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Abstract

This document provides supporting material for the main paper, specifically the
derivation of the risk function and the SURE, the proofs of Theorem 3 and 4, the im-
plementation details for minimizing the SURE, and remarks regarding the resampling
scheme in Section 4.2.1. The notation used in this supplement is the same as that in
the main paper.

1 Preliminaries

Before presenting the proofs, we review the following elementary results for both multivariate
normal distributions and Wishart distributions which are use extensively in the proofs. Let
X ∼ Np(µ,Σ). Then

E‖X − c‖2 = tr Σ + ‖µ− c‖2

E‖X − c‖4 = (tr Σ)2 + 2 tr(Σ2) + 4(µ− c)TΣ(µ− c) + 2‖µ− c‖2 tr Σ + ‖µ− c‖4

where c ∈ Rp. For X ∼ LN(M,Σ),

Ed2
LE(X,C) = tr Σ + d2

LE(M,C)

Ed4
LE(X,C) = (tr Σ)2 + 2 tr(Σ2) + 4(M̃ − C̃)TΣ(M̃ − C̃) + 2d2

LE(M,C) tr Σ + d4
LE(M,C)

where C ∈ PN . These results can be easily obtained from the definition of the Log-Normal
distribution.

Let Y be a p×p symmetric matrix with eigenvalues λ1, . . . , λp and let κ = (k1, . . . , kp) be
a (non-increasing) partition of a positive integer k, i.e. k1 ≥ k2 ≥, . . . ,≥ kp and

∑p
i=1 ki = k

where the ki’s are non-negative integers. The zonal polynomial of Y corresponding to κ,
denoted by Cκ(Y ), is a symmetric, homogeneous polynomial of degree k in the eigenvalues

λ1, . . . , λp. One of the properties of the zonal polynomials is that
(

trY
)k

=
∑

κCκ(Y ). For
a more precise definition of the zonal polynomial and its calculations, we refer the readers
to Ch. 7 of Muirhead (1982). The following lemma is essential in our work.
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Lemma 1 (Muirhead (1982), Corollary 7.2.4) If Y is positive definite, then Cκ(Y ) > 0 for
all partitions κ.

The jth elementary symmetric function of Y , denoted by trj Y , is the sum of all principal
minors of order j of the matrix Y . For the case of j = 1, tr1 Y =

∑p
i=1 λi = trY , and for the

case of j = 2, tr2 Y =
∑

i<j λiλj. The definition gives rise to the following identities which
are useful in the proofs

(trY )2 = tr(Y 2) + 2 tr2 Y (1)

(trY )4 = (tr(Y 2))2 + 4 tr(Y 2) tr2 Y + 4(tr2 Y )2

= tr(Y 4) + 2 tr2 Y
2 + 2(tr2 Y )(trY )2 (2)

For S ∼Wishartp(Σ, ν), the kth moment, k = 0, 1, 2, . . . of trS is given by

E(trS)k = 2k
∑
κ

(ν
2

)
κ
Cκ(Σ) (3)

where

(a)κ =

p∏
i=1

(
a− i− 1

2

)
ki

is called the generalized hypergeometric coefficient and

(a)ki = a(a+ 1) . . . (a+ ki − 1), (a)0 = 1

(Gupta & Nagar (2000), Theorem 3.3.23). Next, we review some elementary results for the
Wishart distribution:

ES = νΣ

ES2 = ν(ν + 1)Σ2 + ν(tr Σ)Σ

E trk S = ν(ν − 1) · · · (ν − k + 1) trk Σ

E(trS)2 = ν(ν + 2)(tr Σ)2 − 4ν tr2 Σ = ν2(tr Σ)2 + 2ν tr(Σ2).

These results can be found in Gupta & Nagar (2000)(p. 99 and p. 106).

2 Derivation of the Risk Function and the SURE

Recall that the loss function is L
(
(M̂ , Σ̂), (M ,Σ)

)
= p−1

∑p
i=1 d

2
LE(M̂i,Mi)+p−1

∑p
i=1 ‖Σ̂i−

Σi‖2 = L1(M̂ ,M ) + L2(Σ̂,Σ). Write R
(
(M̂ , Σ̂), (M ,Σ)

)
= EL1(M̂ ,M ) + EL2(Σ̂,Σ) =

R1(M̂ ,M ) +R2(Σ̂,Σ). Then

R1(M̂ ,M ) = p−1

p∑
i=1

Ed2
LE(M̂i,Mi)

= p−1

p∑
i=1

[ n2

(λ+ n)2
Ed2

LE(X̄i,Mi) +
λ2

(λ+ n)2
d2

LE(µ,Mi)
]

= p−1(λ+ n)−2

p∑
i=1

[
ntrΣi + λ2d2

LE(µ,Mi)
]
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and

R2(Σ̂,Σ) = p−1

p∑
i=1

(ν + n− q − 2)−2E‖(Ψ− (ν − q − 1)Σi) + (Si − (n− 1)Σi)‖2

= p−1

p∑
i=1

(ν + n− q − 2)−2
[
E tr(S2

i )− 2(n− 1)E tr(SiΣi) + (n− 1)2 tr(Σ2
i )

+ tr(Ψ2)− 2(ν − q − 1) tr(ΨΣi) + (ν − q − 1)2 tr(Σ2
i )
]

= p−1

p∑
i=1

(ν + n− q − 2)−2
[
n(n− 1) tr(Σ2

i ) + (n− 1)(tr Σi)
2 − 2(n− 1)2 tr(Σ2

i )

+ (n− 1)2 tr(Σ2
i ) + tr(Ψ2)− 2(ν − q − 1) tr(ΨΣi) + (ν − q − 1)2 tr(Σ2

i )
]

= p−1

p∑
i=1

(ν + n− q − 2)−2
[(
n− 1 + (ν − q − 1)2

)
tr(Σ2

i )

− 2(ν − q − 1)tr(ΨΣi) + (n− 1)(trΣi)
2 + tr(Ψ2)

]
.

