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Abstract

The James-Stein estimator is an estimator of the multivariate normal mean and

dominates the maximum likelihood estimator (MLE) under squared error loss. The

original work inspired great interest in developing shrinkage estimators for a variety

of problems. Nonetheless, research on shrinkage estimation for manifold-valued data

is scarce. In this paper, we propose shrinkage estimators for the parameters of the

Log-Normal distribution defined on the manifold of N ×N symmetric positive-definite

matrices. For this manifold, we choose the Log-Euclidean metric as its Riemannian

metric since it is easy to compute and has been widely used in a variety of applica-

tions. By using the Log-Euclidean distance in the loss function, we derive a shrinkage

estimator in an analytic form and show that it is asymptotically optimal within a large

class of estimators that includes the MLE, which is the sample Fréchet mean of the

data. We demonstrate the performance of the proposed shrinkage estimator via several

simulated data experiments. Additionally, we apply the shrinkage estimator to per-

form statistical inference in both diffusion and functional magnetic resonance imaging

problems.
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1 Introduction

Symmetric positive-definite (SPD) matrices are common in applications of science and en-

gineering. In computer vision problems, they are encountered in the form of covariance

matrices, e.g., region covariance descriptors (Tuzel et al. 2006), and in diffusion magnetic

resonance imaging, SPD matrices manifest themselves as diffusion tensors which are used

to model the diffusion of water molecules (Basser et al. 1994), and as Cauchy deformation

tensors in morphometry to model the deformations (see Frackowiak et al. (2004, Ch. 36)).

Many other applications can be found in Cherian & Sra (2016). In such applications, the

statistical analysis of data must perform geometry-aware computations, i.e., employ methods

that take into account the nonlinear geometry of the data space. In most data analysis ap-

plications, it is useful to describe the entire dataset with a few summary statistics. For data

residing in Euclidean space, this may be simply the sample mean, and for data residing in

non-Euclidean spaces, e.g. Riemannian manifolds, the corresponding statistic is the sample

Fréchet mean (FM) (Fréchet 1948). The sample FM also plays an important role in different

statistical inference methods, e.g. principal geodesic analysis (Fletcher et al. 2003), cluster-

ing algorithms, etc. If M is a metric space with metric d, and x1, . . . , xn ∈ M , the sample

FM is defined by x̄ = arg minm
∑n

i=1 d
2(xi,m). For Riemannian manifolds, the distance is

usually chosen to be the intrinsic distance induced by the Riemannian metric. Then, the

above optimization problem can be solved by Riemannian gradient descent algorithms (Pen-

nec 2006, Groisser 2004, Afsari 2011, Moakher 2005, Gabay 1982, Udriste 2013). However,

Riemannian gradient descent algorithms are usually computationally expensive, and efficient

recursive algorithms for computing the sample FM have been presented in the literature for

various Riemannian manifolds by Sturm (2003), Ho et al. (2013), Salehian et al. (2015),

Chakraborty & Vemuri (2015), Lim & Pálfia (2014) and Chakraborty & Vemuri (2019).

In Rp with the Euclidean metric, the sample FM is just the ordinary sample mean.

Suppose that X1, . . . , Xn are a random sample from the multivariate normal distribution on

Rp. The sample mean X̄ = n−1
∑n

i=1Xi is the maximum likelihood estimator (MLE) for

the mean of the underlying normal distribution, and the James-Stein (shrinkage) estimator

(James & Stein 1961) was shown to be better (under squared error loss) than the MLE when
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p > 2 and the covariance matrix of the underlying normal distribution is assumed to be

known. Inspired by this result, the goal of this paper is to develop shrinkage estimators for

data residing in PN , the space of N ×N SPD matrices.

For the model Xi
ind∼ N(µi, σ

2), i = 1, . . . , p, where p > 2 and σ2 is known, the MLE of

µ = [µ1, . . . , µp]
T is µ̂MLE = [X1, . . . , Xp]

T and it is natural to ask whether it is admissible.

Stein (1956) gave a negative answer to this question and provided a class of estimators for

µ that dominate the MLE. Subsequently, James & Stein (1961) proposed the estimator(
1− (p− 2)σ2

‖X‖2

)
X (1)

where X = [X1, . . . , Xp]
T , which is now referred to as the James-Stein (shrinkage) estimator.

Ever since the work reported in James & Stein (1961), shrinkage estimators have been

developed for the parameters of other distributions, such as the Poisson and Gamma (Cleven-

son & Zidek (1975) and Berger (1980)). In order to understand shrinkage estimation fully,

one must understand why the process of shrinkage improves estimation. In this context,

Efron and Morris presented a series of works to provide an empirical Bayes interpretation

by modifying the original James-Stein estimator to suit different problems (Efron & Morris

1973a,b). The empirical Bayes approach to designing a shrinkage estimator can be described

as follows. First, reformulate the model as a Bayesian model, i.e., place a prior on the pa-

rameters. Then, the hyperparameters of the prior are estimated from the data. Efron &

Morris (1973b) presented several examples of different shrinkage estimators developed within

this empirical Bayes framework.

In all the works cited above, the domain of the data has invariably been a vector space

and, as mentioned earlier, many applications naturally encounter data residing in non-

Euclidean spaces. Hence, generalizing shrinkage estimation to non-Euclidean spaces is a

worthwhile pursuit. In this paper, we focus on shrinkage estimation for the Riemannian

manifold PN . We assume that the observed SPD matrices are drawn from a Log-Normal

distribution defined on PN (Schwartzman 2016) and we are interested in estimating the

mean and the covariance matrix of this distribution. We point out that a simple method

to derive a shrinkage estimator in this case is to apply James-Stein shrinkage to the log-

transformed SPD matrices. However, this does not lead to an optimal shrinkage estimator.
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Hence, we derive shrinkage estimators for the parameters of the Log-Normal distribution

using an empirical Bayes framework, which is described in detail subsequently, and show

that the proposed estimator is asymptotically optimal within a class of estimators including

the MLE. We discuss this issue in more detail in Section 3.2.

We present simulated data experiments which demonstrate that the proposed shrinkage

estimator of the mean of the Log-Normal distribution is better (in terms of risk) than the

sample FM, which is the MLE, and the shrinkage estimator proposed by Yang & Vemuri

(2019). Further, we also apply the shrinkage estimator to find group differences between

patients with Parkinson’s disease and controls (normal subjects) from their respective brain

scans acquired using diffusion magnetic resonance images (dMRIs). Additionally, we empiri-

cally demonstrate the advantage of shrinkage estimation applied to simultaneous estimation

of the parameters of Log-Normal distributions via an experiment involving brain connectiv-

ity networks derived from resting state functional MRI (rs-fMRI) human brain scans. This

experiment is presented to show that the advantages of the proposed shrinkage estimator

persist as we vary the size N of the SPD matrices.

Besides estimation of the mean of different distributions, estimation of the covariance

matrix (or the precision matrix) of a multivariate normal distribution is an important prob-

lem in statistics, finance, engineering and many other fields. The usual estimator, namely

the sample covariance matrix, performs poorly in high-dimensional problems and many re-

searchers have endeavored to improve covariance estimation by applying the concept of

shrinkage in this context (Stein 1975, Daniels & Kass 2001, Ledoit & Wolf 2003, Donoho

et al. 2018). In this literature, it is assumed that for each i = 1, . . . , p, we observe iid

vectors Xi,1, . . . , Xi,ni
∈ RN where for each j = 1, . . . , ni, the covariance matrix of Xij is

Σi ∈ PN . This framework is distinct from our setup, where we assume that our observations

are estimates Σ̂1, . . . , Σ̂p ∈ PN .

