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SUMMARY

For the pain data analysed previously by Cox and Chuang,’ this paper proposes a new model that assumes
monotone scores for ordered response categories. This proposed model possesses several attractive features
and allows a stochastic ordering of the drugs under comparison. Such a model also provides insight regarding
the ordinal scale used to classify response. Estimation of the parameters in the model is obtained by use of
BMDP3R.

KEy worDs Base comparison model ~ Equally-spaced scores ~ Ordered scores Ordinal pain data
RC model

INTRODUCTION

Cox and Chuang! compared a chi-square partitioning analysis and two logit analyses of ordinal
pain data from a pharmaceutical study. These analyses were designed, more generally, to compare
nominal treatments with respect to an ordinal response variable. The chi-square partitioning
technique uses continuation ratios and allows one to examine several subtables independently. Cox
and Chuang! referred to the first class of logit models as base comparison models, because the
logits compared each response to a baseline response. The most general base comparison model
considered is equivalent to the multiplicative row and column effects (RC) association model
considered by Goodman.?'® The second logit analysis applied cumulative odds models proposed
by McCullagh.*

All three approaches were applied to model responses on pain from a single-dose, postoperative
analgesic trial® that employed four drugs (2100, EC4, C60, C15) and four ratings (poor, fair, good,
very good to excellent). These data appear in Table I. Cox and Chuang! presented the results and
the advantages and disadvantages of each approach. Both types of logit models are highly
parametrized and provide considerable flexibility for describing data. Their parameters, however,
are rather difficult to interpret in the general formulation of the models given by Cox and Chuang.

In this paper, we propose a slightly different model to describe the data. This new model isa
special case of the base comparison model given by Cox and Chuang, one that generates monotone
scores for the response categories and implies a stochastic ordering of the rating distributions of the
drugs. This stochastic ordering leads to simpler interpretations of the results for this model than for
those obtained with the models considered by Cox and Chuang. The model is a generalization of
the log-linear ‘row effects’ model, which assumes equally-spaced scores for the response
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Table I. Ratings of four drugs in a single-dose, postoperative
analgesic trial®

Rating
Very good to
Drug Poor Fair  Good excellent
Z100 5 1 10 14
EC4 3 3 3 20
C60 10 6 12 3
C15 7 12 8 2

categories. Yet, it is more structured than the RC model, which allows arbitrary (possibly non-
monotone) scores. Maximum likelihood estimates of the parameters in this new model are
obtained by use of BMDP3R,° also used by Cox and Chuang. We feel that the model proposed in
this paper, when it fits reasonably well, gives information directed toward the principal goal of
analgesic studies, namely to find the most effective drug when data suggest differences in their
analgesic effects.

MODEL SPECIFICATION

Let {p;;| Y. p;j=1,i=1,...,4} be the multinomial probabilities of the respone categories under

the four djrugs. The homogeneity model, which assumes p;; = p; (i =1, . . ., 4), fits the data in
Table I poorly (the likelihood ratio statistic G* = 46-74, with d.f. =9, so p < 0-001). The low
p-value suggests that patients did respond differently to the four drugs.

Since the response categories (columns) are ordered but the drugs (rows) are not, one approach is
to assign score j to the jth response category and unknown parameter y; to the ith drug and consider
interaction of the form ju;. This interaction structure gives the following model:

lOg pij T u+ai+ﬂj+.jﬂia la] = 13 o .. a4 (1)

Yu=Yp=Yu=0

Model (1), often referred to as a row effects (or R) model, has been discussed by various authors,
including Fienberg,” Plackett,® Haberman® and Goodman.? Model (1) treats the ordinal response
as an equally-spaced numerical scale. Furthermore, it assumes that the explanation of the
interaction between drug and response results from the product of a set of drug-specific parameters
with these equally-spaced scores. This model, when fitted to Table I, yields G* = 2446 with d.f. = 6
(p < 0-001). Though substantially better than the homogeneity model, the fit is still rather poor.

A natural generalization of (1) is to use a set of monotone non-decreasing (not necessarily
equally-spaced) scores {v;} for the response categories. In the absence of any obvious choice for
{v;}, we suggest that one treat them as unknown parameters and estimate them using maximum
likelihood. This consideration gives rise to the following model:

logp;; =p+o;+ B+, Lj=1,...,4 2

Yu=Yph=Ymu=0

1=V1<V2<V3<V4:4.
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The scaling given here for the {v;} is arbitrary, and we suggest it simply to make the score
parameters more comparable to the fixed scores in the R model (1). This model reduces to (1) in the
special case when all v;, ; —v; are constant. Goodman’s RC model has the same structural form as
(2), but in it neither set of scores has an ordering constraint. The addition of this constraint for the
ordinal response variable produces a stochastic ordering among the response distributions of the
drugs. To see this, note that for a pair of drugs a and b, the log odds ratio for adjacent responses is

log (Paij,j+ 1/Pa,j+1 ij) = (Hp— o) (Vjr1—j). (3)