To obtain the SURE for this risk function, we first have to find unbiased estimates of the
quantities tr Σi, d

2
LE(µ,Mi), tr(Σ2

i ), tr(ΨΣi), and (tr Σi)
2. With the results provided in

Section 1, it is easy to verify the following equations:

tr Σi = E
(
(n− 1)−1 trSi

)
tr(ΨΣi) = E

(
(n− 1)−1 tr(ΨSi)

)
(tr Σi)

2 = E
( n(trSi)

2 − 2 trS2
i

(n− 1)(n+ 1)(n− 2)

)
tr Σ2

i = E
((n− 1) trS2

i − (trSi)
2

(n− 1)(n+ 1)(n− 2)

)
d2

LE(µ,Mi) = E
(
d2

LE(X̄i, µ)− trSi
n(n− 1)

)
.
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Plugging the above unbiased estimates into the risk function we obtain

SURE(λ,Ψ, ν, µ) = p−1

p∑
i=1

{
(λ+ n)−2

[ n

n− 1
trSi + λ2d2

LE(X̄i, µ)− λ2

n(n− 1)
trSi

]
+ (ν + n− q − 2)−2

[
(n− 1 + (ν − q − 1)2)

((n− 1) trS2
i − (trSi)

2

(n− 1)(n+ 1)(n− 2)

)
+
n(trSi)

2 − 2 trS2
i

(n+ 1)(n− 2)
− 2

ν − q − 1

n− 1
tr(ΨSi) + tr(Ψ2)

]}

= p−1

{
p∑
i=1

(λ+ n)−2
[n− λ2/n

n− 1
trSi + λ2d2

LE(X̄i, µ)
]

+ (ν + n− q − 2)−2
[n− 3 + (ν − q − 1)2

(n+ 1)(n− 2)
tr(S2

i )

+
(n− 1)2 − (ν − q − 1)2

(n− 1)(n+ 1)(n− 2)

(
trSi

)2 − 2
ν − q − 1

n− 1
tr(ΨSi) + tr(Ψ2)

]}
.

3 Proofs of the Theorems

The following lemmas are essential for proving Theorem 3.

Lemma 2 (Xie et al. 2012) Let Xi
ind∼ N(θi, Ai). Assume the following conditions:

(i) lim supp→∞ p
−1
∑p

i=1A
2
i <∞,

(ii) lim supp→∞ p
−1
∑p

i=1Aiθ
2
i <∞,

(iii) lim supp→∞ p
−1
∑p

i=1 |θi|2+δ <∞ for some δ > 0.

Then E
(

max1≤i≤pX
2
i

)
= O(p2/(2+δ∗)) where δ∗ = min(1, δ).

The next lemma is an extension of the previous lemma to Log-Normal distributions.

Lemma 3 Let Xi
ind∼ LN(Mi,Σi) on PN and q = N(N + 1)/2. Assume the following

conditions:

(i) lim supp→∞ p
−1
∑p

i=1

(
tr Σi

)2
<∞,

(ii) lim supp→∞ p
−1
∑p

i=1 M̃
T
i ΣiM̃i <∞,

(iii) lim supp→∞ p
−1
∑p

i=1 ‖logMi‖2+δ <∞ for some δ > 0.

Then E
(

max1≤i≤p ‖ logXi‖2
)

= O(p2/(2+δ∗)) where δ∗ = min(1, δ).
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Proof. Write Yi = X̃i and µi = M̃i. Then ‖Yi‖2 = ‖ logXi‖2. From the definition of the

Log-Normal distribution, Yi
ind∼ Nq(µi,Σi). Since for j = 1, . . . , q

p∑
i=1

Σ2
i,jj <

p∑
i=1

(
tr Σi

)2

p∑
i=1

Σi,jjµ
2
i,j <

p∑
i=1

µTi Σiµi =

p∑
i=1

M̃T
i ΣiM̃i

p∑
i=1

|µi,j|2+δ <

p∑
i=1

‖µi‖2+δ =

p∑
i=1

‖logMi‖2+δ,

by Lemma 2, we have E(max1≤i≤,p Y
2
i,j) = O(p2/(2+δ∗)). Then

E
(

max
1≤i≤p

‖ logXi‖2
)

= E
(

max
1≤i≤p

‖Yi‖2
)

≤ E
( q∑
j=1

max
1≤i≤p

Y 2
i,j

)
=

q∑
j=1

E
(

max
1≤i≤p

Y 2
i,j

)
= O(p2/(2+δ∗))

which concludes the proof.

Lemma 4 Let Si
ind∼ Wishart(Σi, ν) where the Σi’s are q × q symmetric positive-definite

matrices. If lim supp→∞ p
−1
∑p

i=1(tr Σi)
4 <∞, then E(max1≤i≤p ‖Si‖2) = O(q2p1/2(log p)2 +

q2p1/2(log q)2).

Proof. Write Si = XiX
T
i where Xi

ind∼ Nq(0,Σi). Then ‖Si‖2 = ‖Xi‖4. From Lemma 2,
we have E(max1≤j≤qX

2
i,j) = O(p2/3) and E(max1≤i≤p,1≤j≤qX

2
i,j) = O(q2/3p2/3). Let Xi,j =

Σ
1/2
i,j Zi,j where Zi,j

iid∼ N(0, 1). Then X4
i,j = Σ2

i,jjZi,j and

max
1≤i≤p,1≤j≤q

X4
i,j ≤ max

1≤i≤p,q≤j≤q
Σ2
i,jj · max

1≤i≤p,1≤j≤q
Zi,j.

Since

max
1≤i≤p,1≤j≤q

Σ4
i,jj < max

1≤i≤p
tr(Σi)

4 <

p∑
i=1

tr(Σi)
4 = O(p)

implies max1≤i≤p,1≤j≤q Σ2
i,jj = O(p1/2) and

E
(

max
1≤i≤p,1≤j≤q

Z4
i,j

)
= O((log p+ log q)2),

we have

E
(

max
1≤i≤p,1≤j≤q

X4
i,j

)
≤ max

1≤i≤p,q≤j≤q
Σ2
i,jjE

(
max

1≤i≤p,1≤j≤q
Zi,j

)
= O(p1/2(log p+ log q)2).
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Then

E
(

max
1≤i≤p

‖Si‖2
)

= E
(

max
1≤i≤p

‖Xi‖4
)

= E

[
max
1≤i≤p

(
q∑
j=1

X2
i,j

)2]

= E

[
max
1≤i≤p

(
q∑
j=1

X4
i,j +

∑
j 6=k

X2
i,jX

2
i,k

)]
≤ qE

(
max

1≤i≤p,1≤j≤q
X4
i,j

)
+ q(q − 1)E

(
max

1≤i≤p,1≤j≤q
X4
i,j

)
≤ q2O(p1/2(log p+ log q)2)

= O(q2p1/2(log p)2 + q2p1/2(log q)2)

Theorem 3 Assume the following conditions:

(i) lim supp→∞ p
−1
∑p

i=1

(
tr Σi

)4
<∞,

(ii) lim supp→∞ p
−1
∑p

i=1 M̃
T
i ΣiM̃i <∞,

(iii) lim supp→∞ p
−1
∑p

i=1 ‖logMi‖2+δ <∞ for some δ > 0.

