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Abstract

This document provides supporting material for “Scalable Empirical Bayes Inference and Bayesian
Sensitivity Analysis” by Hani Doss and Antonio Linero, specifically an additional illustration, proofs
of Theorems 1–3, and a proof that the importance weighted marginal density estimator is an unbiased
estimate of the true marginal density.

Throughout this document, sections, equations, figures, and tables are labelled with the prefix “S”. We

do this in order to avoid confusion with the equations, figures, etc. of the main paper.

S-1 A Model Selection Problem in Binary Regression

Here we illustrate our methodology on a data set analyzed through the robit model for binary regression,

and before we consider the data set, we review the robit model and discuss its salient features. Suppose

that (xj , Yj), j = 1, . . . ,m are independent observations, where xj is a predictor variable of length p

and Yj is a binary response, taking the values 0 and 1. The two most common regression models for

binary data are the probit and logistic models. The probit model relates Yj to xj through the equation

P (Yj = 1) = Φ(x>j β), where βp×1 is a vector of regression coefficients and Φ is the cumulative distribution

function (cdf) of the standard normal distribution. The logistic model relates Yj to xj through the equation

P (Yj = 1) = exp(x>j β)/(1 + exp(x>j β)). It is well known that the maximum likelihood estimates of the

regression parameters for the probit and logistic models are not robust to outliers (more precisely, points

with outlying design points), and Albert and Chib (1993) (see also Mudholkar and George 1978) proposed

replacing the normal cdf Φ with the cdf of the t distribution with d degrees of freedom, which we denote by

Td. The logistic cdf given by L(u) = exp(u)/(1 + exp(u)) is closely approximated by Td for d equal to

about seven, and Φ is well approximated by Td when d is large. Gelman and Hill (2007, chapter 6) showed

that the maximum likelihood estimator for robit models with small d is robust against discordant data points.

Thus, the robit family of models effectively includes the probit and logistic models, but also includes models

which are more suitable when the data set has influential outlying observations.

An important modeling issue is the determination of the parameter d: small values of d give rise to

robust estimators, but at the cost of inefficiency if the true model governing the data is the logistic or probit
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model. The problem of choosing d can be cast in the empirical Bayes framework discussed in Section 1 of

this paper. There is one distinction, however. In the empirical Bayes setup described earlier, the likelihood

is fixed and the prior varies; here the prior is fixed and the likelihood varies. Nevertheless, the principle

that the parameter d should be selected by maximizing the marginal likelihood still applies. This was noted

by Roy (2014), who used umbrella sampling to estimate the marginal likelihood function m(·) (up to a

constant) and hence its argmax. Our methodology applies with only notational changes. Let `d,y(β) be the

likelihood of β under the robit model with parameter d, and let πβ and πD denote the prior densities on β

and d, respectively. We then have πD | y(d)/πD(d) ∝ m(d), and the situation is as before.

Let X be the design matrix. For the prior on β, we will follow the recommendation of Gelman et al.

(2008) to use t(0,Σ0, d0) (the multivariate t-distribution with degrees of freedom parameter equal to d0,

center equal to 0, and scatter matrix equal to Σ0), with Σ0 = a(X>X)−1; Gelman et al. (2008) advocate

taking d0 to be moderately small and a to be some large number, and we will take d0 = 3 and a = 104.

(It is possible to treat d0 and a as hyperparameters to be estimated, i.e. consider h = (d, d0, a), but we did

not follow that route in order to keep the focus on d.) We will take πD = gam(2, 1/10), which was noted

by Juárez and Steel (2010) to be an accurate approximation to Jeffrey’s prior for the degrees of freedom

parameter in a skew-t response model.

In our illustrations, we use the No-U-Turn Sampler (NUTS, Hoffman and Gelman 2014) as implemented

in the STAN software package (Carpenter et al., 2017) to sample from the posterior distribution π(β,D) | y.

NUTS implements a form of HMC in which the integration time is selected adaptively on a per-iteration

basis. Recent work of Livingstone et al. (2016) identified conditions for geometric ergodicity of HMC;

however, to our knowledge, establishing conditions under which NUTS produces a geometrically ergodic

chain remains an open problem.

