kohn (1996) use a fixed value for g (g = 100) and specify w = 1/2.

We will take the approach of Smith and Kohn (1996), modified so that for each j = 1, . . . , p,
there is a separate inclusion probability wj for the knots corresponding to variable j, and a hyper-g
prior is used for g. The hyper-g prior is given by µ(g) ∝ (1 + g)−a/2 for g > 0, and is indexed
by the parameter a > 2. Following Liang et al. (2008), we take a = 3. The reason for having
separate inclusion probabilities for the p variables is that this allows the different fj’s to a-priori
have different curvatures but, as we will see, allowing separate inclusion probabilities has inter-
esting ramifications for variable selection. Let w = (w1, . . . , wp). Also, let γj1, . . . , γjK be the
knot-inclusion indicators for variable j, define γj• =

∑K
k=1 γjk, and denote γ[j] = (γj1, . . . , γjK)

and γ = (γ[1], . . . , γ[p]). Lines (3.1d) and (3.1b) of Model (3.1) now need to be changed to

γ[j]
indep∼ w

γj•
j (1− wj)K−γj• , j = 1, . . . , p,

g ∼ µ, and given g, βγ[j]
indep∼ Npγ[j]

(
0, gσ2(B>j,γ[j]Bj,γ[j])

−1
)
, j = 1, . . . , p,

respectively. We then estimate the hyperparameter w using the methods of this paper.
None of the procedures described in Section 2.4 works here: EM-based approaches give esti-

mates which converge, but to incorrect values, and serial tempering MCMC gives estimates which
are extremely unstable, as discussed earlier. We now describe how our FBEB approach may be
implemented. We take wj

iid∼ Unif(0, 1). Our Markov chain will run over (γ, w, g), with (β0, βγ, σ)

integrated out. It will be driven by a Markov transition function (MTF) which consists of the com-
position of three MTF’s, of which the first updates γ, the second updates w, and the third updates
g. Our first MTF modifies the proposal of Yang et al. (2016) to take into account that γ[1], . . . , γ[p]

constitute p groups; it applies one of the two changes below, each with probability 1/2. (1) Flip
a randomly selected γjk. (2) For each j = 1, . . . , p, randomly select two indicators from the set
{γj1, . . . , γjK}, one of which is a 1 and the other a 0, and swap their values (if γj1, . . . , γjK are
all 1 or all 0, then we do nothing). In either case, the move is accepted or rejected based on the
Metropolis-Hastings acceptance probability. This update leaves the conditional distribution of γ
given (w, g, Y ) invariant.

The second MTF generates w according to its conditional distribution given (γ, g, Y ). From
the hierarchical nature of the model, it is easy to see that

π(w | γ, g, Y ) = π(w | γ) ∝
p∏

j=1

K∏

k=1

w
γjk
j (1− wj)1−γjk ∝

p∏

j=1

beta(wj; 1 + γj•, 1 +K − γj•),

where beta(w; a, b) denotes the beta(a, b) density evaluated at w. This update leaves the condi-
tional distribution of w given γ, g, and Y invariant. The equation above gives rise to the Rao-
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Blackwellized estimate

Mn(w) =
1

n

n∑

i=1

p∏

j=1

beta(wj; 1 + γ
(i)
j• , 1 +K − γ(i)

j• ), (3.3)

of the marginal likelihood of w (up to a constant), where i = 1, . . . , n indexes the iterations of
the Markov chain. In our illustrations, the empirical Bayes estimate of w is obtained by maximiz-
ing (3.3) through the optim function in R using the L-BFGS-B algorithm (Byrd et al., 1995).

The final MTF updates g, and this is done through the slice sampler (Neal, 2011). We remark
that Liang et al. (2008) show that we can actually modify the first two MTF’s by marginalizing out
g, thereby eliminating the need to construct an update for g; we include an update for g to allow for
the possibility of including g in our empirical Bayes analysis, if this is desired. The composition
of the three updates leaves the conditional distribution of (γ, w, g) given Y invariant.