Then

sup
λ>0,ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖,
‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣SURE(λ,Ψ, ν, µ)−L
((

M̂
λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))∣∣∣ prob−→ 0 as p→∞.

Proof. First, we write the loss function L as

L
((

M̂
λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
= p−1

p∑
i=1

d2
LE(M̂λ,µ

i ,Mi) + ‖Σ̂Ψ,ν
i − Σi‖2

= L1

(
M̂

λ,µ
,M

)
+ L2

(
Σ̂

Ψ,ν
,Σ
)
,
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where

L1

(
M̂

λ,µ
,M

)
= p−1

p∑
i=1

∥∥∥(λ+ n)−1
(
n
(

log X̄i − logMi

)
+ λ
(

log µ− logMi

))∥∥∥2

= p−1

p∑
i=1

(λ+ n)−2
[
n2d2

LE(X̄i,Mi) + λ2d2
LE(µ,Mi)

+ 2nλ
〈

log X̄i − logMi, log µ− logMi

〉]
,

L2

(
Σ̂

Ψ,ν
,Σ
)

= p−1

p∑
i=1

(ν + n− q − 2)−2
∥∥∥(Ψ− (ν − q − 1)Σi

)
+
(
Si − (n− 1)Σi

)∥∥∥2

= p−1

p∑
i=1

(ν + n− q − 2)−2
[

tr
(
Ψ2
)
− 2(ν − q − 1) tr

(
ΨΣi

)
+ (ν − q − 1)2 tr

(
Σ2
i

)
+ tr

(
S2
i

)
− 2(n− 1) tr

(
SiΣi

)
+ (n− 1)2 tr

(
Σ2
i

)
+ 2〈Ψ− (ν − q − 1)Σi, Si − (n− 1)Σi〉

]
.

Write the SURE as

SURE(λ, µ,Ψ, ν) = SURE1(λ, µ) + SURE2(Ψ, ν),

where

SURE1(λ, µ) = p−1

p∑
i=1

(λ+ n)−2
[n− λ2/n

n− 1
trSi + λ2d2

LE(X̄i, µ)
]
,

SURE2(Ψ, ν) = p−1

p∑
i=1

(ν + n− q − 2)−2

[
n− 3 + (ν − q − 1)2

(n+ 1)(n− 2)
tr
(
S2
i

)
+

(n− 1)2 − (ν − q − 1)2

(n− 2)(n− 1)(n+ 1)

(
trSi

)2 − 2
ν − q − 1

n− 1
tr
(
ΨSi

)
+ tr

(
Ψ2
)]
.

Since

sup
λ>0,ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖,
‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣SURE(λ,Ψ, ν, µ)− L
((

M̂
λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))∣∣∣ ≤
sup

λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣SURE1(λ, µ)− L1

(
M̂

λ,µ
,M

)∣∣
+ sup

ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣SURE2(Ψ, ν)− L2

(
Σ̂

Ψ,ν
,Σ
)∣∣,

it suffices to show the two terms on the right-hand side converge to 0 in probability. For the
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first term,

|SURE1(λ, µ)− L1

(
M̂

λ,µ
,M

)
| =

∣∣∣∣∣p−1

p∑
i=1

(λ+ n)−2

[
n

n− 1
trSi − n2d2

LE(X̄i,Mi)

+ λ2
( trSi
n(n− 1)

+ d2
LE(X̄i, µ)− d2

LE(Mi, µ)
)

+ 2nλ
〈

log X̄i − logMi, log µ− logMi

〉]∣∣∣∣∣
≤

∣∣∣∣∣p−1

p∑
i=1

(λ+ n)−2
( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)∣∣∣∣∣ (4)

+

∣∣∣∣∣p−1

p∑
i=1

λ2

(λ+ n)2

( trSi
n(n− 1)

+ d2
LE(X̄i, µ)− d2

LE(Mi, µ)
)∣∣∣∣∣

(5)

+

∣∣∣∣∣p−1

p∑
i=1

2nλ

(λ+ n)2

〈
log X̄i − logMi, log µ− logMi

〉∣∣∣∣∣.
(6)

We will now prove the convergence of each of the three terms individually.
For (4), from assumption (i), we have

Var

(
p−1

p∑
i=1

( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
))

=
1

p
p−1

p∑
i=1

Var
( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)

=
1

p
p−1

p∑
i=1

E
( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)2

=
n2

p
p−1

p∑
i=1

[E( trSi
)2

(n− 1)2
+ n2Ed4

LE(X̄i,Mi)− 2
n

n− 1
E
(

trSi
)
Ed2

LE(X̄i,Mi)
]

=
n2

p
p−1

p∑
i=1

[n+ 1

n− 1

(
tr Σi

)2
+ 4

tr2 Σi

n− 1
+
(

tr Σi

)2
+ 2 tr

(
Σ2
i

)
− 2
(

tr Σi

)2
]

=
n2

p
p−1

p∑
i=1

[ 2

n− 1

(
tr Σi

)2
+

4

n− 1
tr2 Σi + 2 tr

(
Σ2
i

)] p→∞−→ 0.

Then, by Markov’s inequality,∣∣∣∣∣p−1

p∑
i=1

( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)∣∣∣∣∣ prob−→ 0 as p→∞.
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Thus

sup
λ>0

∣∣∣∣∣p−1

p∑
i=1

(λ+ n)−2
( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)∣∣∣∣∣

=
(

sup
λ>0

(λ+ n)−2
)∣∣∣∣∣p−1

p∑
i=1

( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)∣∣∣∣∣

=
1

n2

∣∣∣∣∣p−1

p∑
i=1

( n

n− 1
trSi − n2d2

LE(X̄i,Mi)
)∣∣∣∣∣ prob−→ 0 as p→∞. (7)

Remark By the identity (1), assumption (i) implies lim supp→∞ p
−1
∑p

i=1 tr
(
Σ2
i

)
<∞ and

lim supp→∞ p
−1
∑p

i=1 tr2 Σi <∞.

