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ORDINAL DATA

An ordinal variable is one that has a natural
ordering of its possible values, but for which
the distances between the values are unde-
fined. Ordinal variables usually have cate-
gorical scales. Examples are social class,
which is often measured as upper, middle, or
lower, and political philosophy, which might
be measured as liberal, moderate, or conser-
vative.. Continuous variables that are mea-
sured using ranks are also treated as ordinal.
In this article we describe methods for
analyzing only ordinal categorical variables.
In particular, we summarize some associa-
tion measures and models that are appropri-
ate for the analysis of contingency tables*
having at least one ordered classification.
Methods for analyzing continuous observa-
tion variables are summarized in DISTRI-
BUTION-FREE STATISTICS and RANK TESTS.

ORDINAL MEASURES OF ASSOCIATION

We present three types of ordinal measures
of association: measures based on the no-
tions of concordance* and discordance,
which utilize ordinal information only; cor-
relation®* and mean measures that require a
user-supplied or data-generated scoring of
ordered categories; sets of odds-ratio mea-
sures that contain as much information re-
garding association as the original cell
counts. For a discussion of the rationale of
measures of association, see ASSOCIATION,
MEASURES OF.

Concordance-Discordance Measures

We discuss most of the methodology in this
article in the context of a two-way contin-
gency table*. Denote the cell counts of an
r X c table by {n;} and let { p; = n;/n} be
the corresponding cell proportions. Let X
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denote the row variable and Y the column
variable. For now, we suppose that the rows
and columns are both ordered, with the first
row and first column being the low ends of
the two scales.

A pair of observations is concordant if the
member that ranks higher on X also ranks
higher on Y. A pair of observations is discor-
dant if the member that ranks higher on X
ranks lower on Y. The numbers of concor-
dant and discordant pairs are

C=2> > mn, and

=i 3
D = 2 2_”y"i7'-
I<i j' >
Let n,, =>;n; and n,,=3,n,. We can
express the total number of pairs of observa-
tions as

n(n—1/2=C+D+Ty+ Ty— Tyy,

where Ty = >;n;, (n;, —1)/2 is the number
of pairs tied on X, Ty =3 n, (n,; — 1)/2
is the number of pairs tied on Y, and Ty,
=>n;(n; —1)/2 is the number of pairs
from a common cell (tied on X and Y).

Several measures of association* are
based on thé difference C — D. They are
discrete generalizations of the Kendall’s tau*
measure for continuous variables. For each,
the greater the relative number of concor-
dant pairs, the more evidence there is of a
positive association.

Of the untied pairs, C/(C + D) is the
proportion of concordant pairs and D /(C +
D) is the proportion of discordant pairs. The
measure gamma, proposed by Goodman and
Kruskal [9], is the difference between these
proportions,

$=(C-D)/(C+ D).
For 2 X2 tables ¥ is also referred to as

Yule’s Q. In 1945, Kendall [14] proposed the
related measure tau-b given by

%= C—-D
[{(4n(n—1) = Ty } {4n(n— 1) — Ty }]

172 °

For 2 X 2 tables 7, simplifies to the Pearson
correlation obtained by assigning any scores
to the rows and to the columns that reflect
their orderings.
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Gamma and tau-b assume the same val-
ues regardless of whether X or Y (or neither)
is regarded as a response variable. In 1962,
Somers proposed the asymmetric measure

dyx =(C—D)/[n(n—1)/2 - Ty],

the difference between the proportions of
concordant and discordant pairs, out of
those pairs that are untied on X. For 2 X 2
tables d,, simplifies to the difference of
proportions n;,/n,, —ny /n,, . For 2X ¢
tables, it estimates P(Y,> Y,)— P(Y, >
Y,), where Y, and Y, are independent obser-
vations on the column variable in rows one
and two of the tables, respectively.

All three of these ordinal measures are
restricted to the range [—1, +1]. Indepen-
dence implies that their population values
equal zero, but the converse is not true. Note
that |7,| < |f| and |dyy| < ||, and 72 =
dyydyy, where dy, has T, instead of T, in
its denominator. Tau-b may be interpreted
as a Pearson correlation and Somers’ d may
be interpreted as a least-squares* slope for a
linear regression* model defined using sign
scores for pairs of observations.