It is notable that some of the components of arg maxwm(w) can be zero (and if γ(i)
j• = 0 for

the n iterations of the Markov chain, then the j th component of the maximizer of Mn(w) in (3.3) is
zero, i.e. wj is estimated to be zero.) In this case, it is not just some knots that are excluded; rather
variable j in its entirety is eliminated from the model. As is the case for many likelihood-based
methods, some issues arise when the maximizing value is at the boundary of the parameter space,
and this was noted in the context of Bayesian variable selection by Scott and Berger (2010). (The
situation here is similar to that where we have Y ∼ binomial(m, p): if we observe Y = 0, then not
only is the maximum likelihood estimate of p equal to 0, but the associated standard error estimate
is also 0, and the naive Wald-type confidence interval for p is the singleton {0}.) As is the case for
the simple binomial example, if uncertainty quantification regarding variable selection is required,
a fully-Bayes approach can be used.

We apply our empirical Bayes approach to the ragweed dataset of Stark et al. (1997). This
dataset consists of measurements of the ragweed pollen for 335 days in Kalamazoo, Michigan,
along with several meteorological predictors: the day number of the ragweed pollen season, the
temperature, the wind speed, and whether it rained. The first three predictors are numeric, and the
fourth is binary, and the effect of the three numeric predictors is modeled using cubic regression
splines with at most K = 50 knots for each predictor. The binary predictor contributes an additive
effect γjβj where γj ∼ Bernoulli(wj).

Before proceeding, we check that the empirical Bayes procedure gives reasonable results by
comparing the fit it gives to an additive fit using the gam function in the R package mgcv. This
experiment and all the others below are based on a Markov chain of length 55,000, with the first
5,000 cycles discarded as burn-in and the remaining cycles thinned by 10, giving 5,000 cycles. The
results are displayed in Figure 1. We see that for the day in season and temperature variables the
fit from gam is quite similar to the one using our empirical Bayes approach, although the fit for
the wind speed variable is somewhat different due to the preference of gam to favor linear terms
before including non-linear terms (our approach can be easily extended to also favor linear terms).

To evaluate the variable selection performance of our model, we added noise variables as fol-
lows. Let Dl, Tl, Wl, and Rl be the day, temperature, wind, and rain variables for observation l
(l = 1, . . . , 335), and let π be a random permutation of the integers 1, . . . , 335. With a single per-
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Figure 1: Estimates of the fj’s for the ragweed data. Solid line (—) gives the posterior mean,
dashed lines (– – –) give 95% pointwise credible intervals, and dot-dashed line (– • –) gives the
estimate obtained from the gam function in the R package mgcv.

mutation, the augmented data set is (Yl, Dl, Tl,Wl, Dπ(l), Tπ(l),Wπ(l), Rl), l = 1, . . . , 335. We then
modeled each of the continuous predictors using our spline basis function expansion. The reason
for creating noise variables in this way is that the correlation structure for the added variables is
identical to that in the original variables.

Figure 2 shows the empirical Bayes estimate of w obtained from our procedure when we used
two permutations to generate noise variables. We see that our approach correctly removes all the
noise variables and includes all the original variables. Maximizing (3.3) numerically confirms that
the empirical Bayes estimators of the w’s corresponding to the noise variables are all 0. To get
more detail, we would like to plot the marginal likelihood function m(·), but it is not possible to
do so because m(·) is a function of 10 variables. Instead, for each j = 1, . . . , 10, we can take
(w1, . . . , wj−1, wj+1, . . . , w10)

iid∼ Unif(0, 1) and plot the marginal likelihood function for wj , with
all the other w’s integrated out. Figure 3 presents the plots for variables 1, . . . , 9. Here, w1, w2, and
w3 are associated with the original continuous variables, and w4, . . . , w9 are associated with the
noise variables. The figure additionally gives pointwise and uniform confidence bands for these
marginal likelihoods. This marginal analysis also suggests that these predictors do not appear in
the model selected by the empirical Bayes method.