For (5),

sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1

p∑
i=1

λ2

(λ+ n)2

( trSi
n(n− 1)

+ d2
LE(X̄i, µ)− d2

LE(Mi, µ)
)∣∣∣∣∣

= sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1

p∑
i=1

λ2

(λ+ n)2

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2

+ 2〈log X̄i − logMi, log µ〉
)∣∣∣∣∣

≤ sup
λ>0

∣∣∣∣∣p−1

p∑
i=1

λ2

(λ+ n)2

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)∣∣∣∣∣

+ sup
λ>0,‖ logµ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1 2λ2

(λ+ n)2

〈 p∑
i=1

log X̄i − logMi, log µ
〉∣∣∣∣∣

≤
(

sup
λ>0

λ2

(λ+ n)2

)∣∣∣∣∣p−1

p∑
i=1

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)∣∣∣∣∣

+ sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1 2λ2

(λ+ n)2
‖log µ‖

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
∣∣∣∣∣

(By Cauchy’s inequality)

≤

∣∣∣∣∣p−1

p∑
i=1

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)∣∣∣∣∣

+

∣∣∣∣∣p−1 max
1≤i≤p

‖ log X̄i‖

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
∣∣∣∣∣
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Since by assumptions (i) and (ii),

Var

(
p−1

p∑
i=1

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
))

= p−2

p∑
i=1

Var
( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)

= p−2

p∑
i=1

E
( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)2

= p−2

p∑
i=1

[(
n+ 1

n2(n− 1)

(
tr Σi

)2 − 4

n2(n− 1)
tr2 Σi

)(
+

(
tr Σi

)2

n2
+

2 tr
(
Σ2
i

)
n2

+
4

n
M̃T

i ΣiM̃i +
2

n
‖ logMi‖2 tr Σi + ‖ logMi‖4

)
+ ‖ logMi‖4

+
2

n
tr Σi

( 1

n
tr Σi + ‖ logMi‖2

)
− 2
( 1

n
tr Σi + ‖ logMi‖2

)
‖ logMi‖2 − 2

n
tr Σi‖ logMi‖2

]

= p−2

p∑
i=1

[
4n− 2

n2(n− 1)

(
tr Σi

)2 − 4

n2(n− 1)
tr2 Σi +

2

n
tr
(
Σ2
i

)
+

4

n
M̃T

i ΣiM̃i

]
p→∞−→ 0,

we have ∣∣∣∣∣p−1

p∑
i=1

( trSi
n(n− 1)

+ ‖ log X̄i‖2 − ‖ logMi‖2
)∣∣∣∣∣ prob−→ 0 as p→∞

by Markov’s inequality. Since by Lemma 3,

E

[
2

p
max
1≤i≤p

‖ log X̄i‖

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
]

≤ 2

p

[
E
(

max
1≤i≤p

‖ log X̄i‖2
)
E

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
2]1/2

= O(p−1)×O(p1/(2+δ∗))×O(p1/2)

= O(p−δ
∗/(4+2δ∗)),

we have

sup
λ>0,‖ logµ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1

p∑
i=1

λ2

(λ+ n)2

( trSi
n(n− 1)

+ d2
LE(X̄i, µ)− d2

LE(Mi, µ)
)∣∣∣∣∣ prob−→ 0

as p→∞. (8)

10



For (6), we have

sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1

p∑
i=1

2nλ

(λ+ n)2

〈
log X̄i − logMi, log µ− logMi

〉∣∣∣∣∣
≤ sup

λ>0

∣∣∣∣∣p−1 2nλ

(λ+ n)2
max
1≤i≤p

‖ log X̄i‖

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
∣∣∣∣∣

+ sup
λ>0

∣∣∣∣∣p−1

p∑
i=1

2nλ

(λ+ n)2

〈
log X̄i − logMi, logMi

〉∣∣∣∣∣
=

∣∣∣∣∣ 1

2p
max
1≤i≤p

‖ log X̄i‖

∥∥∥∥∥
p∑
i=1

(
log X̄i − logMi

)∥∥∥∥∥
∣∣∣∣∣+

∣∣∣∣∣ 1

2p

p∑
i=1

〈
log X̄i − logMi, logMi

〉∣∣∣∣∣
since supλ>0 2nλ/(λ+ n)2 = 1/2. By assumption (ii), we have

Var

[
p−1

p∑
i=1

〈
log X̄i − logMi, logMi

〉]

= p−2

p∑
i=1

E
〈

log X̄i − logMi, logMi

〉2

= p−2

p∑
i=1

EM̃T
i

[( ˜̄X i − M̃i

)( ˜̄X i − M̃i

)T]
M̃i

= p−2

p∑
i=1

1

n
M̃T

i ΣiM̃i
p→∞−→ 0

and again by Markov’s inequality,∣∣∣∣∣ 1

2p

p∑
i=1

〈
log X̄i − logMi, logMi

〉∣∣∣∣∣ prob−→ 0 as p→∞.

Thus,

sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣∣∣∣p−1

p∑
i=1

2nλ

(λ+ n)2

〈
log X̄i − logMi, log µ− logMi

〉∣∣∣∣∣ prob−→ 0 as p→∞.

