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Abstract: A simulation study investigates some effects of having 'sparse' categorical data, for which 
the ratio of the sample size to the number of cells is relatively small. In this study, the true cell 
proportions satisfy the uniform association model for ordinal variables. Conclusions include the 
following: (1) For direct testing of the model, the distribution of the Pearson goodness-of-fit 
statistic is closer to the asymptotic chi-squared distribution than is the distribution of the 
likelihood-ratio statistic. (2) For comparing two unsaturated loglinear models (such as in testing 
independence under the assumption that a particular model holds), it is usually preferable to 
compare likelihood-ratio statistics rather than Pearson statistics. (3) A beneficial aspect of sparse- 
ness is that the power of certain single-degree-of-freedom test statistics tends to increase as the table 
becomes more sparse, for a fixed sample size. (4) The common practice of adding constants to 
empty cells can cause havoc with the distribution of the Pearson statistic. 

Keywords: Independence, Likelihood-ratio statistic, Ordinal variables, Pearson chi-squared statistic, 
Uniform association model 

1. Introduction 

Contingency tables are said to be sparse when the ratio of the sample size to 
the number of cells is relatively small. For Poisson or multinomial sampling 
models, standard asymptotic theory is valid as the cell expected frequencies go to 
infinity, for a fixed number of cells. These asymptotic approximations may be 
quite poor for sparse tables, even if the total sample size is quite large. For 
examples of investigations into the adequacy of chi-squared approximations for 
goodness-of-fit statistics for multinomial distributions, see Larntz [15] and Koehler 
and Larntz [16] and the references in those articles. 

The dangers inherent in analyzing sparse contingency tables have been well 
advertised. Less attention has been given to ways that sparseness may not be 
harmful, or indeed may even be beneficial, to inference-making for categorical 
data. This article considers two related analyses for which this can be the case. 
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Results are given of a simulation study that investigates the effects of sparseness 
on these analyses. In this study, the effects are studied by increasing the number 
of cells in the table, for a fixed sample size and underlying distribution. 

Let { n~ } denote observed cell counts and let { rh, } denote maximum likelihood 
(ML) estimates of corresponding expected values { mi} for a particular model. 
Let 

G2(M)=2En, log(nJrh,) and X2(M)  = E(lli--l~i)2/?~li 
denote the likelihood-ratio and Pearson statistics for testing the goodr~ess of fit of 
model M. Let 3,/1 and M 2 denote two models such that M~ is a special case of 
M 2. The statistic GZ(Mx ]M2) = G2(M1) - G2(M2) is used to test the fit of M 1, 
given that M 2 holds. It is commonly employed for comparing models in model- 
building procedures. For loglinear models, from Bishop et al. [1, p. 126], 

GZ(MIJM2) = 2 ~ n ~  log(thiz/rh;1 ) = 2Y'~ rh,zlog(rh~2/rhil), 

where (rhik } refers to model M k, k = 1, 2. 
Suppose we want to test a hypothesis that can be expressed as the condition 

that some model M 1 holds. In practice it is usually possible to imbed the model 
in a slightly more complex model M 2 that reflects the pattern of departures from 
the hypothesis that one expects. The first purpose of this paper is to show that, 
even for fairly sparse data, the standard asymptotic approximation for the 
statistic G2(MIIM2) can hold quite well. The estimates { rhi2 } are functions of 
cell counts in the lower-dimensional marginal tables that are the minimal suffi- 
cient configurations for model M 2, and these tables are much less sparse than the 
full table { n i }. Thus, although the chi-squared approximation for the statistic 
G2(M1) may be quite poor for sparse tables, it is possible that the null distribu- 
tion of G 2(M1 I M 2) may be well approximated by the usual reference chi-squared 
distribution. Several studies have noted that X2(M) follows a chi-squared 
distribution more closely than does G2(M), for sparse tables. However, X2(M~) 

- X2(M 2) depends on the cell counts as well as the sufficient statistics for model 
M 2, so its behavior is more uncertain. The simulation study in this article 
investigates the behaviors of G2(M1 [M2) and X2(M1) - X2(M2), for a particu- 
lar pair of models, as a function of the degree of sparseness in the table. 

The second purpose of the paper is to note that sparseness need not adversely 
affect inferences involving certain single-degree-of-freedom statistics that describe 
characteristics of the entire table. As the number of cells increases, improved 
normal approximations resulting from increasing the number of approximately 
additive effects of similar order of magnitude on the statistic may counterbalance 
the increase in sparseness. The specific types of statistics we have in mind here 
involve ordinal variables, for which it is usually plausible to hypothesize underly- 
ing continuous variables. The refinement of the measurement scales, though 
increasing the degree of sparseness, can improve the agreement between the 
descriptive and inferential conclusions reached with ordinal categorical data 
methods and with analogous methods for continuous variables. Asymptotic 
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approximations usually are valid for smaller sample sizes in the continuous case, 
so sparseness may even be beneficial in this respect. In addition, refining the 
measurement scales can result in improved power for detecting associations, 
through eliminating 'tied' pairs of observations that provide no information 
about the direction of association. 