The rest of this paper is organized as follows. In Section 2, we present relevant material

on the Riemannian geometry of PN and shrinkage estimation. The main theoretical results

are stated in Section 3, with the proofs of the theorems relegated to the supplement. In Sec-

tion 4, we demonstrate how the proposed shrinkage estimators perform via several synthetic

data examples and present applications to (real data) diffusion tensor imaging (DTI), a clin-
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ically popular version of dMRI, and rs-fMRI. Specifically, we apply the proposed shrinkage

estimator to (i) estimation of the brain atlases (templates) of patients with Parkinson’s dis-

ease and a control group, (ii) identification of the regions of the brain where the two groups

differ significantly, and (iii) estimation of connectivity networks from rs-fMRI. Finally, in

Section 5 we discuss our contributions and present some future research directions.

2 Preliminaries

In this section, we briefly review the commonly used Log-Euclidean metric for PN proposed

by Arsigny et al. (2007) and the concept of Stein’s unbiased risk estimate, which will form

the framework for deriving the shrinkage estimators.

2.1 Riemannian Geometry of PN

In this work, we endow the manifold PN with the Log-Euclidean metric. We note that there

is another commonly used Riemannian metric on PN , called the affine-invariant metric (see

Terras (2016, Ch. 1) for its introduction and Lenglet, Rousson, Deriche & Faugeras (2006)

and Moakher (2005) for its applications). The affine-invariant metric is computationally more

expensive; however, because in some applications it provides results that are indistinguishable

from those obtained under the Log-Euclidean metric, as demonstrated in Arsigny et al.

(2007) and Schwartzman (2016), we choose to work with the Log-Euclidean metric. For

other metrics on PN used in a variety of applications, we refer the reader to the recent

survey by Feragen & Fuster (2017).

The Log-Euclidean metric is a bi-invariant Riemannian metric on the abelian Lie group

(PN ,�) whereX�Y = exp(logX+log Y ). The intrinsic distance dLE : PN×PN → R induced

by the Log-Euclidean metric has a very simple form, namely dLE(X, Y ) = ‖logX − log Y ‖,

where ‖·‖ is the Frobenius norm. Let Sym(N) be the vector space of N×N symmetric matri-

ces. Consider the map vec : Sym(N)→ R
N(N+1)

2 given by vec(Y ) =
[
y11, . . . , ynn,

√
2(yij)i<j

]T
(Schwartzman 2016). This map is actually an isomorphism between Sym(N) and R

N(N+1)
2 .

To make the notation more concise, for X ∈ PN , we denote X̃ = vec(logX) ∈ R
N(N+1)

2 .

From the definition of vec, we see that dLE(X, Y ) = ‖X̃ − Ỹ ‖.
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Given X1, . . . , Xn ∈ PN , we denote the sample FM with respect to the Log-Euclidean

distance given above by

X̄ = arg min
M∈PN

n−1

n∑
i=1

d2
LE(Xi,M) = exp

(
n−1

n∑
i=1

logXi

)
.

2.2 The Log-Normal Distribution on PN

In this work, we assume that the observed SPD matrices follow the Log-Normal distribution

introduced by Schwartzman (2016), which can be viewed as a generalization of the Log-

Normal distribution on R+ to PN . The definition is as follows.

Definition 1 Let X be a PN -valued random variable. We say X follows a Log-Normal

distribution with mean M ∈ PN and covariance matrix Σ ∈ PN(N+1)/2, or X ∼ LN(M,Σ), if

X̃ ∼ N(M̃,Σ).

From the definition, it is easy to see that E logX = logM and E‖logX − logM‖2 =

E‖X̃ − M̃‖2 = tr(Σ). Some important results regarding this distribution were obtained

in Schwartzman (2016). The following proposition, proved in Schwartzman (2016), for the

MLEs of the parameters will be useful subsequently.

Proposition 1 Let X1, . . . , Xn
iid∼ LN(M,Σ). Then, the MLEs of M and Σ are M̂MLE = X̄

and Σ̂MLE = n−1
∑n

i=1

(
X̃i −

˜̂
MMLE

)(
X̃i −

˜̂
MMLE

)T
. The MLE of M is the sample FM

under the Log-Euclidean metric.

2.3 Bayesian Formulation of Shrinkage Estimation in Rp

As discussed earlier, the James-Stein estimator originated from the problem of simultaneous

estimation of multiple means of (univariate) normal distributions. The derivation relied

heavily on properties of the univariate normal distribution. Later on, Efron & Morris (1973b)

gave an empirical Bayes interpretation for the James-Stein estimator, which is presented by

considering the hierarchical model

Xi|θi
ind∼ N(θi, A), i = 1, . . . , p,

θi
iid∼ N(µ, λ),
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where A is known and µ and λ are unknown. The posterior mean for θi is

θ̂λ,µi =
λ

λ+ A
Xi +

A

λ+ A
µ. (2)

The parametric empirical Bayes method for estimating the θi’s consists of first estimating

the prior parameters λ and µ and then substituting them into (2). The prior parameters λ

and µ can be estimated by the MLE. For the special case of µ = 0, this method produces

an estimator similar to the James-Stein estimator (1). Although this estimator is derived

in an (empirical) Bayesian framework, it is of interest to determine whether it has good

frequentist properties. For example, if we specify a loss function L and consider the induced

risk function R, one would like to determine whether the estimator has uniformly smallest

risk within a reasonable class of estimators. For (2), the optimal choice of λ and µ is(
λ̂opt, µ̂opt

)
= arg min

λ,µ
R
(
θ̂
λ,µ
,θ
)
,

where θ = [θ1, . . . , θp]
T , θ̂

λ,µ
= [θ̂λ,µ1 , . . . , θ̂λ,µp ]T , and λ̂opt and µ̂opt depend on θ, which is

unknown. Instead of minimizing the risk function directly, we minimize Stein’s unbiased risk

estimate (SURE) (Stein 1981), denoted by SURE(λ, µ), which satisfies Eθ [SURE(λ, µ)] =

R(θ̂
λ,µ
,θ). Thus, we use (

λ̂SURE, µ̂SURE
)

= arg min
λ,µ

SURE(λ, µ).

The challenging part of this endeavor is to derive SURE, which depends heavily on the risk

function and the underlying distribution of the data. This approach has been used to derive

estimators for many models. For example, Xie et al. (2012) derived the (asymptotically)

optimal shrinkage estimator for a heteroscedastic hierarchical model, and their result is

further generalized in Jing et al. (2016) and Kong et al. (2017).

3 An Empirical Bayes Shrinkage Estimator for Log-

Normal Distributions

In this section, we consider the model

Xij
ind∼ LN(Mi,Σi), i = 1, . . . , p, j = 1, . . . , n,
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and develop shrinkage estimators for the vector of means M = [M1, . . . ,Mp] and the array

of covariance matrices Σ = [Σ1, . . . ,Σp]. The motivation for this model is that for the

applications of DTI, we have n DT images and each DT image contains p voxels. The

diffusive behavior of water molecules in each voxel is characterized by a 3× 3 SPD matrix.

The Xij’s are PN -valued random matrices. For completeness, we first briefly review the

shrinkage estimator of M proposed by Yang & Vemuri (2019), who assumed Σi = AiI,

where the Ai’s are known positive numbers and I is the identity matrix. The assumption on

Σ is useful when n is small since for small sample sizes the MLE for Σ is very unstable. Next,

we present estimators for both M and Σ. Besides presenting these estimators, we establish

asymptotic optimality results for the proposed estimators. To be more precise, we show that

the proposed estimators are asymptotically optimal within a large class of estimators that

contains the MLE.

Another related interesting problem often encountered in practice involves group testing

and estimating the “difference” between two given groups. Consider the model

Xij
ind∼ LN(M

(1)
i ,Σ

(1)
i ), i = 1, . . . , p, j = 1, . . . , nx,

Yij
ind∼ LN(M

(2)
i ,Σ

(2)
i ), i = 1, . . . , p, j = 1, . . . , ny,

where the Xij’s and Yij’s are independent. We want to estimate the differences between

M
(1)
i and M

(2)
i for i = 1, . . . , p and select the i’s for which the differences are large. However,

the selected estimates tend to overestimate the corresponding true differences. The bias

introduced by the selection process is termed selection bias (Dawid 1994). Selection bias

originates from the fact that there are two possible reasons for the selected differences to be

large: (i) the true differences are large and (ii) the random errors contained in the estimates

are large. Tweedie’s formula (Efron 2011), which we discuss and briefly review in Section 3.3,

deals with precisely this selection bias, in the context of the normal means problem. In this

work, we apply an analogue of Tweedie’s formula designed for the context of SPD matrices.