Measures Based on Scores

Many methods for analyzing ordinal data
require assigning scores to the levels of ordi-
nal variables. To compute the Pearson corre-
lation* between the row and column vari-
ables, e.g., one must assign fixed scores to
the rows and to the columns. The canonical
correlation is the maximum correlation ob-
tained out of all possible choices of scores.
The scores needed to achieve the maximum
need not be monotone, however. Alterna-
tively, one can generate monotone scores
from the data. For example, one could use
average cumulative probability scores, which
for the column (Y) marginal distribution are

j—1
r= Z p+i+P+j/2’

i=1

j=1L...,c

The correlation measure then obtained is a
discrete analog of Spearman’s rank correla-
tion coefficient, referred to as p, (see Ken-
dall [14, p. 38]). Or one could use scores at

which a distribution function (such as the
normal or logistic) takes on the {r;} values.

If X is nominal (unordered levels) and Y
is ordinal, often it is useful to compute a
mean score on Y within each level of X. The
scores {r;} just defined are called ridits for
the marginal distribution of Y. The measure
R, = 3,7(ny/n;,.) is the sample mean ridit
in row i. It estimates

P(Y,> Y*)+1P(Y, = Y*),

where Y, and Y* are categories of Y for
observations randomly selected from row i
and from the marginal distribution of Y,
respectively. It is necessary that X p. .7,

= > P+ R, =0.5. See Bross [4] for a discus-
sion of r1d1t analysis*. For an example of a
scaling method that assumes a particular
form for an underlying continuous distribu-
tion, see Snell [21].

Odds-Ratio* Measures

The measures discussed summarize associa-
tion by a single number. To avoid the loss
of information we get by this condensation,
we can describe the table through a set of
(r — 1)(¢ — 1) odds ratios. For ordinal vari-

ables, itris natural to form the local odds
ratios
01 1] l+j]+1/(nl]+lnl+l])
i=1...,r=1, j=1,. c—1.

Each 0 describes the sample association 1n
a restrlcted region of the table, with log0
indicating whether the association is posmve
or negative in that region. Goodman [7]
suggested log-linear models for analyzing the
{HA,-j}. An alternative set of odds ratios is
based on the (r — 1)(c — 1) ways of collaps-
ing the table into a 2 X 2 table.

ORDINAL MODELS

In recent years, much work has been de-
voted to formulating models for cross-
classifications of ordinal variables. The mod-
els discussed here are directly related to
standard log-linear and logit models (see



CONTINGENCY TABLES and MULTIDIMENSION-
AL CONTINGENCY TABLES).

Log-linear Models

Suppose that {p;} denotes the true cell pro-
portions in an r X ¢ contingency table,
where >p; = 1. For a random sample of size
n, the expected number of observations in a
cell is m; = np;. If the variables are indepen-
dent, then m;=m, m,, for all i and ;.
There is a corresponding additive relation-
ship for logm;. That is, we can describe
independence by the log-linear model log
= p+ A" + A, where p is the mean of the
{logm,} and IN\* =S\" = 0. Haberman
[12], Simon [20], and Goodman [7] have
formulated more complex log-linear models
for situations where at least one variable is
ordinal and there is some association.

The log-linear models can be described in
terms of properties of the local odds ratios
{H,j = (mijmi+1,j+l)/(mi,j+lmi+1,j)}' A simple
model has the form log#; = B for all i and j,
whereby the local association is uniform
throughout the table. A more general model
is obtained by assigning monotone scores
{u;} to the rows and {v;} to the columns and
assuming that

logmy; = p + A+ }\jy + Buv; .
In this model

10g0,j = Bty — U) (V41— )
When the {u;} are equally spaced and the
{v;}) are equally spaced, we obtain the uni-
form association model. When B8 =0, we
obtain the independence model. The good-
ness of fit of the uniform association model
can be tested with a chi-squared statistic*
having rc — r — ¢ degrees of freedom.

Goodman [7] discussed several other mod-
els that include the uniform association
model as a special case. A row effects model
has the property logf; = a; for all i and j.
The row variable may be nominal for this
model, which can be tested with a chi-
squared statistic having (r — 1)(c —2) de-
grees of freedom. This model is itself a spe-
cial case of two row and column effects mod-
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els, one for which logf; = «; + f; and the
other of which has the multiplicative form
log8; = o; ;. These models have (r — 2)(c —
2) residual degrees of freedom. Analogous
models can be formulated for multidimen-
sional tables. See Clogg [5] for details.