We now make a brief comparison of our empirical Bayes approach to penalized regression
using the commonly-used composite minimax concave penalty (cMCP) method proposed by Bre-
heny and Huang (2009). The cMCP method carries out bi-level selection by performing both
group-level (predictor) and within-group level (basis function) selection, which is similar to what
our method is doing. We fit the cMCP regression using the grpreg package in R and selected
tuning parameters using cross-validation. In addition to the dataset augmented with two permu-
tations, we considered a second dataset which used six permutations. The two methods were
evaluated using the number of true positives (regarding the four original predictors as positives)
and the number of false positives. Table 1 gives the results. From the table, we see that for both
datasets, each method correctly identified all the original predictors; however, we also see that
cMCP is prone to false positives when we increase the number of noise variables. Of course, there
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Figure 2: Empirical Bayes estimates of the wj’s for the ragweed data augmented with noise pre-
dictor variables.

are several other procedures for doing bi-level variable selection, e.g. group bridge (Huang et al.,
2009) and spikeSlabGAM (Scheipl et al., 2012). A thorough comparison of our empirical Bayes
approach with all other methods is beyond the scope of this paper. Our goal in this first illustra-
tion is only to demonstrate the potential of the FBEB method for enabling the implementation
of empirical Bayes approaches in models where these would be useful but no existing procedure
for estimating arg maxhm(h) works. (Note that there is a distinction between FBEB, which is
a Monte Carlo method for obtaining an estimate of arg maxhm(h), and the resulting empirical
Bayes scheme, which is a statistical procedure.)

3.2 Choosing the Sparsity Parameter in the Dirichlet Additive Regression
Trees Model

Consider the nonparametric regression model Yl = f(xl) + εl, l = 1, . . . ,m, where εl
iid∼ N (0, σ2)

and xl ∈ Rp. An increasingly popular strategy for estimating f is to take a Bayesian approach
in which f is modeled as a sum of random decision trees (see Chipman et al. 2013 and Linero
2017 for reviews). The most popular such approach is to use a Bayesian additive regression trees
(BART, Chipman et al. 2010) model, which sets f(x) =

∑T
t=1 g(x; Tt,Mt), where the Tt’s are

regression trees and the Mt’s are the corresponding vectors of terminal node parameters. Here,
g(x; Tt,Mt) = µt` if x goes to terminal node ` of tree t.

In the generative tree-construction process, there is a variable, s = (s1, . . . , sp), where sj is
the probability that the variable chosen for a split is variable j. Chipman et al. (2010) take s to
be deterministic: s = (p−1, . . . , p−1). Linero (2018) argues that when dealing with regression that
is potentially sparse, it is better to allow s to be random. He specifies that s is drawn from the
Dirichlet distribution Dirp(α/p, . . . , α/p), in which α is a hyperparameter; we refer to this model
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Figure 3: Estimates of the marginal likelihood of wj when treating all other w’s as Unif(0, 1), for
the synthetic ragweed dataset. Estimated marginal likelihood is given by solid lines (—), uniform
95% confidence bands are given by short-dashed lines (- - - ), and pointwise 95% confidence bands
are given by long-dashed lines (– – –).

as “Dirichlet additive regression trees” (DART) for the purpose of comparison with BART. The
hyperparameter α plays a key role related to sparsity. Suppose U ∼ Dirp(a, . . . , a). As is well
known, if a is small, there is a tendency for most of the components of U to be near zero, and
in the limit where a → 0, one component is 1, the rest are zero, and the position of the nonzero
component is uniformly distributed on {1, . . . , p}. On the other hand, when a increases to infinity,
U is nearly the vector (p−1, . . . , p−1). In the generative tree-construction process, the variable s
is chosen once, and then is applied to all T trees. As a consequence, when α is small, only a few
of the predictor variables are chosen for splits in the entire ensemble; and when α is large, many
predictors are involved, and DART reverts to BART. (See Linero 2018 and the supplement to
Linero 2018 for a precise version of this statement.) This technique has also been used by Linero

28



Replications = 2

Method TP FP

cMCP 4 1
EB 4 0

Replications = 6

Method TP FP

cMCP 4 6
EB 4 1

Table 1: Comparison of performance of the empirical Bayes and cMCP methods, on the aug-
mented ragweed data. TP denotes the number of true positives and FP denotes the number of false
positives. Replications denotes the number of permutations used to construct the noise variables.