(9)

Combining (7), (8), and (9), we have

sup
λ>0,‖ log µ‖≤max1≤i≤p ‖ log X̄i‖

∣∣SURE1(λ, µ)− L1

(
M̂

λ,µ
,M

)∣∣ prob−→ 0 as p→∞. (10)

11



For the second term, we have

|SURE2(Ψ, ν)− L2

(
Σ̂

Ψ,ν
,Σ
)
|

=

∣∣∣∣∣p−1

p∑
i=1

(ν + n− q − 2)−2

[
2(ν − q − 1)

(tr(ΨSi)

n− 1
− tr(ΨΣi)

)
+

(n− 1)2 − (ν − q − 1)2

(n+ 1)(n− 2)(n− 1)
(trSi)

2 − (n− 1)2 − (ν − q − 1)2

(n+ 1)(n− 2)
tr(S2

i )

+ 2(n− 1) tr(SiΣi)−
(
(n− 1)2 + (ν − q − 1)2

)
tr(Σ2

i )

− 2
〈
Ψ− (ν − q − 1)Σi, Si − (n− 1)Σi

〉]∣∣∣∣∣
≤

∣∣∣∣∣p−1

p∑
i=1

2(ν − q − 1)(n− 1)

(ν + n− q − 2)2
〈Ψ, Si − (n− 1) tr Σi〉

∣∣∣∣∣ (11)

+

∣∣∣∣∣p−1

p∑
i=1

C(ν)
[
(trSi)

2 − (n− 1)2(tr Σi)
2 − 2(n− 1) tr(Σ2

i )
]∣∣∣∣∣ (12)

+

∣∣∣∣∣p−1

p∑
i=1

(n− 1)C(ν)
[

tr(S2
i )− (n− 1)(tr Σi)

2 − n(n− 1) tr(Σ2
i )
]∣∣∣∣∣ (13)

+

∣∣∣∣∣p−1

p∑
i=1

2(n− 1)
[

tr(SiΣi)− (n− 1) tr(Σ2
i )
]∣∣∣∣∣ (14)

+

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ− (ν − q − 1)Σi, Si − (n− 1)Σi

〉
(ν + n− q − 2)2

∣∣∣∣∣. (15)

where

C(ν) = (ν + n− q − 2)−2 (n− 1)2 − (ν − q − 1)2

(n+ 1)(n− 2)(n− 1)
.

Note that supν>q−1C(ν) = [(n+ 1)(n− 2)(n− 1)]−1.
For (11), by Lemma 4, we have

sup
ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2(ν − q − 1)(n− 1)

(ν + n− q − 2)2

〈
Ψ, Si − (n− 1)Σi

〉∣∣∣∣∣
≤ sup

ν>q+1

(
2(ν − q − 1)(n− 1)

(ν + n− q − 2)2
p−1 max

1≤i≤p
‖Si‖

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
)

=
2(n− 1)2

(n− 2)2

(
p−1 max

1≤i≤p
‖Si‖

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
)

12



and

E

[
1

p
max
1≤i≤p

‖Si‖

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
]

≤ 1

p

[
E
(

max
i≤i≤p

‖Si‖2
)
E

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
2]1/2

= O(p−1)×O(qp1/4 log p+ qp1/4 log q)×O(p1/2)

= O(p−1/4 log p) = o(1).

Hence, we have

sup
ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2(ν − q − 1)(n− 1)

(ν + n− q − 2)2

〈
Ψ, Si − (n− 1)Σi

〉∣∣∣∣∣ prob−→ 0 as p→∞.

(16)

For (12), we have

sup
ν>q+1

∣∣∣∣∣p−1

p∑
i=1

C(ν)
[
(trSi)

2 − (n− 1)2(tr Σi)
2 − 2(n− 1) tr(Σ2

i )
]∣∣∣∣∣

=
1

(n+ 1)(n− 2)(n− 1)

∣∣∣∣∣p−1

p∑
i=1

[
(trSi)

2 − (n− 1)2(tr Σi)
2 − 2(n− 1) tr(Σ2

i )
]∣∣∣∣∣

and

Var

[
p−1

p∑
i=1

[
(trSi)

2 − (n− 1)2(tr Σi)
2 − 2(n− 1) tr(Σ2

i )
]]

= p−2

p∑
i=1

Var
(

(trSi)
2 − (n− 1)2(tr Σi)

2 − 2(n− 1) tr(Σ2
i )
)

= p−2

p∑
i=1

E
(

(trSi)
2 − (n− 1)2(tr Σi)

2 − 2(n− 1) tr(Σ2
i )
)2

= p−2

p∑
i=1

[
E(trSi)

4 −
(

(n− 1)2(tr Σi)
2 + 2(n− 1) tr(Σ2

i )
)2]

= p−2

p∑
i=1

[
24
∑
κ

(n− 1

2

)
κ
Cκ(Σi)− (n− 1)4(tr Σi)

4

− 4(n− 1)3(tr Σi)
2 tr(Σ2

i )− 4(n− 1)2
(

tr(Σ2
i )
)2
]
p→∞−→ 0 (by (2)).

By Markov’s inequality, we have∣∣∣∣∣p−1

p∑
i=1

[
(trSi)

2 − (n− 1)2(tr Σi)
2 − 2(n− 1) tr(Σ2

i )
]∣∣∣∣∣ prob−→ 0 as p→∞. (17)

13



Remark By Lemma 1, assumption (i) implies lim supp→∞ p
−1
∑p

i=1Cκ(Σi) < ∞ for all
partitions κ = (k1, . . . , kq) with

∑q
j=1 kj ≤ 4.

For (13), we have

sup
ν>q+1

∣∣∣∣∣p−1

p∑
i=1

(n− 1)C(ν)
[

tr(S2
i )− (n− 1)(tr Σi)

2 − n(n− 1) tr(Σ2
i )
]∣∣∣∣∣

=
1

(n+ 1)(n− 2)

∣∣∣∣∣p−1

p∑
i=1

[
tr(S2

i )− (n− 1)(tr Σi)
2 − n(n− 1) tr(Σ2

i )
]∣∣∣∣∣

and

Var

[
p−1

p∑
i=1

[
tr(S2

i )− (n− 1)(tr Σi)
2 − n(n− 1) tr(Σ2

i )
]]

= p−2

p∑
i=1

Var
(

tr(S2
i )− (n− 1)(tr Σi)

2 − n(n− 1) tr(Σ2
i )
)

= p−2

p∑
i=1

E
(

tr(S2
i )− (n− 1)(tr Σi)

2 − n(n− 1) tr(Σ2
i )
)2

= p−2

p∑
i=1

[
E(tr(S2

i ))
2 −

(
(n− 1)(tr Σi)

2 + n(n− 1) tr(Σ2
i )
)2]

≤ p−2

p∑
i=1

[
E(trSi)

4 − (n− 1)2(tr Σi)
4

− 2n(n− 1)2(tr Σi)
2 tr(Σ2

i )− n2(n− 1)2
(

tr(Σ2
i )
)2
]
p→∞−→ 0 (by (2)).