To estimate πD | y, we view the robit model via a standard data augmentation scheme as follows:

εj
indep∼ N (0, λ−1

j ), Zj = x>j β + εj , j = 1, . . . ,m,

λj
iid∼ gam(d/2, d/2), j = 1, . . . ,m,

β ∼ t(0,Σ0, d0).

(S-1.1)

Taking Yj = I(Zj > 0), (S-1.1) induces the robit model with parameter d. In (S-1.1), as usual, each

distributional statement is understood to hold conditionally on the parameters defined in the lines below it.

We now note that the conditional distribution of d given (Z, λ, β) and the data is given by

f(d |Z, λ, β, y) ∝ gam(d; 2, .1)

m∏
j=1

[
gam

(
λj ;

d

2
,
d

2

)
· N (Zj ;x

>
j β, λ

−1
j )
]
· t(β; 0,Σ0, d0)

∝ gam(d; 2, .1)
m∏
j=1

gam
(
λj ;

d

2
,
d

2

)
.

(S-1.2)

If α = d/2, then the marginal distribution of α is gam(2, 0.2). Consider the very simple model where

α ∼ gam(2, 0.2), and given α, λi
iid∼ gam(α, α). In this model, the posterior distribution of α is the

expression given in the last line of (S-1.2), and we are in precisely the situation considered by Miller (2019)

and discussed in Section 3.2. Therefore, we may use the approximation of Miller (2019) to implement the
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Figure S-1: Left panel shows the Finney (1947) data: circles denote absence (Y = 0) of vaso-constriction;

squares denote its presence (Y = 1); triangles colored red denote the outliers in the original data set; and

circles colored blue with an x mark denote artificially created more extreme outliers. Right panel shows the

estimate of m(·) (up to a constant) for the three versions of the data set.

IWMDE approach which, as before, is nearly as good as Rao-Blackwellization. In principle, the Markov

chain could be constructed by using this data augmentation strategy instead of using NUTS; however we

found the mixing with NUTS to be substantially faster.

We now consider the vaso-constriction data set of Finney (1947). The data set is very simple—there are

only two predictors and only 39 observations—so it does not make apparent the usefulness of our theoretical

results. We use it however, because it has two influential outliers and is easy to visualize; thus, the effect

that these outliers have on the results of our analysis is easy to understand. Moreover, it has been studied in

several papers which deal with diagnostics for binary regression; therefore we can compare our results with

those in the previous literature. The data come from a controlled study of the effect of taking a single deep

breath of volume V at rate R, on presence of the reflex “vaso-constriction” in the skin of the digits. There

are m = 39 observations, and we will follow the traditional analysis, in which the predictor is taken to be

x = (1, log(V ), log(R)). Pregibon (1981) established that observations 4 and 18 have very high influence

in determining a logistic regression fit. The data are plotted on the left panel of Figure S-1, in which the

outliers are plotted with different plotting symbols. For later use, we also plotted two additional points,

which are the original outliers made more extreme. We will consider three versions of the Finney (1947)

data: (i) a version with the two outliers removed, (ii) the original data set, and (iii) a version in which the

outliers are removed and replaced with outliers which are more extreme. We do this in order to show trends

in our analysis.

We implemented our procedure, running a Markov chain on (β, d) for 10,000 iterations, discarding
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the first 5,000 to burn-in. (Note: (β, d) corresponds to (θ, h) in our earlier notation.) The right panel

of Figure S-1 gives plots of the estimate of m(·) (up to a constant) over the range 0 to 10 for the three

versions of the data set. Table S-1 gives more results from our analysis. Let dopt = arg maxdm(d) and

d̂opt = arg maxd M̂n(d) (M̂n is defined prior to the statement of Theorem 1). Row 1 of the table gives d̂opt

and a 95% confidence interval for dopt for the three versions of the data set. The interval is constructed via the

method of batching (see the paragraph following the statement of Theorem 2). For the original version, the

point estimate is 0.55, and the confidence interval is (0.52, 0.58), ruling out the logistic and probit models.

