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0. ABSTRACT

Measurement of association between an inter-
val variable X and an ordinal variable Y, is usu-
ally accomplished by considering both variables
as either interval or ordinal. However, measures
analogous to Kendall's tau-b (Tb) and Goodman and

Kruskal's gamma (Y) can be defined which utilize
the interval nature of the variable X. Consider
a randem pair of observations (Xi,Yi), (Xj,Yj) on

(X,Y). An analog of T, is defined as the correla-

b
tion between (Xi—Xj) and S(Yi—Yj) where S is the

sign function. We define an analog of Y by weight-

ing each concordant or discordant pair by (Xi-Xj).

An altermative approach that also leads to a
measure of interval-ordinal association is the use
of a linear logistic model to represent P(Yi>Yj)

as a monotonic function of (Xi—Xj).

1. INTRODUCTION

The usual solution to measuring the associa-
tion between an interval variable and an ordinal
variable is to consider both variables as either
interval or ordinal. 1If both variables are treat-
ed as ordinal, well known ordinal measures of
association can be used but then not all of the
available information is being utilized. If a
metric is imposed upon the levels of the ordinal
variable, more sophisticated interval-level tech-
niques can be used but the validity of the results
is questionable.

In a related problem Mayer (1973) introduced
the monotone coefficient as an estimator of the
correlation ratio when one interval variable is
directly observed but only a monotone transforma-
tion of the other (interval) variable is observed.
The properties of the monotone coefficient are de-
rived and discussed in Mayer and Robinson (1978).
Their measures correspond naturally to monotone
regression functions for modelling an interval
scale dependent variable in terms of one or more
ordinal scale variables.

This article considers alternative approaches
to the problems of measuring interval-ordinal as-
sociation and modelling interval-ordinal relation-
ships. Our measures and models are defined in
terms of scores for pairs of observatioms -- sign
scores for the ordinal variable and distance
scores for the interval variable. We also use a
linear logistic model for describing the depen-
dence of ordinal sign scores on interval distance
scores. Hence, unlike Mayer and Robinson, our em—
phasis in model-building is on the case in which
the ordinal variable is the dependent variable, a
case commonly encountered in social science re-
search.

We assume throughout this-article that we have
n observations (Xi’yi) on a bivariate random var-

iable (X,Y) with X a discrete interval variable

and Y a discrete ordinal variable. Unless other-
wise noted, we also assume full multinomial sam—
pling wherein the sample of 2 individuals or ob-
jects is cross-classified according to the cate-

gories of X and Y and the observed cell frequen-
cies can be described as in the (r x ¢) contin-
gency table below with y(1)<...<y(r) and

X(1)<...<X<c).
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The same system of notation is used to describe
the population cell proportiomns {pab} noting
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a pair of observations say (xi,yi) and (xj,yj) is

a concordant pair if (X(i)-x(j))(y(i)_y(i))>0 and
~

discordant if (X(i)-x(j))(y(i)—y(j))<0'

2. MEASURES OF ASSOCIATION

We define interval-ordinal measures of asso-
ciation analogous to the ordinal measures Ken-

dall's T and Goodman and Kruskal's Y.

Kendall (1970) defines a generalized correla-
tion coefficient I' which includes his own Ty and

other correlation coefficients as special cases
which arise when particular methods of scoring
are adopted. Given n cbservations <Xi’yi)’ to

each pair of observations assign an x-score, de-
noted by aij and subject only to the condition

aij=—aji. Similarly assign y-scores denoted by
b.., with b,.==b,.. Then Kendall's generalized
ij 15 ji

correlation coefficient is defined by

Zai.bi.
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If, for example, aij and bij are defined by

aij=S(xj—xi) and bij=S(yj—yi) where
1 z>0
S(z) = {+O z=0} is the sign function,
-1 z<0
then the resulting measure is Kendall's Ty

2.1 An interval-ordinal analog of tau-b

In the situation where X is an interval var-
iable and Y is an ordinal variable, it seems in-




tuitive to allow the xX-score, aij’ to be (xj—xi)
vice S(Xj-xi)- Thus Té, the sample version of our
interval-ordinal measure of association, is given
by
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and it is the usual sample correlation between ap-
propriately defined X—scores and y-scores. The
population value of Té is defined by
E[(X,-X,)8(Y.-Y.)]
(X;-X)S(¥, )

o
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for a randomly selected pair of observations.

If the n observations are cross-classified in-
to an (r x ¢) table (Table 1.1), then following
the notaticn of Goodmpan and Kruskal (1972), 7!
can be written as b
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Notice that Cw is the weighted number of concor-
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dant pairs of observations with weights equal to
(x(b,)-x(b)). Similarly D, is the weighted num-

ber of discordant pairs of observations. We call
Cw the sample "weight of concordance" and D, the

sample "weight of discordance”.

2.2 An interval-ordinal analog to gamma

Formula 2.4 suggests the definition of an ana-
log of Goodman and Kruskal's gamma (Y). We define
the sample version of our interval-ordinal analog
of v by

C -D
S W W

C +7p

W W

(2.

(%)

)
/

The population value, Y', can be defined by re-
Placing the observed cell frequencies {nab} in C,

and Dw by the population cell pProportions {pab}‘

3. PROPERTIES OF TAU-b' AND GAMMA'

The relationship hetween Kendall's %b and %é

is obvious. They are both special cases of T and

s - . £,  ; o
if (xj xi) is replaced by S(xj xi), T becomes Ty

Similarly, when this same substitution of ordinal
for interval information is made o v, ¥ bew
comes Y., Thus Tg and Y' are natural generaliza~

tions of Tb and Y to the situation of an interval

and an ordinal variabie.
Some additional properties of Tg and Q' follow.