These log-linear models treat the variables
alike in the sense that no variable is identi-
fied as a response. Iterative methods are
necessary to obtain maximum likelihood es-
timates of parameters and goodness-of-fit
statistics for these models. See the sections
on Estimation and Computer Packages.

Logit Models*

Suppose now that an ordinal variable Y is a
response variable and let X denote explana-
tory variables. Let p,;(x) denote the probabil-
ity that Y falls in category i when X = x,
where >%_ p(x) = 1. When ¢ =2, the logit
transformation is log[p,(x)/p,(x)]. The linear
logit regression model

log[ py(%)/p1(X) ] = a + B'x

is one that yields predicted values of p;(x)
between 0 and 1, the relationship being
S-shaped between p;(x) and each x; (see
LOGIT).

When there are ¢ > 2 responses, there are
several ways of forming logits that take the
ordering of the categories into account. The
cumulative logits

L= log[ _Ep,-(x)/z‘p,.(x)},

i>] i<y
j=1...,¢c—1,

are logits of distribution function values and
lend themselves nicely to interpretation.
Williams and Grizzle [22] and McCullagh
[17] have suggested models for them.

We illustrate with a logit model for a
two-way table having column variable Y as
a response. The jth cumulative logit in row i

1S
Pijert o 0
Ll.j=log( ik ),
Pt -t py

i=1,...,r,j=1,...,c— 1. Suppose that
X is also ordinal and that we assign scores
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{u;} to its levels. A simple linear model is
L;=o; + Bu;,
i=1,...,r, j=1,...,c— 1

This model implies that the effect 8 of X on
the logit for Y is the same for all cut points
j=1,...,c—1 for forming the logit. For
the integer scores {u; =i}, Ly ;— L;= 8
for all 7, j. Thus this logit model can also be
regarded as a type of uniform association
model. In this case, 8 is a log odds ratio
formed using adjacent rows when the re-
sponse is collapsed into two categories. Like
the log-linear uniform association model, it
has rc — r — ¢ residual degrees of freedom
for testing goodness of fit*.

Logit models for multidimensional tables
can be constructed like multiple regression
models by including terms for qualitative
and quantitative explanatory variables. It-
erative methods are needed for maximum
likelihood estimation of the models, as de-
scribed in the sections on Estimation and
Computer Packages.

Models for Square Tables

In some applications, each classification in a
table has the same categories. This happens,
for example, for matched-pairs data such as
occur in social mobility tables. Cell probabil-
ities in square tables often exhibit a type of
symmetry relative to the main diagonal.
Also, when the categories are ordered, it is
often of interest to study whether one mar-
ginal distribution tends to have larger re-
sponses, in some sense, than the other.

An example of the type of model that has
been proposed for r X r ordinal tables is
Goodman’s [8] diagonals-parameter symme-
try model,

my=md

i<j.

The parameter 8, k=1,...,r—1 is the
odds that an observation falls in a cell k
diagonals above the main one instead of in a
corresponding cell k& diagonals below the
main one. For the special case § = - - -
= §,_, =0, this model exhibits the condi-
tional symmetry P(X =i, Y=/|X<Y)
= P(X =, Y=1i|X > Y). The further spe-

cial case, in which all §, = 1, gives the sym-
metry model m; = my, i 7 j. Each of these
models can be expressed as a log-linear
model and tested using standard chi-squared
statistics. Whether the delta parameters in
these models exceed one or are less than one
determine how the marginal distributions
are stochastically ordered.

There are several other log-linear models
in which the effect of a cell on the associa-
tion depends on its distance from the main
diagonal. Also, standard log-linear models
for ordinal variables (e.g., uniform associa-
tion model) often fit square tables well when
the main diagonal is deleted. See Haberman
[13, pp. 500-503] and Goodman [8] for ex-
amples; see also MARGINAL SYMMETRY.

Other Models

Several alternative ways have been proposed
for modeling ordinal variables. Some of
these assume an underlying continuous dis-
tribution of a certain form. McCullagh [17]
discussed a “proportional hazards” model
that utilizes the log(—log) transformation of
the complement of the distribution function
of the rgsponse variable. He argued that it
would be appropriate for underlying distri-
butions of the types used in survival analy-
sis.