3.1 An Estimator of M When Σ is Known

For completeness, we briefly review the work of Yang & Vemuri (2019) where the authors

presented the estimator for M assuming that Σi = AiI and the Ai’s are known positive
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numbers. Under this assumption, they considered the class of estimators given by

M̂λ,µ
i = exp

(
nλ

nλ+ Ai
log X̄i +

Ai
nλ+ Ai

log µ

)
, (3)

where µ ∈ PN , λ > 0, and X̄i is the sample FM of Xi1, . . . , Xin. Using the Log-Euclidean

distance as the loss function L(M̂ ,M) = p−1
∑p

i=1 d
2
LE(M̂i,Mi), they showed that the SURE

for the corresponding risk function R(M̂ ,M ) = EL(M̂ ,M ) is given by

SURE(λ, µ) =
1

p

p∑
i=1

Ai
(nλ+ Ai)2

(
Ai‖log X̄i − log µ‖2 +

q(n2λ2 − A2
i )

n

)
,

where q = N(N + 1)/2. Hence, λ and µ can be estimated by

(
λ̂SURE, µ̂SURE

)
= arg min

λ,µ
SURE(λ, µ).

Their shrinkage estimator for Mi is given by

M̂SURE
i = exp

(
nλ̂SURE

nλ̂SURE + Ai
log X̄i +

Ai

nλ̂SURE + Ai
log µ̂SURE

)
. (4)

They also presented the following two theorems showing the asymptotic optimality of the

shrinkage estimator.

Theorem 1 Assume the following conditions:

(i) lim supp→∞ p
−1
∑p

i=1A
2
i <∞,

(ii) lim supp→∞ p
−1
∑p

i=1Ai‖logMi‖2 <∞,

(iii) lim supp→∞ p
−1
∑p

i=1 ‖logMi‖2+δ <∞ for some δ > 0.

Then,

sup
λ>0,‖logµ‖<maxi ‖log X̄i‖

∣∣SURE(λ, µ)− L(M̂
λ,µ
,M)

∣∣ prob−→ 0 as p→∞.

Theorem 2 If assumptions (i)–(iii) in Theorem 1 hold, then for every λ > 0 and µ ∈ PN ,

lim sup
p→∞

[
R(M̂

SURE
,M )−R(M̂

λ,µ
,M )

]
≤ 0.
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3.2 Estimators for M and Σ

In Yang & Vemuri (2019), the covariance matrices of the underlying distributions were

assumed to be known, to simplify the derivation. In real applications however, the covariance

matrices are rarely known, and in practice they must be estimated. In this paper, we consider

the general case of unknown covariance matrices, which is more challenging and pertinent

in real applications. Let

Xij|(Mi,Σi)
ind∼ LN(Mi,Σi)

Mi|Σi
ind∼ LN(µ, λ−1Σi)

Σi
iid∼ Inv-Wishart(Ψ, ν),

(5)

for i = 1, . . . , p and j = 1, . . . , n. The prior for (Mi,Σi) is called the Log-Normal-Inverse-

Wishart (LNIW) prior, and it is motivated by the normal-inverse-Wishart prior in the Eu-

clidean space setting. We emphasize that the main reason for choosing the LNIW prior

over others is the property of conjugacy which leads to a closed-form expression for our

estimators. Let

X̄i = exp

(
n−1

n∑
j=1

logXij

)
and Si =

n∑
j=1

(
X̃ij − ˜̄Xi

)(
X̃ij − ˜̄Xi

)T
. (6)

Then the posterior distributions of Mi and Σi are given by

Mi|
(
{Xij}i,j, {Σi}pi=1

)
∼ LN

(
exp

(n log X̄i + λ log µ

λ+ n

)
, (λ+ n)−1Σi

)
,

Σi|Si ∼ Inv-Wishart(Ψ + Si, ν + n− 1),

and the posterior means for Mi and Σi are given by

M̂i = exp
(n log X̄i + λ log µ

λ+ n

)
and Σ̂i =

Ψ + Si
ν + n− q − 2

. (7)

Consider the loss function

L
(
(M̂ , Σ̂), (M ,Σ)

)
= p−1

p∑
i=1

d2
LE(M̂i,Mi) + p−1

p∑
i=1

‖Σ̂i − Σi‖2 = L1(M̂ ,M ) + L2(Σ̂,Σ).
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Its induced risk function is

R
(
(M̂ , Σ̂), (M ,Σ)

)
= p−1

p∑
i=1

[
Ed2

LE(M̂i,Mi) + E‖Σ̂i − Σi‖2
]

= p−1(λ+ n)−2

p∑
i=1

[
ntrΣi + λ2d2

LE(µ,Mi)
]

+ p−1

p∑
i=1

(ν + n− q − 2)−2
[(
n− 1 + (ν − q − 1)2

)
tr(Σ2

i )

− 2(ν − q − 1)tr(ΨΣi) + (n− 1)(trΣi)
2 + tr(Ψ2)

]
,

with the detailed derivation given in the supplement. The SURE for this risk function is

SURE(λ,Ψ, ν, µ) = p−1

{
p∑
i=1

(λ+ n)−2
[n− λ2/n

n− 1
trSi + λ2d2

LE(X̄i, µ)
]

+ (ν + n− q − 2)−2
[n− 3 + (ν − q − 1)2

(n+ 1)(n− 2)
tr(S2

i ) (8)

+
(n− 1)2 − (ν − q − 1)2

(n− 1)(n+ 1)(n− 2)

(
trSi

)2 − 2
ν − q − 1

n− 1
tr(ΨSi) + tr(Ψ2)

]}
,

with the detailed derivation given in the supplement.

Remark Note that instead of the LNIW prior, one may also consider a prior that captures

the correlation structure (if there is any) among both the Mi’s and the Σi’s, which may

be a more appropriate prior for some applications encountered in image analysis. However,

such a prior will make the ensuing mathematical analysis much more complicated than it

already is. Hence we stay with the LNIW prior, and in Section 4 we take a more practical

and effective approach (involving smoothing) to deal with the aforementioned correlation

structure.

The hyperparameter vector (λ,Ψ, ν, µ) is estimated by minimizing the risk estimate

SURE(λ,Ψ, ν, µ), and the resulting shrinkage estimators of Mi and Σi are obtained by plug-

ging in the minimizing vector into (7). This optimization step allows us to determine the

shrinkage from the data. So, unlike the original James-Stein estimator which shrinks the

estimate towards a fixed target, we are able to obtain nearly optimal estimates. Note that

this is a non-convex optimization problem, and for such problems convergence relies heavily
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on the choice of the initialization. We suggest the following initialization, which is discussed

in the supplemental material:

µ0 = exp

(
p−1

p∑
i=1

log X̄i

)
,

λ0 =
np−1

∑p
i=1 d

2
LE(X̄i, µ0)

n
p(n−1)

∑p
i=1 trSi − p−1

∑p
i=1 d

2
LE(X̄i, µ0)

,

ν0 =
q + 1

n−q−2
p2q(n−1)

tr
[(∑p

i=1 Si
)(∑p

i=1 S
−1
i

)]
− 1

+ q + 1,

Ψ0 =
ν0 − q − 1

p(n− 1)

p∑
i=1

Si.

In all our experiments, the algorithm converged in fewer than 20 iterations with this ini-

tialization. This concludes the description of our estimators of the unknown means and

covariance matrices. Theorem 3 below states that SURE(λ,Ψ, ν, µ) approximates the true

loss L
((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
well in the sense that the difference between the two random

variables converges to 0 in probability as p→∞. Additionally, Theorem 4 below shows that

the estimators of M and Σ obtained by minimizing SURE(λ,Ψ, ν, µ) are asymptotically

optimal in the class of estimators of the form (7).