By Markov’s inequality, we have∣∣∣∣∣p−1

p∑
i=1

[
tr(S2

i )− (n− 1)(tr Σi)
2 − n(n− 1) tr(Σ2

i )
]∣∣∣∣∣ prob−→ 0 as p→∞. (18)

For (14), by Cauchy’s inequality, we have∣∣∣∣∣p−1

p∑
i=1

2(n− 1)
[

tr(SiΣi)− (n− 1) tr(Σ2
i )
]∣∣∣∣∣ =

∣∣∣∣∣p−1

p∑
i=1

2(n− 1)〈Σi, Si − (n− 1)Σi〉

∣∣∣∣∣
≤ 2(n− 1)p−1

p∑
i=1

|〈Σi, Si − (n− 1)Σi〉|

≤ 2(n− 1)p−1

p∑
i=1

‖Σi‖‖Si − (n− 1)Σi‖.
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Then

Var

(
2(n− 1)p−1

p∑
i=1

‖Σi‖‖Si − (n− 1)Σi‖

)

=
4(n− 1)2

p
p−1

p∑
i=1

Var
(
‖Σi‖‖Si − (n− 1)Σi‖

)
≤ 4(n− 1)2

p
p−1

p∑
i=1

E
(
‖Σi‖2‖Si − (n− 1)Σi‖2

)
=

4(n− 1)2

p
p−1

p∑
i=1

tr(Σ2
i )
[
E tr(S2

i )− 2(n− 1)E tr(SiΣi) + (n− 1)2 tr(Σ2
i )
]

=
4(n− 1)2

p
p−1

p∑
i=1

tr(Σ2
i )
[
n(n− 1) tr(Σ2

i ) + (n− 1)(tr Σi)
2 − 2(n− 1)2 tr(Σ2

i ) + (n− 1)2 tr(Σ2
i )
]

=
4(n− 1)3

p
p−1

p∑
i=1

(
tr(Σ2

i )
)2

+ tr(Σ2
i )(tr Σi)

2 p→∞−→ 0.

By Markov’s inequality, we have∣∣∣∣∣p−1

p∑
i=1

2(n− 1)
[

tr(SiΣi)− (n− 1) tr(Σ2
i )
]∣∣∣∣∣ prob−→ 0 as p→∞. (19)

For (15), we have

sup
ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ− (ν − q − 1)Σi, Si − (n− 1)Σi

〉
(ν + n− q − 2)2

∣∣∣∣∣
≤ sup

ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ, Si − (n− 1)Σi

〉
(ν + n− q − 2)2

∣∣∣∣∣
+ sup

ν>q+1

∣∣∣∣∣p−1

p∑
i=1

2(ν − q − 1)
〈
Σi, Si − (n− 1)Σi

〉
(ν + n− q − 2)2

∣∣∣∣∣
≤ sup
‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ, Si − (n− 1)Σi

〉∣∣∣∣∣+

∣∣∣∣∣p−1

p∑
i=1

2
〈
Σi, Si − (n− 1)Σi

〉∣∣∣∣∣.
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Since by assumption (i)

Var

(
p−1

p∑
i=1

2
〈
Σi, Si − (n− 1)Σi

〉)

=
1

p2

p∑
i=1

E
[
〈Σi, Si − (n− 1)Σi〉2

]
≤ 1

p2

p∑
i=1

E
[
‖Σi‖2‖Si − (n− 1)Σi‖2

]
=

1

p2

p∑
i=1

‖Σi‖2E
[

tr(S2
i )− 2(n− 1) tr(SiΣi) + (n− 1)2 tr(Σ2

i )
]

=
1

p2

p∑
i=1

tr(Σ2
i )
[
(n− 1) tr(Σ2

i ) + (n− 1)(tr Σi)
2
]

≤ n− 1

p2

p∑
i=1

(tr Σi)
4 p→∞−→ 0,

by Markov’s inequality, we have∣∣∣∣∣p−1

p∑
i=1

2
〈
Σi, Si − (n− 1)Σi

〉∣∣∣∣∣ prob−→ 0 as p→∞.

Similarly, we have

sup
‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ, Si − (n− 1)Σi

〉∣∣∣∣∣ ≤ 2

p
max
1≤i≤p

‖Si‖

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
and

E

[
2

p
max
1≤i≤p

‖Si‖

∥∥∥∥∥
p∑
i=1

Si − (n− 1)Σi

∥∥∥∥∥
]

= o(1).

Hence, we have

sup
ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣∣∣∣p−1

p∑
i=1

2
〈
Ψ− (ν − q − 1)Σi, Si − (n− 1)Σi

〉
(ν + n− q − 2)2

∣∣∣∣∣ prob−→ 0 as p→∞.

(20)

Combining (16), (17), (18), (19), and (20), we have

sup
ν>q+1,‖Ψ‖≤max1≤i≤p ‖Si‖

∣∣SURE2(ν,Ψ)− L2

(
Σ̂
ν,Ψ
,Σ
)∣∣ prob−→ 0 as p→∞. (21)

The proof is concluded by (10) and (21).
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Theorem 4 If assumptions (i), (ii), and (iii) in Theorem 3 hold, then

lim sup
p→∞

[
R
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
−R

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))]
≤ 0.

Proof. Since

L
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
− L

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
= L

((
M̂

SURE
, Σ̂

SURE)
,
(
M ,Σ

))
− SURE(λ̂SURE, µ̂SURE, Ψ̂SURE, ν̂SURE)

+ SURE(λ̂SURE, µ̂SURE, Ψ̂SURE, ν̂SURE)− SURE(λ, µ,Ψ, ν)

+ SURE(λ, µ,Ψ, ν)− L
((

M̂
λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
≤ sup

λ,µ,Ψ,ν

∣∣∣L((M̂λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
− SURE(λ, µ,Ψ, ν)

∣∣∣
+ 0

+ sup
λ,µ,Ψ,ν

∣∣∣L((M̂λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
− SURE(λ, µ,Ψ, ν)

∣∣∣
= 2 sup

λ,µ,Ψ,ν

∣∣∣L((M̂λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))
− SURE(λ, µ,Ψ, ν)

∣∣∣,
from Theorem 3, we have

lim sup
p→∞

[
L
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
− L

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))]
≤ 0.