If p,, > p,, then it follows that these log odds ratios are non-negative for j = 1, 2, 3, and hence

Z Pp; < Z p,; for t=1,23 4
j=1 =1
where strict inequality holds for at least one ¢. That is, the response distribution for the bth drug is
stochastically greater than that for the ath drug. Hence, when this model fits, we can order the drugs
according to the parameters {y;}. The higher y; is, the more effective the associated drug is
as an analgesic. More specifically, the odds of making response j+ 1 instead of response j are
exp [ (ps — Ha) (Vj+1 —v;)] times higher for drug b than for drug a.

Another implication of (4) is that if y, > u,, then ) v;P,; > ) v;p,;; that is, the mean score for

drug b is greater than for drug a. The mean score uilder a set Jof assigned (monotone) response
scores is the criterion for comparing drugs in many studies, with use of analysis of variance
techniques. This practice, however, has a potential pitfall, since the ordering of the mean scores may
depend on the response scores chosen. The ordering of means is necessarily free from the choice of
(monotone) scores only when the sample response distributions are stochastically ordered. Since
model (2) implies a stochastic ordering, when it fits we avoid the subjective choice of scores and also
the possibility of improper ordering due to mapproprlate score assignment.

In related research, Agresti, Chuang and Kezouh'® propose an adapted RC model for two-way
tables where both variables are ordinal and both {4} and {v;} are required to be monotone.
Anderson'! proposed another related class of models for ordmal response variables.

RESULTS

We fit the monotone-scores model (2) to the data in Table I using BMDP3R. An explanation of the
use of BMDP3R to carry out maximum likelihood appears both in the BMDP manual and in

J

Reference 1. In this application, we reparametrized the ordered scores {v;} as v;= ) Ay and
k=1
converted the ordering constraint on {v;} to A; = 0Oand A, > 0,k = 2, 3, 4. Since BMDP3R allows
minimum values to be specified for the parameters, we can easily handle the constraints on {A, }.
After preliminary fitting, we can rescale the {1i; } and {7;} so that the {7;} fall in some predetermined
range,suchas 1 =9, < ... <9, = 4. A sample program for applying the model to these data is
available from the authors.

The general base comparison logit model considered by Cox and Chuang is exactly equivalent to
Goodman’s RC model, that is model (2) without the ordering constraint. Cox and Chuang noted
that this model fits Table I fairly well, with G* = 669 based ond.f. = 4. Hence most of the lack of fit
of the R model is caused by restriction of the response scores to equal intervals. The monotone-
scores model yields a G* of 9-91. This model also gives a much better fit than that obtained with use
of the equal-interval scoring of the R model. Counterbalancing the slight deterioration in fit
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compared to the more general RC model is the insight and simpler interpretation obtained with
this model. The estimates for the association parameters are fi; = 0-37, fi, = 0-39, fi; = —038,
fiy = —058% =1,9, = 1,93 = 146 and 9, = 4. Based on the {}; }, a sample ordering among the
four drugs is

EC4 > Z100 > C60 > C15. ®)

In other words, drug EC4 tended to induce the best responses in this sample.

The estimated response scores {9;} have identical values for the poor and fair categories, and
these two scores are quite close to the one for the good category. Analysis of the log odds ratios (3)
for these response scores indicates that differences among the drugs occur primarily in regard to
whether one judges them in the top category (very good to excellent) rather than in another
category. In other words, given that a response occurs in one of the first three categories, there is
little difference in the drugs in the distribution among these responses. In this study, it seems that
the three least favourable categories are not very helpful in telling the drugs apart, and it is the most
favourable category that plays the major role of differentiating between the drugs. We consider this
observation useful not only in helping us to oder the drugs, but also in understanding the
mechanism leading to the result.

INFERENCES

So far we have used the monotone-scores model in a purely descriptive way. Among the inferential
questions that arise with this model are the following: does this model or the model that allows
arbitrary response scores (i.e. the RC model) fit significantly better than the model that assumes
fixed equal-interval scores (the R model)? If the monotone-scores model fits, how can we make
pairwise comparisons of the {f;} to judge whether significant differences exist among the drugs
with respect to their response distributions?