Theorem 3 Assume the following conditions:

(i) lim supp→∞ p
−1
∑p

i=1

(
tr Σi

)4
<∞,

(ii) lim supp→∞ p
−1
∑p

i=1 M̃
T
i ΣiM̃i <∞,

(iii) lim supp→∞ p
−1
∑p

i=1 ‖logMi‖2+δ <∞ for some δ > 0.

Then

sup
λ>0,ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖,
‖log µ‖≤max1≤i≤p ‖log X̄i‖

∣∣∣SURE(λ,Ψ, ν, µ)−L
((
M̂

λ,µ
, Σ̂

Ψ,ν)
, (M ,Σ)

)∣∣∣ prob−→ 0 as p→∞.

Note that the optimization has some constraints. However, in practice, with proper

initialization as suggested earlier, the constraints on Ψ and µ can be safely ignored. The

reason is that, for Ψ and µ far from Si’s and X̄i respectively, the value of SURE will be large.

The constraints on λ and ν can easily be handled by standard constrained optimization

algorithms, e.g. L-BFGS-B (Byrd et al. 1995).
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Theorem 4 If assumptions (i)–(iii) in Theorem 3 hold, then

lim sup
p→∞

[
R
((
M̂

SURE
, Σ̂

SURE)
, (M ,Σ)

)
−R

((
M̂

λ,µ
, Σ̂

Ψ,ν)
, (M ,Σ)

)]
≤ 0.

Note that in all the theorems above, we consider the asymptotic regime p → ∞ while

the size of the SPD matrix N is held fixed. The main reason for fixing the size of the

SPD matrix is that in our first application, namely the DTI analysis, the size of the diffusion

tensors is always 3×3, because diffusion magnetic resonance images are 3-dimensional images.

However, the number of voxels p can increase, as they are determined by the resolution of

the acquired image, which can increase due to advances in medical imaging technology. This

is different from the usual high-dimensional covariance matrix estimation problem in which

the size of the covariance matrix is allowed to grow.

Remark The proofs of Theorems 1 and 2 in Yang & Vemuri (2019) use arguments similar

to those that already exist in the literature, and in that sense they are not very difficult. In

contrast, the proofs of our Theorems 3 and 4 do not proceed along familiar lines. Indeed,

they are rather complicated, the difficulty being that bounding the moments of Wishart

matrices or the moments of the trace of Wishart matrices is nontrivial when the orders of

the required moments are higher than two. We present these proofs in the supplement.

Remark SURE.Full-FM estimates the covariance matrices Σi’s, and this results in perfor-

mance that is worse than if the covariance matrices were known. On the other hand, FM.LE

and SURE-FM assume that the covariance matrices are known, and since this is not the

case, we need to estimate them. So we’re not really comparing SURE.Full-FM with FM.LE

and SURE-FM, but rather with versions of FM.LE and SURE-FM in which the covariance

matrices are estimated. In SURE.Full-FM they are estimated jointly via shrinkage, whereas

in FM.LE/SURE-FM they are estimated separately.

3.3 Tweedie’s Formula for F Statistics

One of the motivations for the development of our approach for estimating M and Σ is a

problem in neuroimaging involving detection of differences between a patient group and a

control group. The problem can be stated as follows. There are nx patients in a disease
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group and ny normal subjects in a control group. We consider a region of the brain image

consisting of p voxels. As explained in Section 4.2, the local diffusional property of water

molecules in the human brain is of clinical importance, and it is common to capture this

diffusional property at each voxel in diffusion magnetic resonance imaging (dMRI) via a zero-

mean Gaussian with a 3 × 3 covariance matrix. Using any of the existing state-of-the-art

dMRI analysis techniques, it is possible to estimate, from each patient image, the diffusion

tensor Mi corresponding to voxel i, for i = 1, . . . , p. Let M
(1)
i and M

(2)
i denote the diffusion

tensors corresponding to voxel i for the disease and control groups respectively. The goal is

to identify the indices i for which the difference between M
(1)
i and M

(2)
i is large. The model

we consider is

Xij
ind∼ LN(M

(1)
i ,Σi), i = 1, . . . , p, j = 1, . . . , nx,

Yij
ind∼ LN(M

(2)
i ,Σi), i = 1, . . . , p, j = 1, . . . , ny.

In this work, we use the Hotelling T 2 statistic for each i = 1, . . . , p as a measure of the

difference between M
(1)
i and M

(2)
i . The Hotelling T 2 statistic for SPD matrices has been

proposed by Schwartzman et al. (2010), and is given by

t2i =
(˜̄Xi − ˜̄Yi)T[( 1

nx
+

1

ny

)
Si

]−1(˜̄Xi − ˜̄Yi), (9)

where X̄i and Ȳi are the FMs of {Xij}j and {Yij}j, and Si = (nx + ny − 2)−1
(
S

(1)
i + S

(2)
i

)
is

the pooled estimate of Σi where S
(1)
i and S

(2)
i are computed using (6). Since the Xij’s and

Yij’s are Log-normally distributed, one can easily verify that the distribution of t2i is given

by
ν − q − 1

νq
t2i

ind∼ Fq,ν−q−1,λi , (10)

where ν = nx +ny− 2 is a degrees of freedom parameter (recall that q = N(N + 1)/2). Note

that we make the assumption that the covariance matrices for the two groups are equal, i.e.

Σ
(1)
i = Σ

(2)
i = Σi. Similar results can be obtained for the unequal covariance case, but with

more complicated expressions for the T 2 statistics and the degrees of freedom parameters.

The λi’s are the non-centrality parameters for the non-central F distribution and are given

by

λi =
( 1

nx
+

1

ny

)−1(
M̃

(1)
i − M̃

(2)
i

)T
Σ−1
i

(
M̃

(1)
i − M̃

(2)
i

)
.
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These non-centrality parameters can be interpreted as the (squared) differences between M
(1)
i

and M
(2)
i , and they are the parameters we would like to estimate using the statistics (9) com-

puted from the data. Then, based on estimates λ̂i, we select those i’s with large estimates,

say the largest 1% of all λ̂i. However, the process of selection from the computed estimates

introduces selection bias. The bias comes from the fact that it is possible to select some

indices i’s for which the actual λi’s are not large but the random errors are large, so that the

estimates λ̂i are pushed away from the true parameters λi. There are several ways to correct

for this bias, and Efron (2011) proposed to use Tweedie’s formula for such a purpose.

Tweedie’s formula was first proposed by Robbins (1956), and we review this formula here

in the context of the classical normal means problem, which is stated as follows. We observe

Zi
ind∼ N(µi, σ

2), i = 1, . . . , p, where the µi’s are unknown and σ2 is known, and the goal

is to estimate the µi’s. In the empirical Bayes approach to this problem we assume that

the µi’s are iid according to some distribution G. The marginal density of the Zi’s is then

f(z) =
∫
φσ(z − µ) dG(µ), where φσ is the density of the N(0, σ2) distribution. With this

notation, if G is known (so that f is known), the best estimator of µi (under squared error

loss) is the so-called Tweedie estimator given by µ̂i = Zi + σ2[f ′(Zi)/f(Zi)]. A feature of

this estimator is that it depends on G only through f , and this is desirable because it is

fairly easy to estimate f from the Zi’s (so we don’t need to specify G). Another interesting

observation about this estimator is that µ̂i is shrinking the MLE µ̂MLE
i = Zi and can be

viewed as a generalization of the James-Stein estimator which assumes µi
iid∼ N(0, λ) with

unknown λ. The Tweedie estimator can be generalized to exponential families. Suppose

that Zi|ηi
ind∼ fηi(z) = exp(ηiz − φ(ηi))f0(z), and the prior for φ is G. Then the Tweedie

estimator for ηi is η̂i = l′(Zi)−l′0(Zi), where l(z) = log
∫
fη(z) dG(η) is the log of the marginal

likelihood of the Zi’s and l0(z) = log f0(z).