Hence, by dominated convergence, we have

lim sup
p→∞

[
R
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
−R

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))]
= lim sup

p→∞
E
[
L
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
− L

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))]
= E

{
lim sup
p→∞

[
L
((

M̂
SURE

, Σ̂
SURE)

,
(
M ,Σ

))
− L

((
M̂

λ,µ
, Σ̂

Ψ,ν)
,
(
M ,Σ

))]}
≤ 0.

4 Implementation Details

Note that to find the shrinkage estimators (M̂
λ,µ
, Σ̂

Ψ,ν
), we need to solve the optimization

problem
min
λ,µ,Ψ,ν

SURE(λ, µ,Ψ, ν)
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which is a non-convex optimization problem. Hence the solution depends heavily on the
initialization of the minimization algorithm. In this section, we provide a way to choose the
initialization so that, in our experiments, the algorithm converges successfully in less than
10 iterations. We can compute the marginal expectations

ELE
(
X̄LE
i

)
= ELE

Mi

[
ELE
X

(
X̄LE
i |Mi

)]
= ELE

Mi
[Mi] = µ (22)

Ed2
LE(X̄LE

i , µ) = EΣi

{
EMi

[
EX
(
d2

LE(X̄LE
i , µ)|Mi,Σi

)
|Σi

]}
= EΣi

[(
1/n+ 1/λ

)
tr Σi

]
=

(
1

n
+

1

λ

)
tr Ψ

ν − q − 1
(23)

E(Si) = EΣi
[ESi

(Si|Σi)] = EΣi
[(n− 1)Σi] =

n− 1

ν − q − 1
Ψ (24)

E(S−1
i ) = EΣi

[ESi
(S−1

i |Σi)] = EΣi

[ Σ−1
i

n− q − 2

]
=

ν

n− q − 2
Ψ−1 (25)

where ELE(·) denotes the Fréchet expectation with respect to the Log-Euclidean metric, i.e.
ELE(X) = exp(E(logX)). Thus the hyperparameters can be written as

µ = ELE
(
X̄LE
i

)
λ =

nEd2
LE(X̄LE

i , µ)
n
n−1

E(trSi)− Ed2
LE(X̄LE

i , µ)
(by (23) and (24))

ν =
q + 1

n−q−2
q(n−1)

tr(E(Si)E(S−1
i ))− 1

+ q + 1 (by (24) and (25))

Ψ =
ν − q − 1

n− 1
E(Si) (by (24))

and an initialization of the hyperparameters can be obtained by replacing the (Fréchet)
expectations with the corresponding sample (Fréchet) means, i.e.

µ0 = exp

(
p−1

p∑
i=1

log X̄LE
i

)

λ0 =
np−1

∑p
i=1 d

2
LE(X̄LE

i , µ0)
n

p(n−1)

∑p
i=1 trSi − p−1

∑p
i=1 d

2
LE(X̄LE

i , µ0)

ν0 =
q + 1

n−q−2
p2q(n−1)

tr
[
(
∑p

i=1 Si)(
∑p

i=1 S
−1
i )
]
− 1

+ q + 1

Ψ0 =
ν0 − q − 1

p(n− 1)

p∑
i=1

Si.

Note that these initial values can also be viewed as empirical Bayes estimates for µ, λ, ν, and
Ψ obtained by matching moments. However these estimates do not possess the asymptotic
optimality as stated in Theorem 3 and Theorem 4 since they are not obtained by minimizing
an estimate of the risk function.
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5 Data Descriptions

In this section, we provide the details for the data used in Section 4.2.

5.1 Resting State Functional MRI Connectivity Networks

In this experiment, we have three datasets, named ADHD200 CC200, PRURIM, and
UCSF MAC PSP. Each contains brain connectivity matrices from different subjects, and
these subjects are further categorized into different groups according to their medical condi-
tions. These groups are summarized in Table 1. For example, in the ‘Typically Developing’
group of the ‘ADHD200 CC200’ dataset, there are 330 connectivity matrices (or correlation
matrices), each of size 190 × 190. Our goal here is to estimate the group means (for p = 7
groups in total) using these three independent datasets. The baseline approach is to use
the sample Fréchet means (FMs) from each group as the estimators. Our approach is to
shrink these sample FMs to achieve better estimation performance. However, our theory
only shrinks SPD matrices that are of the same size, and this is not the case for these
datasets (we have three sizes: 190×190, 116×116, 27×27). Therefore we pick only a highly
correlated sub-network of size N ×N from each group instead.

Studies Groups (Medical Condition) # of patients Matrix Size

ADHD200 CC200
Typically Developing 330

190× 190ADHD-Combined 109

ADHD-Inattentive 74

PRURIM
Healthy 15

116× 116Psoriasis 14

UCSF MAC PSP
Control 40

27× 27Progressive Supranuclear Palsy 24

Table 1: Specifics of the three dataset used in the rs-fMRI experiment.

The procedure for choosing sub-networks for each group is as follows. For each group,
we first compute the mean connectivity network, and then apply a hierarchical clustering
algorithm to choose the N nodes with the highest absolute correlation. For example, for
the ‘Typically Developing’ group of the ‘ADHD200 CC200’ dataset, there are 190 nodes in
the connectivity matrix. For any two nodes x, y, we measure the dissimilarity by d(x, y) =
1− |cor(x, y)|, and with these dissimilarity measures, we build a dendrogram and select the
N nodes that are closest to each other. Note that each node of the connectivity matrix
represents a physical region in the brain, and the chosen sub-network is the correlation
matrix of the highly correlated regions in the brain. Also, since this procedure for choosing
sub-networks is applied in each group separately, the sub-networks from different groups do
not have the same nodes/regions (even if they are from the same dataset). This does not
pose a problem for our experiment as our theory assumes independence between groups.
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6 Additional Simulation Studies

In this section, we present some additional simulation studies to answer two questions: (1)
Is our estimator still better than the MLE if the independence assumption is violated? (2)
How does our estimator perform compared to the estimator obtained by simply applying
James-Stein shrinkage to the log-transformed SPD matrices? The two simple simulation
studies in Sections 6.1 and 6.2 give positive answers to both questions.

6.1 Comparison of the Sure Estimator and the Ordinary James-
Stein Estimator

As pointed out in the Introduction, one simple method for developing a shrinkage estimator
for SPD matrices is to simply apply James-Stein shrinkage to the log-transformed SPD
matrices (and use the matrix exponential map to obtain the shrunk SPD matrices). However
this does not lead to an optimal shrinkage estimator. In this section, we present a simulation
study comparing our proposed estimator and the simple method described above.