If one feels justified in assigning scores to
the levels of an ordinal response variable,
then one can construct simple models for the
mean response that are similar to analysis of
variance and regression models for continu-
ous variables. This approach is especially
appealing if the categorical nature of the
ordinal response is due to crude measure-
ment of an inherently continuous variable.
Grizzle et al. [11] gave a general weighted
least-squares approach for fitting models of
this type. Similar models have been con-
structed for mean ridits* (see Semenya and
Koch [19]).

INFERENCE FOR ORDINAL VARIABLES

In this section we discuss estimation of ordi-
nal measures of association and models and



describe ways of using the estimates to test
certain basic hypotheses. We assume that
the sample was obtained by full multinomial
sampling or else by independent multino-
mial sampling within combinations of levels
of explanatory variables.

Estimation

Under these sampling models, the measures
of association discussed in the first section
are asymptotically normally distributed.
Goodman and Kruskal [10] applied the delta
method (see STATISTICAL DIFFERENTIALS) to
obtain approximate standard errors for these
measures. Hence one can form confidence
intervals for them.

The ordinal log-linear and logit models
can be fit using weighted least squares*
(WLS) or maximum likelihood* (ML). The
WLS estimate has a simple closed-form ex-
pression. See Williams and Grizzle [22], e.g.,
for WLS estimation of the cumulative logit
model.

The ordinal log-linear models discussed in
the Log-linear Models section are special
cases of generalized linear models* proposed
by Nelder and Wedderburn [18]. The ML
estimates may be obtained using the itera-
tive Newton—Raphson method described in
their paper, which corresponds to an itera-
tive use of WLS. ML estimates can also be
obtained using an iterative scaling approach
given by Darroch and Ratcliff [6] or by
using a Newton unidimensional iterative
procedure suggested by Goodman [7]. The
latter approaches are simpler than Newton—
Raphson*, but convergence is much slower.
McCullagh [17] showed how to use the
Newton—-Raphson method to obtain ML es-
timates for a class of models that includes
the cumulative logit models.

Testing Hypotheses

Basic hypotheses concerning independence,
conditional independence, and higher-order
interactions can be tested using estimates of
measures of association or estimates of cer-
tain model parameters. For example, con-
sider the null hypothesis of independence for
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the ordinal-ordinal table. Goodman and
Kruskal [10] showed that a broad class of
measures of association have asymptotic
normal distributions for multinomial sam-
pling. In particular, an ordinal measure such
as gamma or tau-b divided by its stan-
dard error has an asymptotic standard nor-
mal null distribution. This statistic will (as
n—>o0) detect associations where the true
value of the measure is nonzero. If the logit
or log-linear uniform association model
holds, then independence is equivalent to
B = 0. The estimate of B8 divided by its stan-
dard error also has an asymptotic standard
normal null distribution. Alternatively, the
difference in values of the likelihood-ratio
statistics for testing goodness of fit of the
independence model and the uniform associ-
ation model has an asymptotic chi-squared
distribution* with a single degree of free-
dom.

Similar remarks apply to the two-way ta-
ble with » unordered rows and ¢ ordered
columns. Independence can be tested using
a discrete version of the Kruskal-Wallis test,
which detects differences in true mean ridits.
If log-linear or logit row effects models fit
the data, it can also be tested using the
difference in likelihood-ratio statistics be-
tween the independence model and the row
effects model. Each of the approaches gives
a statistic that has an asymptotic null chi-
squared distribution with r — 1 degrees of
freedom. Analogous tests can be formulated
for multidimensional tables.

Computer Packages

Several computer packages can be used for
the computational aspects of analyzing ordi-
nal data. Some of these are large, general-
purpose statistical packages that have com-
ponents or options for categorical data*.
For example, the widely available package
BMDP has a program (4F) that, among
other things, computes several measures of
association and their asymptotic standard
errors. The package GLIM* is particularly
useful for fitting log-linear models, including
the ordinal ones mentioned in the Log-linear
Models section. Other programs have been
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Data, Vol. 2: New Developments. Academic Press,
New York. (One of the few categorical data
books that devotes much space to models for
ordinal variables, but not easy reading.)

Kendall, M. G. (1970). Rank Correlation Methods,
4th ed. Charles Griffin, London.