Although this formula is elegant and useful, it applies only to exponential families. Re-

cently, Du & Hu (2020) derived a Tweedie-type formula for non-central χ2 statistics, for

situations where one is interested in estimating the non-centrality parameters. Suppose

Zi|λi
ind∼ χ2

ν,λi
and λi

iid∼ G. Then,

E(λi|Zi) =
[
(Zi − ν + 4) + 2Zi

( 2l′′ν(Zi)

1 + 2l′ν(Zi)
+ l′ν(Zi)

)](
1 + 2l′ν(Zi)

)
,
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where lν(·) is the marginal log-likelihood of the Zi’s (see Theorem 1 in Du & Hu (2020)).

For our situation, if we define Zi = [(ν − q − 1)/νq]t2i , then Zi|λi
ind∼ Fq,ν−q−1,λi (recall

that ν = nx + ny − 2, see (9) and (10)). Assume that the λi’s are iid according to some

distribution G. We now address the problem of how to obtain empirical Bayes estimates

of the λi’s. Let Φν1,ν2,λ be the cumulative distribution function (cdf) of the non-central F

distribution, Fν1,ν2,λ, and let Φ̃ν,λ be the cdf of the non-central χ2 distribution, χ2
ν,λ. Then

the transformed variable Yi = Φ̃−1
ν1,λi

(Φν1,ν2,λi(Zi)) follows a non-central χ2 distribution with

degrees of freedom parameter ν1 and non-centrality parameter λi, and we note that when ν2

is large, Φν1,ν2,λi and Φ̃ν1,λi are nearly equal, so that this quantile transformation is nearly

the identity. However, the transformation depends on λi, which is the parameter to be

estimated, so we propose the following iterative algorithm for estimating E(λi|Zi). Let λ
(t)
i

be the estimate of λi at the t-th iteration. Then our iterative update of λi is given by

λ
(t+1)
i =

[
(Y

(t)
i − ν1 + 4) + 2Y

(t)
i

( 2l′′ν1(Y
(t)
i )

1 + 2l′ν1(Y
(t)
i )

+ l′ν1(Y
(t)
i )
)](

1 + 2l′ν1(Y
(t)
i )
)
,

where Y
(t)
i = Φ̃−1

ν1,λ
(t)
i

(
Φ
ν1,ν2,λ

(t)
i

(Zi)
)
, ν1 = q, and ν2 = ν − q − 1. Now the marginal log-

likelihood lν1(y) is not available since the prior G for λi is unknown. There are several ways

to estimate the marginal density of the Y
(t)
i ’s. One of these is through kernel density estima-

tion. However, the iterative formula involves the first and second derivatives of the marginal

log-likelihood, and estimates of the derivatives of a density produced through kernel methods

are notoriously unstable. There exist different approaches for dealing with this problem (see

Sasaki et al. (2016) and Shen & Ghosal (2017)). Here we follow Efron (2011) and postulate

that lν1 is well approximated by a polynomial of degree K, and write lν1(y) =
∑K

k=0 βky
k.

The coefficients βk, k = 1, . . . , K, can be estimated via Lindsey’s method (Efron & Tibshi-

rani 1996), which is a Poisson regression technique for (parametric) density estimation; the

coefficient β0 is determined by the requirement that fν1(y) = exp(lν1(y)) integrates to 1. The

advantage of Lindsey’s method over methods that use kernel density estimation is that it

does not require us to estimate the derivatives separately, since l′ν1(y) =
∑K

k=1 kβky
k−1 and

l′′ν1(y) =
∑K

k=2 k(k−1)βky
k−2. In our experience, with l′ν1 and l′′ν1 estimated in this way, if we

initialize the scheme by setting λ
(0)
i to be the estimate of λi given by the Du & Hu (2020)

procedure, then the algorithm converges in fewer than 10 iterations.
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4 Experimental Results

Here we describe the performance of our methods on three synthetic data sets and three sets

of real data from diffusion and functional magnetic resonance imaging. Details on these data

sets will be given subsequently. For the synthetic data experiments, we show the following.

(i) The proposed shrinkage estimator for the FM (SURE.Full-FM, with simultaneous es-

timation of the covariance matrices) outperforms the sample FM (FM.LE) and the

shrinkage estimator proposed by Yang & Vemuri (2019) (SURE-FM, with fixed covari-

ance matrices); see Section 4.1.1.

(ii) Our estimator outperforms its competitors for different (increasing) values of N , the

size of the SPD matrices; see Section 4.1.2.

(iii) The shrinkage estimates of the group differences capture the regions that are significantly

distinct between two groups of SPD matrix-valued images; see Section 4.1.3.

For the real data experiments, we demonstrate the following.

(iv) The SURE.Full-FM provides improvement over the two competing estimators (FM.LE

and SURE-FM) for (a) computing an atlas (template) of diffusion tensor images ac-

quired from human brains (Section 4.2.1) and (b) computing the mean connectivity

networks from resting state functional MRI (fMRI) measurements (Section 4.2.2). The

former experiment tests the framework for the accuracy by varying the spatial dimen-

sion, p, of the images (i.e. the number of voxels), and the latter tests the accuracy under

varying size, N , of the SPD matrices.

(v) The proposed shrinkage estimator for detecting group differences is able to identify the

regions that are significantly distinct between patients with Parkinson’s disease and

control subjects; see Section 4.2.3.

Details of these experiments are presented in the following paragraphs.

4.1 Synthetic Data Experiments

We present three synthetic data experiments here to show that the proposed shrinkage

estimator, SURE.Full-FM, outperforms the sample FM and SURE-FM under varying sample
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sizes and sizes of SPD matrices and that the shrinkage estimates of the group differences can

accurately localize the regions that are significantly different between the two groups.

4.1.1 Comparison Between SURE.Full-FM and Competing Estimators

Using generated noisy SPD fields (P3) as data, we now present performance comparisons of

three estimators of M : (i) SURE.Full-FM, which is the proposed shrinkage estimator, (ii)

SURE-FM, proposed by Yang & Vemuri (2019) which assumes that the covariance matrices

are known and (iii) the MLE, which is denoted by FM.LE (since by proposition 1 it is the

FM based on the Log-Euclidean metric). The synthetic data are generated according to (5).

Specifically, we set µ = I3, Ψ = I6, and n = 10, and we vary the variance λ and the degrees of

freedom parameter ν of the prior distribution as follows: λ = 10, 50, and ν = 15, 30. Figure 1

shows the relationship between the average loss (averaged over m = 1000 repetitions) and

the spatial dimension p under varying conditions for the three estimators. Note that, since

the covariance matrices Σi’s are unknown in our synthetic data experiment and (n−1)−1Si is

an unbiased estimate for Σi, the Ai’s in (4) can be unbiasedly estimated by [(n−1)q]−1 trSi.

As is evident from Figure 1, for large λ the gains from using SURE.Full-FM are greater.
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Figure 1: Average loss for each of the three estimators. Results for varying λ and degrees of

freedom parameter ν are shown across the columns and rows respectively. Note that in the

bottom two panels, the curve corresponding to FM.LE is essentially the same as the one for

SURE.FM, but is barely visible.
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This observation is in accordance with our intuition, which is that for large λ, the Mi’s are

clustered, and it is beneficial to shrink the MLEs of the Mi’s towards a common value. The

main difference between SURE-FM and SURE.Full-FM is that the former requires knowledge

of the Σi’s and in general such information is not available, and estimates for the Σi’s are

needed to compute the SURE-FM. Hence, the performance of SURE-FM depends heavily

on how good the estimates for the Σi’s are. In our synthetic data experiment, we consider

the unbiased estimate Âi = [(n− 1)q]−1 trSi for SURE-FM. In this case, the prior mean for

Σi is E(Σi) = (ν−q−1)−1Iq, for which the assumption Σi = AiI seems reasonable. For large

ν, the generated Σi’s are far from being identity matrices, which violates the assumption

(this can be observed in Figure 1, where we see that SURE-FM is almost identical to FM.LE

for ν = 30).