and Yang (2018).
In Linero (2018), α is given a prior of the form ρη(α) = η · [2α1/2(α + η)3/2]−1, where the

scale parameter η is taken to be p by default. This prior is unbounded near 0, which enables
sparsity, and it has a Cauchy-like right tail, which allows DART to revert to BART. Unfortunately,
these two features of the prior can result in poor mixing of the Markov chain used to estimate the
posterior distribution. An alternative to putting a prior on α is to select α by maximum marginal
likelihood, i.e. via the empirical Bayes method, for which the methodology of the present paper
is designed. In short, the empirical Bayes method will enable us to determine whether to use
BART (arg maxαm(α) is large) or DART (arg maxαm(α) is not large). In the rest of this section
we will explain how our approach may be implemented (we will present our MCMC algorithm
and discuss how the IWMDE method of Chen (1994) may be carried out), and then illustrate,
on real and artificial data, how DART implemented through the empirical Bayes approach acts
appropriately in both sparse and non-sparse situations. (The only hyperparameter we will allow to
vary is α, all the others being set to the default values recommended by Chipman et al. 2010.)

Our methodology provides an asymptotically exact estimate of arg maxαm(α) regardless of
our choice of prior on α, so we will take πα = gam(a0, b0). This choice enables a very conve-
nient data augmentation scheme that takes advantage of some conjugacy in the problem. Here,
gam(x; a, b) is the density proportional to xa−1 exp(−xb). We introduce the augmentation vari-
able λ ∼ gam(α, 1), where λ is independent of s, and define Z = λs. Then Zj

iid∼ gam(α/p, 1),
j = 1, . . . , p follows from routine distribution theory (see, e.g., Devroye, 1986, Chapter 11, Theo-
rem 4.1).

Denote Y = (Y1, . . . , Ym), y = (y1, . . . , ym), and let θ = (s, σ2, λ, {Tt,Mt, t = 1, . . . , T}).
We will generate a Markov chain on (θ, α) whose invariant distribution is the distribution of (θ, α)

given Y = y. The MTF for doing so will consist of the composition of four MTF’s. The first
updates (σ2, {Tt,Mt, t = 1, . . . , T}) using the Bayesian backfitting algorithm of Chipman et al.
(2010). The second MTF is the update from Linero (2018), which updates s. The third MTF draws
λ from its conditional distribution given all the other parameters and Y = y, which is gam(α, 1).
The combination of these MTF’s leaves the full-conditional distribution of θ invariant.

The final MTF updates α. The conditional distribution of α given θ and Y = y is given
by πα | (θ,y)(α) ∝ Γ(α/p)−p exp

{
(α/p)

∑p
j=1 log(Zj)

}
αa0−1 exp(−b0α). This depends only on α

and the Zj’s because the only factors of the joint distribution of (θ, α, Y ) in which α appears are
πα, πs |α, and πλ |α. It is easy to see that this distribution is also equal to the posterior distribution
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of α in the model where α ∼ gam(a0, b0) and Zj
iid∼ gam(α/p, 1) for j = 1, . . . , p. Unfortunately,

there is no analytic expression for the posterior distribution. Miller (2019) considered a setup
which includes precisely this situation. He showed that the posterior distribution of α is very well
approximated by gam(A(Z), B(Z)), if A(Z) and B(Z) are chosen appropriately. Ideally, the
parameters A(Z) and B(Z) are chosen by matching the first and second derivatives of log(pα |Z)

to those of log(gam(A(Z), B(Z))) at the mean of gam(A(Z), B(Z)). Unfortunately, the mean of
gam(A(Z), B(Z)) is not known, because A(Z) and B(Z) are not known. So a trial value for the
mean is initially used, leading to an improved estimate, and this scheme is iterated. Miller (2019)
states that convergence occurs within four iterations in all the situations he has seen, and that the
final approximation is excellent.

Our update of α will be a Metropolis-Hastings step that uses the Miller (2019) approxima-
tion as a proposal density (as suggested by Miller 2019). This gives rise to an MTF for which
the invariant density is πα | (θ,y). Because the approximation is excellent, the acceptance prob-
ability is nearly one, and we are essentially sampling from πα|(θ,y). For estimating πα | y, Rao-
Blackwellization is not feasible, and we must use the IWMDE method of Chen (1994). The Miller
(2019) approximation provides a very convenient family {wθ, θ ∈ Θ} of densities on α: we take
wθ = gam(A(Z), B(Z)). Because the approximation of πα | (θ,y) by gam(A(Z), B(Z)) is very
good, the IWMDE method is essentially as good as Rao-Blackwellization.