Result 3.1: -1 I, =1 s% <1,

Result 3.2: 7} = '
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Result 3.3: TFor data categorized into a contin-—

gency table with arbitrary fixed marginal distri-

butions, the maximum values of %é and ?' occur
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when there are no discordant pairs of observa-
s a;
tions. The maximum value of Té is a function of

the values of X and the maximum value of ?’is one.
Result 3.4: The asymptotic variances of ?é and

¥' are easily obtained using the procedures of
Goodman and Kruskal (1972). If the population
value of the measure, defined in terms of the pop-
ulation cell proportions, is denoted by v/S and
we define ‘
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then the asymptotic variance of the sample value
of V/8 (under full multinomial sampling) is 0%/n
where
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For v', v;b is the same as for Té since they have
the same numerator while
1 = -
8, i'g,pa,b,lx(b,) x(b)[. (3.4)
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Also, for v', § can be shown to equal zero. Now
the asymptotic variances for both Y and Tg are

obtained by substituting (3.2)-(3.4) 1into (3.1).
The asymptotic variances under product multino-
mial sampling can be derived similarly.

4. MODEL BUILDING
—=2Zob SULDING
Recall we have n observations (xi,yi) on (X,Y)

where X is a discrete interval variable and Y is
a discrete ordinal variable. If a positive asso-
clation exists between X and Y, then it seems
reasonable that the probability that a randomly
selected pair of observations is concordant, giv-
en their respective values on X, should increase
as the difference between the X values increases.

We denote the probability that the ijth pair




of observations is concordant, given it is untied
on Y, by PCC(xi,xj)]. Formally, we define

PEc(xi,xJ. )J=p[ ;%) (X;-1)» OI'Xiaci,xj X35 Yy#Y,]
(4.1)

for xi#xj. For most bivariate distributions ep-

countered in practice it Feems reasonable that as
lxi~xj[*0, PEC(xi,xj)]+%. Therefore we defipe

P[C(xi,xi)]=%. We also assume that P[C(xi,xj)]
is a monotonic function of (xj—xi).
A linear logistic model may be defined by
PLC(x,,x.)]
= =B(x,-x,)
l-P[C(xi,xi)] JEit

for all Xi,xj. A no intercept model ig used since

A(xi,xj)=ln{ (4.2)

A(Xi’xi)=o by the definition of P[C(xi,xi)].

Recall the observations can be cross-clagsi-
fied into an (r x c) contingency table where
X Lowss 3% b % wo is~
(1) X(c) and j(l)< <y(r) denote the dis

tinct values of X and v respectively. Thus, since
we assume that PEC(xi,xj)J is constant given x,

and Xj’ we have

: P[C(xi,xj)]=P[C(x(b),x(b,>)] (4.3)
for all Xi=x(b) and ijx(b') (b,b’=1,...,c), and

Wwe can base our analysis on these %c(c-1) values
of P[C(x(b),x(b,>)] for b<b!'.

First note thar
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Thus our model becomes
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for 1 b <b' < @, Using vector notation our
model becomes A=8d where

A = (A(x(l),x<2)),..

and d is the known vector

L= &eymxgye-

It is well known that Rn=%(nll,...,nrc) is

the maximum likelihood estimator of E?(pll,..,prc)

Ay )Y (4.6)

"x(c)’x(c—l)) 4.7)

and has a multivariate normal asymptotic distri-
bution. Notice Ais simply a vector function of
P and if ) is defined as A evaluated at 2=p.,
then the method of generalized (or weighted)
least squares can be applied to &_using an empir-
ically estimated covariance matrix to produce an
estimate of 8. This Procedure is a generaliza-
tion of a method used in Cox (1970) and relies
heavily on the asymptotic theory of functions of
maximum likelihood eéstimators as given in Rao
(1973). 1t is anticipated that under suitable
regularity conditions this estimate of 8 will
have a normal asymptotic distribution,

If the necessary regularity conditions hold,

then the extension to higher order models is im-
mediate -- d become a known matrix D. The multi-
ple regression situation (three-way and higher
order tables) is more complicated.

To provide some motivation for the multiple
regression case , suppose we have two discrete

interval variables X(l) and X(Z) and let gﬁ de-

note (Xil),Xéz)). We consider probabilities of
the form

r = = = =
PLO(x,.x,)I=plY, Yj>0l§i~§i,§j-§j,Yi¢YjL (4.8)

ordering the pairs of observations such that
xgl)sxgl) and if xgl)=x§1) such -that xgz)ngz).

1 J 1 J 1 J
Notice this probability is actually a generaliza-
tion of P[C(xi,xj)] since in the single regres-

sion case we ordered the pairs of observations so
that xi<xj(xj-xi>0). We consider models of the

form
PLC(x,;,x.)]
A(Ei’i‘.j )= ln{l-PfC(gi,§j)]}

= Buxj(”-xi“)) + 32<Xj(2>-xi(2)>. (4.9)

Now the method outlined for the single regression
Situation can be used to obtain an estimate for
B. Results are anticipated in this area in the
near future.

5. CONCLUDING REMARKS

[ - ~
The statistics Tg and Y' are reasonable, eagg-

ily understood measures of interval-ordinal as-
sociation. Indeed it seems very intuitive that
the larger the difference in the x-values of a
pair of observations, the more weight that pair
should have in determining the weight of concor-
dance or the weight of discordance. The model
building section uses the familiar framework of
linear models to model the logit of the proba-
bility of concordance ag a function of the dif-
ference in x-values.
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