On the other hand, we can fix λ and ν to see how different choices of µ and Ψ affect

the performance of our shrinkage estimator SURE.Full-FM. To do this, we fix n = 10,

λ = 10, and ν = 15 (so that we can compare with the top-left panel of Figure 1). We

consider µ = diag(2, 0.5, 0.5) and Ψij = 0.5|i−j|. The results are shown in Figure 2. The

top-left panel of Figure 1 shows that when µ = I and Ψ = I, there is no difference between

SURE-FM and SURE.Full-FM, but Figure 2 shows that when one of µ and Ψ is not the

identity, our shrinkage estimator outperforms SURE-FM. For different choices of λ and ν,

the improvement is more significant, following the trend we observed in Figure 1. Note that

the chosen hyperparameters here, λ = 10, 50 and ν = 15, 30, are extreme. What we aim

to show with this particular choice in the simulation is that the SURE-FM can perform

either as well as the SURE.Full-FM or as poorly as the MLE. That is, the performance of

SURE.Full-FM is the best possible performance that SURE-FM can achieve.

4.1.2 Performance Comparisons as Matrix Size Varies

In this subsection, we present some experiments to assess the improvement when we vary

the size of the matrices. In particular, we consider the size N of the SPD matrices increasing

from 10 to 100, and we fix p = 10, n = 5, µ = I3, and Ψ = Iq = IN(N+1)/2 throughout the

experiments. The results are shown in Figure 3. As we can see from the figure, although the

average loss increases with increasing size (of the SPD matrices), the improvement of our
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Figure 2: Average loss for each of the three estimators. The left panel assumes µ =

diag(2, 0.5, 0.5) and Ψ = I and the right panel assumes µ = I and Ψij = 0.5|i−j|.

estimator over the competitors is more significant for large N .
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Figure 3: Average loss (normalized by N2) for each of the three estimators. Results for

varying λ and degrees of freedom parameter ν are shown across the columns and rows,

respectively.

4.1.3 Differences Between Two Groups of SPD-Valued Images

In this subsection, we demonstrate the method proposed in Section 3.3 for evaluating the

difference between two groups of SPD-valued images. For this synthetic data experiment,

we use P2, the manifold of 2 × 2 SPD matrices, since it is easy to visualize these matrices.

For the visualization, we represent each 2 × 2 SPD matrix of the SPD-valued image by an

ellipse with the two eigenvectors as the axes of the ellipse and the two eigenvalues as the
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width and height along the corresponding axes. The data are created as follows. Given nk,

M
(k)
i , σ2

i , k = 1, 2, i = 1, . . . , p, generate

Xij
ind∼ LN(M

(1)
i , σ2

i I), j = 1, . . . , n1,

Yij
ind∼ LN(M

(2)
i , σ2

i I), j = 1, . . . , n2.

We generate n1 = n2 = 30 P2-valued images for the two groups, and the size of each P2-

valued image is 20 × 20, which gives p = 20 × 20 = 400. For the variances σ2
i , we consider

a low-variance scenario σ2
i

iid∼ U(0.1, 0.3) and a high-variance scenario σ2
i

iid∼ U(0.3, 0.8). The

means M
(k)
i are depicted visually in Figure 4 (in the form of images with ellipses instead of

gray values at each pixel), and the region in which the means are different is the top-right

corner, containing a quarter of the pixels; this is the ‘ground truth’ data.

(a) Group 1 (b) Group 2

Figure 4: The mean P2-valued images M
(k)
i , k = 1, 2, used to generate random P2-valued

images for the two groups. The vertical ellipse represents the matrix diag(0.3, 1) and the

horizontal ellipse represents the matrix diag(1, 0.3).

As described in Section 3.3, we first compute the Hotelling T 2 statistic from {Xij}n1
j=1 and

{Yij}n2
j=1 for each i and transform each of them to an F statistic. We then have p non-central

F statistics, fi
ind∼ Fν1,ν2,λi , i = 1, . . . , p, where ν1 = q = 3, and ν2 = n1 + n2 − 2 − q −

1 = n1 + n2 − 6. With the resulting F statistics, we can apply the algorithm described

in Section 3.3 to estimate the non-centrality parameters (at each location), and for the

estimation of the marginal log likelihood, we adopt Lindsey’s method and fit a polynomial

of degree K = 5 to the log-likelihood lν1 . We have experimented using different values of
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K, and we found that the results are robust to changes in K, at least for relatively small

K. In our experiments, we set n1 = n2 = 30. As we can see from Figure 4, we expect the

method to yield large values on the top-right corner of the image and small values for the

rest of the matrix-valued image (field). We compare the proposed estimator λ̂Tweedie
i to the

estimator λ̂MOM
i = max

(
ν1(ν2−2)

ν2
fi − ν1, 0

)
, which is obtained by the method of moments

(MOM) and truncated at 0, and also compare them for different σ2
i ’s. We compare with

the MOM estimator instead of the MLE for two reasons: (i) the MLE for the non-centrality

parameter of the non-central F distribution is expensive to compute, and (ii) the MOM

is commonly used as a standard for comparison, see for example Kubokawa et al. (1993).

Figure 5 gives the results. As we can see, the density of the Tweedie-adjusted estimates

concentrates in a smaller region when compared to that of the MOM estimates. This shows

that the Tweedie-adjusted estimator allows us to capture the true region of difference better

than does the MOM estimator, especially for small σ2
i ’s. This is due to the shrinkage effect

in Tweedie’s formula.

(a) σ2
i

iid∼ U(0.1, 0.3) (b) σ2
i

iid∼ U(0.3, 0.8)

Figure 5: Comparison of densities of the proposed shrinkage estimates of the non-centrality

parameters and those of the MOM estimates. The green dashed lines indicate the true

non-centrality parameters.

4.2 Real Data Experiments

In this section, we present three real data experiments involving dMRI and rs-fMRI datasets.

The dMRI data we use are publicly available via https://pdbp.ninds.nih.gov/our-data.
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dMRI is a diagnostic imaging technique that allows one to non-invasively probe the axonal

fiber connectivity in the body by making the magnetic resonance signal sensitive to water

diffusion through the tissue being imaged. In dMRI, the water diffusion is fully character-

ized by the probability density function of the displacement of water molecules, called the

ensemble average propagator (EAP) (Callaghan 1993). A simple model that has been widely

used to describe the displacement of water molecules is a zero mean Gaussian; its covariance

matrix defines the diffusion tensor and characterizes the diffusivity function locally. The

diffusion tensors are 3 × 3 SPD matrices and hence have 6 unique entries that need to be

determined. Thus, the diffusion imaging technique employed in this case involves the ap-

plication of at least 6 diffusion sensitizing magnetic gradients for acquisition of full 3D MR

images (Basser et al. 1994). This dMRI technique is called diffusion tensor imaging (DTI).

Some practical techniques for estimating the diffusion tensors and the population mean of

diffusion tensors have been reported in Wang & Vemuri (2004), Chefd’Hotel et al. (2004),

Fletcher & Joshi (2004), Alexander (2005), Zhou et al. (2008), Lenglet, Rousson & Deriche

(2006), and Dryden et al. (2009).

DTI has been the de facto non-invasive dMRI diagnostic imaging technique of choice in

the clinic for a variety of neurological ailments. After fitting/estimating the diffusion tensors

at each voxel, scalar-valued or vector-valued measures are derived from the diffusion tensors

for further analysis. For instance, fractional anisotropy (FA) is a scalar-valued function

of the eigenvalues of the diffusion tensor and it was found that FA was reduced in the

neuro-anatomical structure called the Substantia Nigra in patients with Parkinson’s disease

compared to control subjects (Vaillancourt et al. 2009). In Schwartzman et al. (2010) the

authors used the full tensor information, and we adopt the same strategy here since the full

tensor captures both the eigenvalues and eigenvectors, which can prove to be much more

useful (compared to FA or other scalar measures) in order to assess the changes caused by

pathologies to the underlying tissue micro-architecture revealed by dMRI.
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4.2.1 Estimation of the Motor Sensory Tracts of Patients with Parkinson’s Dis-

ease

In this section, we demonstrate the performance of SURE.Full-FM on the dMRI scans of

human brain data acquired from 50 patients with Parkinson’s disease and 44 control (normal)

subjects. The dMRI acquisition parameters were as follows: repetition time = 7748ms, echo

time = 86ms, flip angle = 90◦, number of diffusion gradients = 64, field of view = 224× 224

mm, in-plane resolution = 2mm isotropic, slice-thickness = 2mm, and SENSE factor = 2.