The settings for this simulation study are N = 3, p = 100, n = 1, Σi = 0.3I3, and

Mi =

 1 ρi ρ2
i

ρi 1 ρi
ρ2
i ρi 1

 ,
where ρi = ρ+Ui, Ui

iid∼ Unif(−0.01, 0.01), and −0.8 ≤ ρ ≤ 0.8. The notation follows that in
Section 3 of the main paper. We compare three estimators: the MLE, the SURE estimator,
and the estimator based on James-Stein shrinkage in the log-domain. The results are shown
in Figure 1. Average loss is an average over 100 repetitions.
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Figure 1: Average loss for each of the three estimators as ρ varies.

Note that when ρ = 0, Mi ≈ I3 and log I3 is the zero matrix. When ρ = 0 the James-Stein
based shrinkage estimator yields maximal improvement over the MLE. As |ρ| increases, the
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improvement becomes is less significant. This is consistent with the classical behavior of
the James-Stein estimator. In contrast, the SURE estimator achieves optimal improvement
regardless of the value of ρ. Figure 1 conveys two key messages. (1) Because the James-Stein
estimator shrinks the MLE towards a fixed target (the identity matrix in this case), it achieves
a significant improvement only when the true parameter is close to the shrinkage target.
In contrast, the proposed SURE estimator shrinks the MLE towards a target determined
from the data, and hence achieves significant improvement regardless of what is the true
parameter. (2) In this particular simulation, the loss for the SURE estimator is nearly zero.
The reason is that the variation in ρi is quite small (ρ − 0.01 < ρi < ρ + 0.01) and the

shrinkage target determined from the data will be reliable. If, for example, ρi
iid∼ Unif(−1, 1),

then the shrinkage target determined from the data will be much less reliable, and therefore
we will observe a larger loss for the SURE estimator.

6.2 Dependent Data

In this section, we discuss whether the proposed estimator is robust to the independence as-
sumption, i.e. whether our estimator still dominates the MLE if the independence assumption
is violated. In terms of our main application, DTI analysis, the independence assumption is
actually unrealistic, made in order to simplify the mathematical analysis. In DTI, estimates
for neighboring voxels will never be independent, and therefore we would like to know how
the magnitude of the dependence affects the performance of our estimator.

We created an artificial dependence structure by computing the moving k-average (FM)
of an array of independent SPD matrices, i.e., if X = [X1, . . . , Xp+k−1] is an array of in-
dependent SPD matrices, then the moving k-average of X is X(k) = [X̄(1), . . . , X̄(p)] where
X̄(i) = FM(Xi, . . . , Xi+k−1). If k = 1 then X(1) = X and the entries in this array are
independent, but when k > 1 there is dependence and this dependence increases when k
increases. In this simulation study, we fixed the other parameters: N = 3, p = 100, λ = 50,
µ = I3, Ψ = I6, ν = 30, and n = 10. Again, we compared with the same estimators as in
Section 4.1. The results are shown in Figure 2. From the figure, we can clearly see that as
k increases, the improvement is less significant, and in the extreme case where X contains
p copies of an SPD matrix, there is no benefit in shrinking the MLE. But we also see that
even when there is mild dependence within the observation, our shrinkage estimator is still
better than the MLE.

7 Remarks on the Resampling Scheme in Section 4.2.1

Here we discuss the resampling scheme that is used in Section 4.2.1 and again in Section 4.2.2.
In particular, we explain why we resample with replacement, as opposed to without replace-
ment, and we mention another natural resampling scheme and explain why we do not use
it.

Our explanations are in the context of the Parkinson’s group in the illustration in Sec-
tion 4.2.1. For patient j in that group, we have estimates Xi,j, i = 1, . . . , 78, correspond-
ing to the 44 + 34 voxels. These are the estimates given by the software used in DTI.
Also, let Xi,· be the Fréchet mean of Xij, j = 1, . . . , 50. Let F denote the distribution of
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Figure 2: Average loss for each of the three estimators with varying k.

(X1,1, X2,1, . . . , X78,1). The 50 78-tuples (X1,1, X2,1, . . . , X78,1), . . . , (X1,50, X2,50, . . . , X78,50)
are iid draws from F . For each voxel i (i = 1, . . . , 78) there is a true SPD matrix, Mi,
particular to voxel i. This Mi may be defined as Xi,· in a hypothetical population that is
not the 50 Parkinson’s patients in this study, but rather is an infinite population from which
the 50 Parkinson’s patients are a random sample.

Now, consider any one of the three estimation methods FM.LE, SURE-FM, or SURE.Full-
FM, and for concreteness consider FM.LE. This method produces an estimate (M̂1, . . . , M̂78),
based on the 50 Parkinson’s patients. To evaluate the risk of this method, we need to
consider the loss L

(
(M̂1, . . . , M̂78), (M1, . . . ,M78)

)
, and take the expected value of this loss,

i.e. find E
[
L
(
(M̂1, . . . , M̂78), (M1, . . . ,M78)

)]
, where in the expected value the raw data used

to calculate (M̂1, . . . , M̂78) are a random sample (meaning iid sample) from F . This cannot
be done analytically, so we do it via a simulation. Now F is unknown, so we estimate it
by the empirical distribution, which gives mass 1/50 to each of the 50 points (X1,1, X2,1,
. . . , X78,1), . . . , (X1,50, X2,50, . . . , X78,50). This is exactly what we did in Section 4.2.1, and
we note that iid sampling from the empirical distribution means sampling with replacement
from the 50 78-tuples.

Now F is a distribution on 78-tuples of SPD matrices, and our model stipulates that the
distribution of component i is a log-normal. So it is natural to ask why are we sampling from
the empirical distribution instead of sampling from the log-normals with estimated param-
eters. The former corresponds to the ordinary bootstrap and the latter to the parametric
bootstrap (see Section 6.5 of Efron & Tibshirani (1993)). The reason we do not use the
parametric bootstrap is that for a given patient the estimates for Mi and Mj may be corre-
lated, i.e. there is a patient effect, where for some patients the estimates of M1, . . . ,M78 all
have large eigenvalues, while for others the estimates all have small eigenvalues. By sampling
from the empirical distribution, we preserve this structure.
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