Given that the RC structural form holds, we can use the difference between the G? values for the
R model and for the RC model to test the null hypothesis that the scores are equal-interval. For our
example, this difference equals 24-46 — 669 = 1777, based on d.f. = 6—4 =2, and indicates a
substantial improvement in fit when we allow for arbitrary scores. Comparisons with the
monotone-scores model are a bit more complex, because the asymptotic distribution of G* for that
model depends on whether the true response score parameters lie on the boundary of the parameter
space. If the model holds with true response scores that are strictly monotone, then G* has the same
asymptotic distribution as it does for the RC model. On the other hand, suppose that the model
holds with, say, strictly monotone scores except for an adjacent pair that are identical. Then it
follows from results for similar models discussed by Agresti, Chuang and Kezouh'° that G* hasan
asymptotic distribution that is an equal mixture of the one for the RC model and one having an
additional degree of freedom. In either case, for our example, the model having monotone response
scores fits substantially better than the one having equal-interval scores, since the reduction in G%is
24-46 — 991 = 14-55.

Our next analysis involves checking the extent to which we can order the drugs with respect to
the pain rating. The estimates {1} fall roughly into two groups, namely (Z100, EC4) and (C60,
C15). When we refit the monotone-scores model under the constraint y; = fi,, we get G> = 11:28,
and we get G* = 10-30 under the constraint p; = pg. Under the joint constraints p; = i, and
U3 = g, We Obtain G? = 11-76. These G values are useful for summarizing goodness of fit under
various conditions. Since the parameters may lic on the boundary of the parameter space, usual chi-
square large-sample results are invalid, and we cannot use these G2 values formally in hypothesis
tests. None the less, the increase in G? over the value of 991 obtained with only the ordering
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constraint on the {v;} is not severe, suggesting that there is little evidence that Z100 and EC4 have
different effects or that C60 and C15 have different effects. However, these two groups differ
substantially from one another, since an equating of their effects leads to the homogeneity model
that has G* = 46-74. This is the same conclusion obtained with use of the more complex models
discussed by Cox and Chuang.

DISCUSSION

We formulated the monotone-scores model in (2) for two-way tables having an ordered response
classification. The same methodology applies to multi-way tables having an ordinal response
variable. For instance, we could compare the four drugs with regard to the pain rating while
controlling for other factors, using adaptations of standard log-linear models in which the
drug-pain association term has the structure u;v; for monotone {v;}. The other explanatory
variables could be nominal or ordinal and one should take the measurement scales into account (as
in Chapter 5 of Reference 12) in constructing the other association or interaction terms.

The monotone-scores model is not as parsimonious as the row effects model, since it has
parameters instead of fixed scores. However, the number of distinct parameters for this model can
be no greater than the number for the RC model, which is the most general base comparison logit
model discussed by Cox and Chuang.’ When the true scores are strictly monotone, the estimates
for these two models are asymptotically equivalent. In that case, we can use the information matrix
to gauge the precision of parameter estimates, for a fixed sample size. See Cox and Chuang? for
comments regarding sample size requirements for fitting models of this type.

The reader should note that the response score estimates {7;} for model (2) depend on the
particular drugs being compared. For instance, different score estimates occur if one or more drugs
are deleted from Table I or if others are added. Although this may seem undesirable, it is a feature of
all methods in which response scores are data dependent. For instance, if the Kruskal-Wallis
statistic (corrected for ties) were used to analyse Table I, the rank scores for the response categories
and the sample mean ranks for the drugs would also depend on the particular drugs included in the
table.

Of course, in some applications the monotone-scores model will be too simple to give a good fit
to the data. In some cases one might find that monotone scores are inappropriate, perhaps because
the drugs are not stochastically ordered on the response. For instance, one may obtain a rather
poor fit of the monotone-scores model for the cells in two columns that have identical score
estimates, but one may obtain a good fit for the RC model because of ‘out-of-order’ scores for those
columns. To test for significance of departures from H,: v, = v, in the RC model, Goodman?
suggests the statistic G*(I) + G*(RC_;,)-G*(RC), based on d.f. = 1, where G*(I) is the G statistic
for the independence model fitted to the table consisting of columns a and a + 1, G*(RC) is the G
statistic for the RC model applied to the complete table,and G*(RC,,,) is the G statistic for the RC
model applied to the table in which columns a and a + 1 are collapsed into a single column. When
the monotone-scores model gives %, < ... <9, =9,4; < ..., it can be shown that Goodman’s
statistic is identical to the difference between the G* statistic for that model and G*(RC). For
instance, to test Hy: v, = v, for the RC model in Table I, the test statistic is 991 — 669 = 3-21,
based on d.f. = 1. Considering that the data suggested this test, there is no strong evidence of non-
monotonicity. When sampling error offers a potential explanation of the non-monotonicity in the
RC model, the monotone-scores model has considerable appeal because of the simpler
interpretations possible with the stochastic ordering induced by this more severe smoothing of the
data.
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