All the dMRI data were pre-registered into a common coordinate frame prior to any further

data processing.

The motor sensory area fiber tracts (M1 fiber tracts) are extracted from each patient of

the two groups using the template described in Archer et al. (2017), which is freely available

from http://lrnlab.org. The size (length) of each tract is 33 voxels for the left hemisphere

tract and 34 voxels for the right hemisphere tract. Diffusion tensors are then fit to each of

the voxels along each of the tracts to obtain p = 33 (p = 34) 3× 3 SPD matrices. We then

compute the Log-Euclidean FM tract for each group over the patients, i.e., the FM tract

here also has 33 (34) diffusion tensors along the tract. We will use these FMs computed from

the full population for each group as the ‘ground truth’; thus, the underlying distribution

in this experiment is the empirical distribution formed by the observed data, i.e. the 33

(34) SPD matrices. Then, we randomly draw a subsample of size n = 10, 20, 50, 100, with

replacement, from each group and compute the SURE.Full-FM (our proposed estimator)

and the two competing estimators (FM.LE and SURE-FM respectively) for each group and

for each subsample size n. An explanation of why sampling is done with replacement is

given in Section 5 of the supplementary document. We compare the performance of the

different estimators by the Log-Euclidean distance between the estimator and the ‘ground

truth’ FMs. The entire procedure is repeated for m = 100 random draws of subsamples and

the average distances are reported in Table 1. Since our proposed shrinkage estimator jointly

estimates the FM and the covariance matrices, we also compare our covariance estimates,

denoted SURE.Full-Cov, with the MLE of the covariance matrices, i.e., the sample covariance

matrices. The results are shown in Table 2.
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Table 1: Average loss for the three estimators in estimating the population FM for varying

n (with the standard errors in parentheses).

n 10 20 50 100

FM.LE 0.774 (0.03) 0.405 (0.01) 0.159 (0.005) 0.079 (0.002)

SURE-FM 0.772 (0.03) 0.404 (0.01) 0.159 (0.005) 0.080 (0.002)

SURE.Full-FM 0.388 (0.02) 0.169 (0.003) 0.094 (0.002) 0.057 (0.001)

Table 2: Average loss for the two estimators, MLE and SURE.Full-Cov, in estimating the

population covariance matrices for varying n (with the standard errors in parentheses).

n 10 20 50 100

MLE 123.69 (5.71) 66.80 (2.69) 25.54 (0.91) 12.91 (0.41)

SURE.Full-Cov 111.13 (5.01) 63.27 (2.53) 24.99 (0.88) 12.80 (0.40)

As is evident from Table 1, the SURE.Full-FM outperforms the competing estimators un-

der varying size of subsamples. Also note that, as the sample size increases, the improvement

is less significant, which is consistent with the observations on the synthetic data experiments

in Section 4.1. Recall that in Section 4.1.1, the SURE.FM and the SURE.Full-FM perform

equally well when the assumption Σi = AiI is not violated severely. For real data, it is

impossible to check this assumption and it is unlikely to be true. Hence, in this real data

experiment, SURE.Full-FM outperforms SURE-FM by a large margin. The improvement

of the proposed shrinkage estimator for the covariance matrices over the MLEs is evident

from Table 2. Another important issue is that for real data the independence assumption

is unrealistic. For this reason we have described a simple simulation study to see how the

dependence affects the performance of our estimator; see Section 6.2 of the supplement.

4.2.2 Simultaneous Estimation of Resting State Functional MRI Connectivity

Networks

In this section, we present an experiment on simultaneous estimation of connectivity net-

works from resting state functional MRI (rs-fMRI). Briefly, rs-fMRI is an MRI technique to

measure human brain activity in the resting state, and a (functional) connectivity network

computed from rs-fMRI measurements describes how different regions of the human brain
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are correlated functionally. Van Den Heuvel & Pol (2010) give a nice review on connectivity

network analysis for rs-fMRI and its applications. There is a large literature on the rela-

tionship between disruption in functional connectivity (dis-connectivity) and neurologic and

psychiatric brain disorders, including Alzheimer’s disease, depression, and attention deficit

hyperactivity disorder (ADHD) (Van Den Heuvel & Pol 2010, pp. 529). Hence, functional

connectivity networks have served as an important tool in such studies.

A functional connectivity matrix is constructed as follows. At each region of the brain, the

blood oxygenation level dependent (BOLD) signal, which is a scalar measure of the neuronal

activity in the region, can be detected by an MR scanner. Over the course of time, we obtain

a time sequence of BOLD signals b = [b1, . . . , bn], where n is the number of time points, at

each region of the brain. To describe the connectivity between two regions, we compute the

correlation between the two time sequences of BOLD signals from the two regions. In other

words, the connectivity between the two regions measures how in-sync or out-of-sync the two

regions are in terms of the BOLD signals. For N regions, the connectivity matrix stores the

pairwise connectivity (correlation) of each pair of regions. Hence, a connectivity network is

essentially a correlation matrix. To apply the results discussed in Section 3, we consider the

problem of simultaneous estimation of the connectivity networks from different rs-fMRI stud-

ies. We use the pre-processed networks from the USC Multimodal Connectivity Database

(http://umcd.humanconnectomeproject.org/) (Brown et al. 2012). The datasets we used are

ADHD200 CC200, PRURIM, and UCSF MAC PSP. There are in total 7 groups emanat-

ing from these three datasets (ADHD200 CC200: Typically Developing, ADHD-Combined,

and ADHD-Inattentive; PRURIM: Healthy and Psoriasis; UCSF MAC PSP: Control and

Progressive Supranuclear Palsy), so here p = 7. (Because 7 is not large, our asymptotic

optimality results do not apply; however, it is reasonable to expect that shrinkage gives an

improvement here in the same way that shrinkage gives an improvement in the normal means

problem when p > 2.)

Since the networks are from different studies targeting different disorders, the sizes of

the connectivity networks and the sizes of the studies are all different. The sizes of the

connectivity networks in these three datasets are 190 × 190 (ADHD200 CC200), 116 × 116

(PRURIM), and 27× 27 (UCSF MAC PSP). Thus, we extract an N ×N (where N is fixed
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Table 3: Average loss for the three estimators in estimating the population FM for varying

sub-network size N (with the standard errors in parentheses).

N 3 5 7 10

FM.LE 0.409 (0.01) 0.738 (0.01) 1.387 (0.012) 1.969 (0.016)

SURE-FM 0.296 (0.005) 0.641 (0.007) 1.238 (0.009) 1.854 (0.015)

SURE.Full-FM 0.246 (0.006) 0.534 (0.006) 0.977 (0.006) 1.581 (0.012)

across all networks from different datasets) highly correlated sub-network from each network

using a hierarchical clustering algorithm (Rokach & Maimon 2005) and the experiments are

based on these sub-networks rather than on the original networks. As in the procedure in

the previous section, we treat these (sub-)networks as the population and randomly draw

subsamples (with replacement) from each group. Then we compute the average loss for

the three estimators. The entire procedure is repeated m = 1000 times and the results are

presented in Table 3. As was seen in Section 4.1.2, the improvement of our estimator over

the competitors is more significant for large sub-network sizes. Note that in contrast to

our experiment with synthetic data in Section 4.1.2, here we cannot keep increasing N : the

maximum value is 27 because the connectivity network for the UCSF MAC PSP dataset is

27× 27. This experiment demonstrates versatility of our shrinkage estimator to application

domains beyond the analysis of dMRI datasets.