From row 1 of the table we see that as outliers are introduced and made more extreme, d̂opt gets smaller,

indicating that the empirical Bayes procedure is correctly choosing models which are increasingly robust

against outliers.

We can evaluate the performance of the model that is based on a given value of d by calculating the

mean squared error given by MSE(d) = (1/m)
∑m

j=1(Yj − Ŷd,j)2. In this expression, Ŷd,j is the expected

value under the posterior distribution, given d and the data, of the response of an individual with covariate

xj ; that is, Ŷd,j = Eπβ | (d,y)(Td(x
>
j β)). Rows 2 and 3 of Table S-1 show that the predictive power of

the model that uses d = d̂opt is greater than that of either the logistic or probit model when there exist

outliers, with gains increasing as outliers are made more extreme. As expected, when there are no outliers,

the predictive performance of the model reverts back to the performance of the logistic and probit models;

this is supported by the right panel for Figure S-1, which shows that for the no-outlier case, the marginal

likelihoods for d = d̂opt and d = 7 (which approximates the logistic model) are not appreciably different.

Outliers removed Original data Outliers made extreme

d̂opt and CI for dopt 2.70 (1.15, 4.25) 0.55 (0.52, 0.58) 0.43 (0.41, 0.45)

MSE ratio: logistic vs. EB 1.00 1.35 1.86

MSE ratio: probit vs. EB 0.99 1.40 1.94

Table S-1: Comparison of the model that uses d = d̂opt (“EB”) with the logistic and probit models for three

versions of the Finney data: the version with the outliers removed, the original data set, and the version in

which the outliers are removed and replaced with more extreme outliers.

Next, we use this example to illustrate that approaches based on importance sampling, such as serial

tempering, umbrella sampling, or parallel tempering, will not succeed in this problem when the sample size

is large (here, “sample size” refers to the data set, not the length of the Monte Carlo simulation). This is

true even though in the present situation dim(d) = 1, so the curse of dimensionality does not come in.

To this end, we created a data set designed to mimic the original Finney data except that the data sample

size is 5,000, and we did this as follows. (i) We generated x∗1, . . . , x
∗
5,000 by sampling with replacement

from the original xj’s. (ii) For j = 1, . . . , 5,000, we generated Y ∗5,000 according to the robit model with

d = 0.55, predictors x∗1, . . . , x
∗
5,000, and β equal to the posterior mean under the fully-Bayes model. We

then considered the simple importance sampling estimate

M̃n(d) =
1

n

n∑
i=1

`d,y(βi)

`d1,y(βi)
, (S-1.3)
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where `d,y(β) is the likelihood of β under the robit model with parameter d, and the βi’s are a Markov chain

with invariant distribution equal to πβ | (d1,y); see (1.2). This estimate gives a consistent approximation to

m(d)/m(d1).

One should keep in mind that arg maxdm(d) is not necessarily equal to 0.55 (it depends on the artificial

data set and is unknown); however, because the data sample size is large, we expect it to be close to 0.55.

In a preliminary experiment using the FBEB methodology with a Markov chain length of 2,000, we ob-

tained (0.593, 0.614) as a 95% confidence interval for arg maxdm(d). The left panel of Figure S-2 shows

this confidence interval (it is depicted by the two vertical dashed lines) and displays estimates of m(d) us-

ing (S-1.3) with d1 = 0.4 and d1 = 0.55, and using the FBEB estimator, each of these three being computed

for a Markov chain length of 2,000. Note that, although d1 = 0.4 is quite close to the true maximum, the

importance sampling estimator completely fails: for d1 = 0.4, arg maxd M̃n(d) is not even close to being

in the confidence interval, and the relative likelihood of all points in the confidence interval is essentially 0.

Furthermore, even when d1 = 0.55, arg maxd M̃n(d) is not in the confidence interval.

