> data <- read.table("sex.dat", header=T) > attach(data, 1) > options(contrasts=c("contr.treatment")) > uv <- sex*birth > sex <- factor(sex); birth <- factor(birth) > > indep.fit <- glm(count ~ sex + birth, family=poisson) > pearson <- summary.lm(indep.fit)$residuals > hat <- lm.influence(indep.fit)$hat > adj.res <- pearson/sqrt(1 - hat) # standardized Pearson residuals > cbind(sex, birth, count, fitted(indep.fit), adj.res) sex birth count adj.res 1 1 1 81 42.41145 7.6028389 2 1 2 68 51.21382 3.0766897 3 1 3 60 86.42333 -4.1166720 4 1 4 38 66.95140 -4.8396108 5 2 1 24 15.96868 2.3282276 6 2 2 26 19.28294 1.8114763 7 2 3 29 32.53996 -0.8114805 8 2 4 14 25.20842 -2.7568090 9 3 1 18 30.04860 -2.6816389 10 3 2 41 36.28510 0.9762279 11 3 3 74 61.23110 2.2472882 12 3 4 42 47.43521 -1.0263685 13 4 1 36 70.57127 -6.0630727 14 4 2 57 85.21814 -4.6038421 15 4 3 161 143.80562 2.3845449 16 4 4 157 111.40497 6.7845091 > LL.fit <- update(indep.fit, . ~ . + uv) > summary(LL.fit) Coefficients: Value Std. Error t value (Intercept) 4.1068414 0.08950939 45.881681 sex2 -1.6459643 0.13472875 -12.216875 sex3 -1.7700229 0.16463639 -10.751104 sex4 -1.7536852 0.23430240 -7.484708 birth2 -0.4641050 0.11952096 -3.883043 birth3 -0.7245224 0.16199835 -4.472406 birth4 -1.8796640 0.24908191 -7.546369 uv 0.2858355 0.02823566 10.123209 Residual Deviance: 11.53369 on 8 degrees of freedom Number of Fisher Scoring Iterations: 3 > u <- c(1,1,1,1,2,2,2,2,4,4,4,4,5,5,5,5) > v <- c(1,2,4,5,1,2,4,5,1,2,4,5,1,2,4,5) > uv2 <- u*v > LL2.fit <- update(indep.fit, . ~ . + uv2) > summary(LL2.fit) Coefficients: Value Std. Error t value uv2 0.1460382 0.01407636 10.374715 Residual Deviance: 8.845195 on 8 degrees of freedom > row.fit <- update(indep.fit, .~. +u:birth) > summary(row.fit) Value Std. Error t value (Intercept) 4.9872158 0.14624227 34.102424 sex2 -0.6577204 0.13124054 -5.011564 sex3 0.4666360 0.16265012 2.868956 sex4 1.5019483 0.17951515 8.366694 birth2 -0.3193886 0.19821146 -1.611353 birth3 -0.7268794 0.20015708 -3.631545 birth4 -1.4903163 0.23744302 -6.276522 birth1u -0.5953263 0.06555007 -9.082009 birth2u -0.4054336 0.06067887 -6.681628 birth3u -0.1297489 0.05633659 -2.303102 birth4u NA NA NA Residual Deviance: 8.262966 on 6 degrees of freedom > column.fit <- update(indep.fit, . ~ . + sex:v) > summary(column.fit) Coefficients: (1 not defined because of singularities) Value Std. Error t value (Intercept) 4.9151850 0.13907409 35.342204 sex2 -1.2186815 0.25582686 -4.763696 sex3 -1.5060354 0.23760340 -6.338442 sex4 -1.3955940 0.20728940 -6.732587 birth2 0.5458980 0.11723030 4.656629 birth3 1.5926216 0.14786815 10.770553 birth4 1.5101843 0.16419368 9.197579 sex1v -0.5845440 0.05929738 -9.857840 sex2v -0.4955406 0.07989777 -6.202182 sex3v -0.2031464 0.06537858 -3.107231 sex4v NA NA NA Residual Deviance: 7.586124 on 6 degrees of freedom