Kruskal, W. H. (1958). J. Amer. Statist. Ass., 53,
814-861.

Landis, J. R., Stanish, W. M., Freeman, J. L., and
Koch, G. G. (1976). Computer Programs Biomed.,
6, 196-231.

[17] McCullagh, P. (1980). J. R. Statist. Soc. B, 42,
109-42. (Discusses important issues to be consid-
ered in modeling ordinal response variables.)
Nelder, J. A. and Wedderburn, R. W. M. (1972).
J. R. Statist. Soc. A, 135, 370-384.

Semenya, K. and Koch, G. G. (1980). Institute of
Statistics Mimeo Series No. 1323, University of
North Carolina, Chapel Hill, NC. (A good survey
of the use of weighted least squares for fitting
various models to ordinal data.)

[20] Simon, G. (1974). J. Amer. Statist. Ass., 69, 971—

designed specifically for categorical data*
and can be used for certain ordinal methods.
These include FREQ [13] for ML estimation
of log-linear models, MULTIQUAL [3] for
ML fitting of log-linear and logit models,
and GENCAT [16], which can be used to fit 15
a large variety of models using WLS (see
also the FUNCAT program in the SAS
package). (See also STATISTICAL SOFTWARE.)

[14]

[16]

Summary

More detailed surveys of methods for ana-
lyzing ordinal data are given by Semenya
and Koch [19] and by Agresti [2]. Ordinal
measures of association have been surveyed
by Goodman and Kruskal [9, 10], Kruskal
[15], and Kendall [14]. Summary discussions
of methods for modeling ordinal variables
were presented by Goodman [7], McCullagh

(18]

(19]

[17], Clogg [5], and Agresti [1].

References

(1

(2]

131

Agresti, A. (1984). J. Amer. Statist. Ass., 78, 184—
198.

Agresti, A. (1984). Analysis of Ordinal Categorical
Data. Wiley-Interscience, New York.

Bock, R. D. and Yates, G. (1973). Log-linear
Analysis of Nominal or Ordinal Qualitative Data by
the Method of Maximum Likelihood. National Ed-
ucation Resources, Chicago.

976.
Snell, E. J. (1964). Biometrics, 20, 592—-607.

Williams, O. D. and Grizzle, J. E. (1972). J. Amer.
Statist. Ass., 67, 55-63.

[21]
[22]

(ASSOCIATION, MEASURES OF

CONTINGENCY TABLES

GOODMAN-KRUSKAL TAU
AND GAMMA

LOGIT °

NOMINAL DATA

ODDS-RATIO ESTIMATORS

RANKING PROCEDURES

[4] Bross, I. D. J. (1958). Biometrics, 14, 18-38. RANK TESTS
[5] Clogg, C. (1982). J. Amer. Statist. Ass., 77, 803— SCALE TESTS)
815.
[6] Darroch, J. N. and Ratcliff, D. (1972). Ann. ALAN AGRESTI
Math. Statist., 43, 1470-1480.
[71 Goodman, L. A. (1979). J. Amer. Statist. Ass., 74, T
537-552. (An easy-to-read development of log- ORDINARY LEAST SQUARES (OLS)
linear models based on local odds ratios.) See LEAST SQUARES
[8] Goodman, L. A. (1979). Biometrika, 66, 413-418.
[9] Goodman, L. A, and Kruskal, H. (1954). J.
Amer. Statist. Ass., 49, 723-764. (A classic paper
on measures of association for ordinal and nomi- ORGANIZATION FOR
el yeghleg) ECONOMIC COOPERATION

[10] Goodman, L. A. and Kruskal, W. H. (1972). J. AND DEVELOPMENT (OECD)
Amer. Statist. Ass., 67, 415-421.

[11] Grizzle, J. E., Starmer, C. F., and Koch, G. G,, 3 . i "
(1969). Biometrics, 25, 489-504. (A good exposi.  1he OECD is the Paris-based international
tion of the use of weighted least squares for fitting organization of the industrialized, market-
a wide variety of models to categorical data.) economy countries. Its membership includes

[12] Haberman, S. J. (1974). Biometrics, 30, 589-600.  the countries of Western Europe, Canada

[13]

Haberman, S. J. (1979). Analysis of Qualitative

and the United States, Japan, Australia, and