The right panel of Figure S-2 explains the cause of this failure. It plots the sequence

ωin(d; d1) =
ω̃in(d; d1)∑n
i′=1 ω̃i′n(d; d1)

where ω̃in(d; d1) =
`d,y(βi)

`d1,y(βi)

for d1 = 0.55. To get an interpretation of this sequence, note that the estimate of the quantity I(d) in

Section 2.2 based on a chain run at d1 is given by
∑n

i=1 ωin(d; d1)g(βi) (see (2.16)), and the ωin(d; d1)’s

are viewed as weights. The right panel of Figure S-2 shows that, even when d1 is close to d, most of

the weight comes from a very small number of samples from the posterior, suggesting a highly imprecise

estimate of m(d)/m(d1). This confirms the statement made near the end of Section 2 that, in certain

situations where the data sample size is large, unless d is very close to d1, the importance sampling estimate

is very unstable. The significance of this illustration is that it highlights a circular problem inherent with the

importance sampling estimate: to estimate arg maxdm(d), one has to have a good approximation to it in

order to determine an acceptable value of d1.

We conclude that the importance sampling estimate will not succeed when the sample size is large due

to the fact that the “radius” around d1 in which one can accurately estimatem(d)/m(d1) is very narrow. We

also note that strategies such as serial tempering and umbrella sampling—which rely on selecting many dif-

ferent d1’s—will also fail unless the number of d1’s considered is exceedingly large. FBEB neatly bypasses

this problem, producing an accurate estimate of arg maxdm(d) as long as the posterior assigns mass near

arg maxdm(d) and the Markov chain we use mixes fast.

S-2 Proofs of Theorems 1–3 and of an Auxiliary Result

Proof of Theorem 1
We first prove (2.2). We consider the following notationally simpler but conceptually equivalent situation:

(U, V ) is a bivariate random vector, G(v) denotes the conditional distribution of U given that V = v, and

G(v) has density g(v). Then (2.2) is essentially equivalent to the following:

g(V ) is an unbiased estimator of the density of U. (S-2.1)
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Figure S-2: Left panel: plots of the estimated marginal likelihood surface (normalized to integrate to 1) for

the importance sampling estimator using d1 = 0.4 and d1 = 0.55, with the estimate provided by FBEB.

Right panel: plot of the importance weights for the model d = 0.55 when d1 = 0.4 is used for importance

sampling.

A direct approach for proving (S-2.1) involves imposing differentiability conditions on G(v) so that g(v) can

be viewed as the derivative of G(v), and laboriously justifying changing the order of limits and integrals.

Actually, (2.2) is, strictly speaking, nonsense, in that densities are defined only almost everywhere (hence

the word “essentially” above); on the other hand, (S-2.1) can be proved rigorously by showing that the

function g(·) = E(g(V )(·)) satisfies the defining property of the (marginal) density of U , namely that for

any Borel set A,
∫
A g(u) du = P (U ∈ A). We prove this last statement by writing∫

A
g(u) du =

∫
A
E(g(V )(u)) du = E

(∫
A
g(V )(u) du

)
= E(G(V ){A}) = P (U ∈ A),

where the second equality is a consequence of Fubini’s theorem, and the fourth is a consequence of the law

of iterated expectation.

To prove Part 1, Note that

M̂n(h) =
(1/n)

∑n
i=1 fh(θi)

πh(h)
=

(∑R
r=1 Sh,r

)
/R

πh(h)
(∑R

r=1Nr

)
/R

,

where the first equality is from (2.1) and (2.10), and the second equality is from (2.12). The key condition

for obtaining a Glivenko-Cantelli result for
(∑R

r=1 Sh,r
)
/R is Condition C9. This Glivenko-Cantelli result

states that

sup
h∈H

∣∣(∑R
r=1 Sh,r

)
/R− πh | y(h)E(N1)

∣∣ a.s.−−→ 0,

6



where we have used the fact that E(Sh,r) = E(fh(θ))E(N1). Since πh is continuous and positive on the

compact setH (condition C2), πh has a strictly positive lower bound onH. Therefore,

sup
h∈H

∣∣∣∣
(∑R

r=1 Sh,r
)
/R

πh(h)
(∑R

r=1Nr

)
/R
−
πh | y(h)

πh(h)

∣∣∣∣ a.s.−−→ 0,

i.e. suph∈H
∣∣M̂n(h)−M(h)

∣∣ a.s.−−→ 0.