We now illustrate our methodology on real and simulated data. Our goals are limited: recall-
ing that small values of α encourage sparse models and that as α → ∞ DART reverts to BART,
we establish that the empirical Bayes choice of α reflects the sparsity in the regression. A broad
comparison of DART, with α chosen via the empirical Bayes method (DART-EB), to other regres-
sion methods is beyond our scope. We consider three datasets: (1) the Waste Isolation Pilot Plant
(WIPP) data, described in Storlie and Helton (2008), for which there are m = 300 observations
and p = 31 variables; (2) the Triazines data, available from the UCI Machine Learning repository,
and for which n = 186 and p = 60; and (3) the Blood Brain Barrier data (BBB), available and
described in the caret package in R, and for which n = 208 and p = 134.

We set a0 = 1, b0 = 1/50. We used our MTF to generate 120,000 samples of θ, and discarded
the first 20,000 as burn-in. We then estimated the marginal likelihood (up to a constant) using the
IWMDE procedure, and also estimated the posterior density of α, using π̂iwmde

h | y (see (2.20)). We
also formed pointwise and simultaneous confidence bands for both the marginal likelihood function
and the posterior density. The pointwise bands were constructed via standard batching methodol-
ogy, with the number of batches set using the values recommended by Jones et al. (2006). The
simultaneous confidence bands were constructed using the procedure described after the statement
of Theorem 3. The Markov chain lengths were chosen to make the simultaneous confidence bands
acceptably narrow. Plots for all three data sets are given in Figure 4. The results are as follows.

WIPP It is a priori known that the regression for this data set is sparse; for example, Storlie et al.
(2011) report that only 8 of the 31 variables are informative. The top-right panel of Figure 4
correctly reflects this sparsity, and indicates that the marginal likelihood of BART vs. DART with
α = 5 is essentially 0.
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Triazines Linero (2018) noted that for this dataset, the performance of DART (with the default
prior for α) was about the same as that of BART, under a criterion of predictive error. The top-
middle panel of Figure 4 confirms this: the marginal likelihood of BART is higher than that of
DART for all α.

BBB Linero (2018) noted that for this data set, BART and DART have similar performance in
terms of prediction error, but that DART used fewer variables; hence DART obtained a more
parsimonious fit to the data with the same predictive accuracy. The top-left panel of Figure 4
confirms this: the marginal likelihood of DART at its argmax is only slightly higher than the
marginal likelihood of BART.
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Figure 4: Estimates of the marginal likelihood (top) and posterior distribution (bottom) of α for the
DART model. Left: the BBB dataset; middle: the Triazines dataset; right: the WIPP dataset. The
estimated marginal likelihood is given by solid lines (—), simultaneous 95% confidence bands are
given by long-dashed lines (– – –), and pointwise 95% confidence bands are given by short-dashed
lines (- - -).

Next, we show that DART-EB behaves appropriately in a simple simulation study in which the
true underlying regression function is f0(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. This
function was introduced by Friedman (1991) and has been used many times in the context of BART
(see, e.g., Chipman et al., 2010 and Linero and Yang, 2018). Here, f0(x) depends on only the
first five predictors, x6, x7, . . . , xp being irrelevant noise variables. We consider 200 independent
replicates of the following experiment. First, we sample Xl

iid∼ Unif([0, 1]p), l = 1, . . . , 250,

and draw Yl
indep∼ N (f0(Xl), σ

2). Then, based on (Xl, Yl), l = 1, . . . , 100, we fit (i) the usual
BART model and (ii) DART-EB, using gam(1, 1/20) as the prior on α. For each replication and
each method, we consider the median probability model, which is defined to be the model that
includes all variables that occur in at least half of the samples from the posterior distribution (i.e.
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σ = 1, p = 100 σ = 1, p = 500 σ = 5, p = 100 σ = 5, p = 500