4.2.3 Tweedie-Adjusted Estimator as an Imaging Biomarker

Finally, we apply the shrinkage estimator proposed in Section 3.3 to identify the regions that

are significantly distinct in diffusional properties (as captured via diffusion tensors) between

patients with Parkinson’s disease and control subjects. In this experiment, the dataset

consists of DTI scans of 46 patients with Parkinson’s disease and 24 control subjects. To

identify the differences between the two groups, we use the DTI of the whole brain, which

contains p = 112×112×60 voxels, without pre-selecting any region of interest. The diffusion

tensors are fit at each voxel across the whole brain volume. The goal of this experiment is

to see if we are able to automatically identify the regions capturing the large differences

between the Parkinson’s disease group and control groups and qualitatively validate our
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findings against what is expected by expert neurologists. In this context, Prodoehl et al.

(2013) observed that the region most affected by Parkinson’s disease is the Substantia Nigra,

which is contained in the Basal Ganglia region of the human brain.

After computing both the Tweedie-adjusted estimates and the MOM estimates of the non-

centrality parameters, we select the voxels with the largest 1% estimates of the non-centrality

parameters and mark those voxels in bright red. (There are other ways to determine the

threshold for the selection, for example by using the false discovery rate (FDR) in hypothesis

testing problems. However, this is beyond the scope of this paper and we refer the reader

to Schwartzman (2008) and Schwartzman et al. (2010) for interesting work on FDR analysis

for DTI datasets.) These voxels are where the large differences between Parkinson’s disease

and control groups are observed. The results are shown in Figure 6. For better visualization,

we threshold the estimates by the top 1%. To take into account the spatial structure, we

apply a 4× 4× 4 average mask to smooth the results. This smoothing may also be achieved

by incorporating a spatial regularization term in the expression for SURE (8); however, the

ensuing analysis becomes much more complicated and will be addressed in future work.

From the results, we can see that the shrinkage effect of our Tweedie-adjusted estimate

successfully corrects selection bias and produces a more accurate identification of the affected

regions. Our method is able to capture the Substantia Nigra, which is the region known to be

affected by Parkinson’s disease. Notably, our method did not point to the apparently spurious

and isolated regions selected by the MOM estimator (the tiny red spots in Figure 6(a)). We

also mention that past research using FA-based analysis did not report the Internal Capsule

as a region affected by Parkinson’s disease. We suspect that this discrepancy is due to the

fact that FA discards the directional information of the diffusion tensors while we use the full

diffusion tensor which contains the directional information. We plan to conduct a large-scale

experiment in our future work to see if this observation continues to hold.

5 Discussion and Conclusions

In this work, we have presented shrinkage estimators for the mean and covariance of the

Log-Normal distribution defined on the manifold PN of N × N SPD matrices. We also
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(a) MOM estimates (b) Tweedie-adjusted estimates

Figure 6: Differences between scans of Parkinson’s disease group and those of the control

group are superimposed on a dMRI scan of a randomly-chosen Parkinson’s disease patient

and indicated in red.

showed that the proposed shrinkage estimators are asymptotically optimal in a large class

of estimators including the MLE. The proposed shrinkage estimators are in closed form and

resemble (in form) the James-Stein estimator in Euclidean space Rp. We demonstrated that

the proposed shrinkage estimators outperform the MLE via several synthetic data examples

and real data experiments using diffusion tensor MRI and rs-fMRI datasets. The improve-

ments of the proposed shrinkage estimators are significant especially in the small sample

size scenarios, which is very pertinent to medical imaging applications. Further, we also

empirically demonstrated that the improvement in the distribution parameter estimates is

achieved with increasing size of the SPD matrices as well.

Our work reported here is however based on the Log-Euclidean metric, and one of the

drawbacks of this metric is that it is not invariant under affine transformations, which may

be a desirable property in some applications. Unfortunately, the derivation of the shrinkage

estimators under the affine-invariant metric is challenging due to the fact that there is no

closed-form expression for some elementary quantities such as the sample FM, which makes it

almost impossible to derive the corresponding closed form for the SURE. Our future research

efforts will focus on developing a general framework for designing shrinkage estimators that

are applicable to general Riemannian manifolds.

For applications in localizing the regions of the brain where two groups differ, our ap-

proach already works well, but it can potentially be improved if we take into account the fact

29



that some features of neighboring voxels within a region are close. For instance, M
(k)
i and

M
(k)
j should be close if voxels i and j are close. Currently, our approach is to apply a spatial

smoother to the Tweedie-adjusted estimates. Instead, the improvement can be achieved by

imposing regularization constraints, e.g. a spatial process prior, in the proposed framework.

However, the ensuing analysis becomes rather complicated and will be the focus of our future

efforts.
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Gabay, D. (1982), ‘Minimizing a differentiable function over a differential manifold’, Journal

of Optimization Theory and Applications 37(2), 177–219.

Groisser, D. (2004), ‘Newton’s method, zeroes of vector fields, and the Riemannian center

of mass’, Advances in Applied Mathematics 33(1), 95–135.

32



Ho, J., Cheng, G., Salehian, H. & Vemuri, B. (2013), Recursive Karcher expectation estima-

tors and geometric law of large numbers, in ‘Artificial Intelligence and Statistics’, PMLR,

pp. 325–332.

James, W. & Stein, C. (1961), Estimation with quadratic loss, in ‘Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability’, Vol. 1, University of

California Press, pp. 361–379.

Jing, B.-Y., Li, Z., Pan, G. & Zhou, W. (2016), ‘On SURE-type double shrinkage estimation’,

Journal of the American Statistical Association 111(516), 1696–1704.

Kong, X., Liu, Z., Zhao, P. & Zhou, W. (2017), ‘SURE estimates under dependence and

heteroscedasticity’, Journal of Multivariate Analysis 161, 1–11.

Kubokawa, T., Robert, C. P. & Saleh, A. K. M. E. (1993), ‘Estimation of noncentral-

ity parameters’, The Canadian Journal of Statistics/La Revue Canadienne de Statistique

21(1), 45–57.

Ledoit, O. & Wolf, M. (2003), ‘Improved estimation of the covariance matrix of stock returns

with an application to portfolio selection’, Journal of Empirical Finance 10(5), 603–621.

Lenglet, C., Rousson, M. & Deriche, R. (2006), ‘DTI segmentation by statistical surface

evolution’, IEEE Transactions on Medical Imaging 25(6), 685–700.

Lenglet, C., Rousson, M., Deriche, R. & Faugeras, O. (2006), ‘Statistics on the manifold

of multivariate normal distributions: Theory and application to diffusion tensor MRI

processing’, Journal of Mathematical Imaging and Vision 25(3), 423–444.

Lim, Y. & Pálfia, M. (2014), ‘Weighted inductive means’, Linear Algebra and its Applications

453, 59–83.

Moakher, M. (2005), ‘A differential geometric approach to the geometric mean of symmetric

positive-definite matrices’, SIAM Journal on Matrix Analysis and Applications 26(3), 735–

747.

Pennec, X. (2006), ‘Intrinsic statistics on Riemannian manifolds: Basic tools for geometric

measurements’, Journal of Mathematical Imaging and Vision 25(1), 127.

Prodoehl, J., Li, H., Planetta, P. J., Goetz, C. G., Shannon, K. M., Tangonan, R., Comella,

C. L., Simuni, T., Zhou, X. J., Leurgans, S., Corcos, D. M. & Vaillancourt, D. E. (2013),

33



‘Diffusion tensor imaging of Parkinson’s disease, atypical Parkinsonism, and essential

tremor’, Movement Disorders 28(13), 1816–1822.

Robbins, H. (1956), An empirical Bayes approach to statistics, in ‘Proceedings of the Third

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions

to the Theory of Statistics’, University of California Press, Berkeley, Calif., pp. 157–163.

URL: https://projecteuclid.org/euclid.bsmsp/1200501653

Rokach, L. & Maimon, O. (2005), Clustering methods, in ‘Data mining and knowledge

discovery handbook’, Springer, pp. 321–352.

Salehian, H., Chakraborty, R., Ofori, E., Vaillancourt, D. & Vemuri, B. C. (2015), ‘An
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