Part 2 is an immediate consequence of the result below, which is a standard fact from analysis (and is

easy to prove).

Fact Suppose thatH is a compact subset of Euclidean space, and let gn, n = 1, 2, . . . and g be deterministic

real-valued functions defined on H . Suppose further that g is continuous and has a unique maximizer, and

that for each n the maximizer of gn exists and is unique. If gn converges to g uniformly on H , then the

maximizer of gn converges to the maximizer of g.

Proof of Theorem 2
The proof is similar to the proof of Part 1 of Theorem 4 of Doss and Park (2018). The difference be-

tween the current situation and the situation considered in Doss and Park (2018) is that they are considering

arg maxhE(fh(θ)), where fh(θ) = πθ | (h,y)(θ)/πθ | (h1,y)(θ), for some fixed h1 ∈ H, and the expectation

is with respect to πθ | (h1,y). In the present paper, we are working with the function fh(θ) = πh | (θ,y)(h) and,

moreover, the function of h whose argmax we are considering is E(fh(θ)/πh(h)), where the expectation is

with respect to πθ | y. Our conditions C5, C7–C10 correspond to conditions A3, A1, A2, A4, and A5 in Doss

and Park (2018), in that order. Conditions C1, C3, C4, and C6 are stated in Doss and Park (2018) in the text

prior to their Theorem 4. The proof of Part 1 of Theorem 4 of Doss and Park (2018) applies to Part 1 of our

Theorem 2 with minor modifications, and Condition C2 is needed for these modifications.

Proof of Theorem 3
Proof of Part 1 By Theorem 1, (2.3) holds uniformly in h, i.e.

sup
h

∣∣∣∣ 1n
n∑
i=1

πh | (θ=θi,y)(h)− πh | y(h)

∣∣∣∣ a.s.−−→ 0. (S-2.2)

By replacing the function fh(θ) = πh | (θ,y)(h) (see (2.10)) with the function g(θ)fh(θ), the same arguments

used to show (S-2.2) can be used again to show that

sup
h

∣∣∣∣ 1n
n∑
i=1

g(θi)πh | (θ=θi,y)(h)−N(h)

∣∣∣∣ a.s.−−→ 0,

where, recall, N(h) is defined in (2.14d). Part 1 now follows from the definition of În given in (2.16), and

the fact that πh | y(·) is bounded away from 0 on H (by C1 and D1). It should be noted that Theorem 1

requires condition C9, which we are not making here. But this is because this condition is subsumed by

the conditions that E(Sh0,1) < ∞ for some h0 ∈ H and that E(suph ‖∇hSh,1‖) < ∞, both of which are

implied by the assumptions of Theorem 3.
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Proof of Part 2 Before proceeding, we need to review the notion of Donsker class. Let (Ω,A, P ) be a proba-

bility space, and supposeX1, X2, . . .
iid∼ P . For f ∈ L2(Ω,A, P ), let Yn(f) = n1/2

([
(1/n)

∑n
i=1 f(Xi)

]
−∫

f dP
)
. A class of functions F ⊂ L2(Ω,A, P ) is called P -Donsker if the stochastic process {Yn(f), f ∈

F} converges in distribution to a mean-zero Gaussian process indexed by F . Here, convergence takes place

in l∞(F), the space of bounded functions from V to R equipped with the supremum norm. (For more formal

definitions, see van der Vaart and Wellner (1996).) In our case, the probability space we’re dealing with is

(Θ,BΘ, πθ | y), where BΘ is the Borel σ-field on Θ, and the function class is F = {fh, h ∈ H}, where fh is

defined by (2.10).

Suppose first that the θi’s are iid. The condition E
(
suph ‖∇hfh(θ)‖2

)
< ∞ together with the con-

dition that E
(
f2
h0

(θ)
)
< ∞ for some h0 ∈ H implies that E

(
suph f

2
h(θ)

)
< ∞. By D2, the condition

E
(
suph f

2
h(θ)

)
< ∞, and the bound on covering numbers for Euclidean classes given in Nolan and Pol-

lard (1987, page 789), we see that the conditions of Pollard-Koltchinskii theorem (for a statement see, e.g.,

Theorem 8.19 of Kosorok (2008)) are satisfied, and we may conclude that the class F is πθ | y-Donsker.