Method RMSE F1 RMSE F1 RMSE F1 RMSE F1

DART-EB 1.00 1.00 1.00 1.00 1.00 0.903 1.00 0.877
BART 1.75 0.48 2.26 0.76 1.25 0.251 1.29 0.719

Avg(α̂opt) 1.31 1.27 4.52 5.06

Table 2: DART simulation results. RMSE is relative to the RMSE of DART-EB so that DART-EB
by definition has an RMSE of 1. Avg(α̂opt) is the the estimate of arg maxαm(α), averaged over
the 200 replications of the simulation study. The Monte Carlo standard error of Avg(α̂opt) is less
than 0.21 throughout.

the variables for which the marginal inclusion probability is estimated to be at least 1/2). The
integrated root-mean-squared error is given by rmse =

{∫
(f̂(x) − f0(x))2 dx

}1/2, where f̂(x)

is the Bayes estimate of f0(x). For each method and replication we approximate this by simple
Monte Carlo and we form RMSE, which is rmse averaged over the 200 replicates. Furthermore,
for each method and replication we compute the precision and recall, defined by precision =

TP /(TP + FP) and recall = TP /(TP + FN), where TP, FP, and FN denote the number of true
positives, false positives, and false negatives in carrying out variable selection. The results are
given in Table 2 for p ∈ {100, 500} and σ ∈ {1, 5}. We report the F1 score, which is the harmonic
mean of the precision and recall, averaged over the replications, as well as RMSE relative to the
RMSE of DART-EB. From the table we see that DART-EB significantly outperforms BART. It
behaves appropriately as the number of irrelevant predictors increases. Specifically, for both the
σ = 1 and σ = 5 cases, as p increases, the estimated value of α remains roughly constant, so that
in the statement s ∼ Dirp(α/p, . . . , α/p), the shape parameter of the Dirichlet decreases roughly
in proportion with p, correctly reflecting the increase in sparsity.

We note that importance sampling via serial tempering will not work here because it is difficult
to obtain an analytic expression for the ratio of densities να1/να2 due to the complexity of the
parameter θ, and even if such an expression was available, unless α1 and α2 are extremely close,
να1 and να2 will be nearly singular because of the high dimension of θ. VEM is currently not an
option either, as there are no variational algorithms for BART.

A Recapitulation of the FBEB Method In the FBEB method, the prior on h does not affect
the final inference. Any prior leads to an asymptotically exact estimate of arg maxhm(h), our
empirical Bayes estimate of h. So the prior may be taken to be any convenient choice, for example
one that takes advantage of any conjugacy that exists in the model. In order to obtain our empirical
Bayes estimate of h, we need to run a Markov chain on the augmented spaceH×Θ, so it is perhaps
natural to ask why do we not stop there? That is, why should we use an empirical Bayes approach
instead of using a fully-Bayes approach, and what is the value of our methodology? Aside from
the fact that our approach enables sensitivity analysis as a by-product, we mention the following.
A fully-Bayes approach can certainly be very useful; however, it requires a choice of prior on
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h. Proper priors generally involve a subjective choice, which must be justified, since different
priors give different conclusions, particularly in small sample situations. (Consider, for example,
the Triazines and BBB data sets in Section 3.2—see Figure 4. For these data sets, the marginal
likelihood is not very informative, so a proper prior has a large influence on the posterior.) On the
other hand, objective priors are usually improper, and these can lead to improper posteriors (for
example, if m(α) is bounded away from 0 as α→∞, as is the case for the Triazines and BBB data
sets, then any prior giving infinite mass to the interval [1,∞) necessarily results in an improper
posterior). In this case, insidiously, if we use Gibbs sampling to estimate the posterior, it is possible
that all conditionals needed to implement the sampler are proper; but Hobert and Casella (1996)
have shown that the Gibbs sampler output may not give a clue that there is a problem.

As mentioned above, the empirical Bayes approach avoids the prior specification issue. In
broad terms, the general interest in empirical Bayes methods arises in part from a desire to select a
specific value of the hyperparameter vector because this gives a model that is more parsimonious
and interpretable. These points are discussed more fully in George and Foster (2000) and Robert
(2001, Chapter 7). The question of whether in general one should use empirical Bayes or fully-
Bayes methods has been around for decades and is unlikely to be settled soon. Our purpose here is
not to advocate an empirical Bayes over a fully-Bayes approach at a philosophical level, but rather
to provide a methodology that gives the user the option of using an empirical Bayes approach.
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