Now with probability one, n1/2
([

(1/n)
∑n

i=1 fh(θi)
]
−
∫
fh dπθ | y

)
∈ C(H), so weak convergence actu-

ally takes place in the space C(H) endowed with the sup norm topology (cf. van der Vaart and Wellner,

1996, Theorem 1.3.10). This proves (2.17) (for the iid case). Very similarly, let G = {gfh, h ∈ H}.
Under the same condition that for every θ, ∇hfh exists and is continuous on H, and the condition that

E
(
suph ‖∇hg(θ)fh(θ)‖2

)
< ∞, the class G is πθ | y-Donsker. This proves (2.18) (for the iid case). Define

the map Φ: C(H) × C(H) → C(H) by (Φ(x, y))(h) = x(h)/y(h). This map is Hadamard differentiable

at the point (N(·), πh | y(·)) (see van der Vaart and Wellner (1996, page 388) for a proof, and van der Vaart

and Wellner (1996, Section 3.9.1) for a definition of Hadamard differentiability). The convergence state-

ment (2.19) (for the iid case) now follows from the functional delta method (van der Vaart and Wellner,

1996, Theorem 3.9.4).

For the case where the θi’s are a geometrically ergodic Markov chain, in essence we use (2.12) to

translate results regarding averages of the independent random variables Sh,r, r = 1, . . . , R and Th,r, r =

1, . . . , R to averages of the dependent variables f(θi), i = 1, . . . , n and g(θi)f(θi), i = 1, . . . , n. However,

the definition of the Donsker classes is a bit delicate, so we need to be careful in how we define these. For the

Markov chain case, the probability space is (Θ∞,BΘ∞ ,Π), where Π is the distribution of the entire sequence

θ1, θ2, . . .. In the Athreya and Ney (1978) construction, the sequence θ1, θ2, . . . induces the regeneration

sequence τ0, τ1, . . .. Therefore, for any h ∈ H, Sh,1 may be viewed as a function mapping Θ∞ to R,

and the function class is taken to be F = {Sh,1, h ∈ H}. Similarly, we consider the function class

G = {Th,1, h ∈ H}. Now D6 and D7 take the place of the conditions E
(
suph ‖∇hfh(θ)‖2

)
< ∞ and

E
(
suph ‖∇hg(θ)fh(θ)‖2

)
< ∞, respectively, and we conclude that F and G are Π-Donsker, i.e. (2.17)

and (2.18) hold for the case of a geometrically ergodic Markov chain. The proof that (2.17) and (2.18)

imply (2.19) is identical to the proof for the iid case.

Proof That π̂iwmde
h | y (·) Is an Unbiased Estimate of πh | y(·)

Let Π(θ,h) | y denote the probability measure associated with the density π(θ,h) | y (note: we act as if the

density is with respect to Lebesgue measure, but we do this strictly for notational convenience). We will
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show that Eπ(θ,h) | y
(
π̂iwmde
h | y (·)

)
satisfies the defining property of πiwmde

h | y (·), namely that∫
A
Eπ(θ,h) | y

(
wθ(h)

π(θ,h) | y(θ, h∗)

π(θ,h) | y(θ, h)

)
dh∗ = Π(θ,h) | y({h ∈ A}) for all Borel sets A ⊂ H.

For any Borel set A ⊂ H, we have∫
A
Eπ(θ,h) | y

(
wθ(h)

π(θ,h) | y(θ, h∗)

π(θ,h) | y(θ, h)

)
dh∗ =

∫
A

∫
Θ

∫
H
wθ(h)π(θ,h) | y(θ, h∗) dh dθ dh∗

=

∫
A

∫
Θ
π(θ,h) | y(θ, h∗)

(∫
H
wθ(h) dh

)
dθ dh∗

=

∫
A

∫
Θ
π(θ,h) | y(θ, h∗) dθ dh∗

= Π(θ,h) | y({h ∈ A}).
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