The simulation study described in the next section considers these two types of 
analyses in the context of an important association model for ordinal variables. 
As a by-product of this study, it is noted that the standard practice of adding a 
small constant to cells in sparse tables before fitting models can have a severe 
impact on asymptotic approximations for goodness-of-fit statistics. 

The empirical results obtained in this study are not surprising or even espe- 
cially innovative, as corijectures such as the one regarding G 2 ( M I l M 2 )  already 
appear in the literature (see, e.g., Haberman [12, p. 326] and Imrey et al. [13]). 
However, some of these results illustrate the utility of the limit theorems in 
Haberman [11] for sparse tables, and suggest that not enough attention has been 
paid to that paper in the contingency table literature. 

2. Sparse uniform association 

Let t denote the number of cells in the contingency table, and let n denote the 
total sample size. The issues discussed in Section 1 will be considered in this 
article only for two-way tables, with t = rc cells. We illustrate our arguments 
using two loglinear models for the r-by-c table, the independence (I) model 

log m ij = )t + ~.x + )~, (2.1) 

and the linear-by-linear association model 

log m i j =  ?t + Xx + ?~Y + f l u i v  j (2.2) 

for ordinal variables, in which fixed monotone scores ( u i } and  ( vj } are assigned 
to the rows and to the columns. We shall use the version of model (2.2) having 
scores ( u i = i} and ( vj = j ) ,  called the uniform association (U) model [6] because 
it implies uniformity of local odds ratios ( m i j m i + l , j + l / m i , j + l m i + l ,  j = exp(fl)}. 
Goodness-of-fit statistics have degrees of freedom d f =  ( r -  1 ) ( c -  1) for the I 
model and df = (r - 1)(c - 1) - 1 for the U model. 

We chose model (2.2) as the alternative to independence because it corresponds 
to a family of distributions that contains a discrete analog of the bivariate normal 
distribution as a special case [8]. In particular, the U model describes well a 
bivariate normal distribution that has been categorized by selecting cutpoints that 
are equally-spaced. Thus, through the addition of a single parameter to model 
(2.1), we obtain a model that describes departures from independence of the type 
often expected for ordinal variables. 

Sufficient statistics for fitting the U model are the row totals (n  i+}, the 
column totals (n+j},  and ~.,Euivjrlij (or, equivalently, the correlation). The 
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likelihood-ratio statistic G2(I I U ) =  G 2 ( I ) -  G2(U) for testing independence, as- 
suming that the U model holds, depends on the data only through these sufficient 
statistics. The first argument in Section 1 is that the null distribution of G2(I [U) 
should be reasonably well approximated by the X 2 distribution if the (mi+ } and 
(m+j} are not particularly small, even though the distribution of G2(I) may be 
poorly approximated by the X~r- x)(¢- 1) distribution. 

Secondly, we consider inference regarding the association parameter 13 in 
model (2.2). Let fi denote the ML estimate of fl and let 8/v/-n denote its 
estimated asymptotic standard error obtained from the inverse of the estimated 
information matrix. We shall see that the normal approximation for the asymp- 
totic distribution of v ~ ( f i - - ~ ) / 8  is not adversely affected by sparseness. Also, 
we observe that when the U model holds with fl 4= 0, the power of the test of 
independence (fl = 0) based on the statistic z v = v%-fi/8 tends to increase as the 
degree of sparseness increases, for a fixed underlying distribution. That is, the 
improved precision of measurement can result in an increased noncentrality value 
of nfl2//o 2. In this regard, it follows from Cox and Hinkley [3, pp. 322-324] that 
we should expect similar results from two other tests. Specifically, this 'ML test' 
has the same asymptotic efficacy for local alternatives as the likelihood-ratio test 
based on G2(I ]U) or a 'score test' based on the derivative of the log likelihood 
evaluated at the null hypothesis. For the linear-by-linear association model, it is 
easily seen that the score is 

S =  2 2 u ,  vjp~j- (2u,P~+)(~7.vjP+j), 

where p,j = n~j/n. A related statistic for testing independence is z s = ~/-nS/8 s, 
where 

, , 2  ,, 2 ^ 2 __ 8 2  Os = p .  
^ ^ 2  with / , x =  F, uipi+ and /~r= F, vjp+j. Here, o s is the estimated asymptotic vari- 

ance of Cn--[S - E(S)] ,  where 

E(s )  = [(.  - 1)/.1 [ E E uivj ,,- ( E  

with rr/j = E(pij  ) = mij /n .  
For our simulation study we used population cross-classification tables that 

satisfy the U model perfectly and correspond to underlying normal distributions 
with correlations p = 0 and p = 0.2. For sample sizes n = 50 and n = 100, and for 
table sizes 2 x 3, 4 x 4, 6 x 6, and 10 × 10, we generated 5000 multinomial 
distributions. The purpose was to consider, for fixed n, how increasing the 
sparseness (through increasing t = rc) affected the sampling distributions of 
various statistics. For the underlying marginal normal N(#,  o) distributions, the 
cutpoints were selected at # when r = 2 ,  at # + 0 . 6 o  when c = 3 ,  at # and 
/ , + 0 . 8 o  when r = c = 4 ,  at g, # + 0 . 6 o ,  # + 1 . 2 o  when r = c = 6 ,  and at #, 

+ 0.40, # + 0.8o, # + 1.2o, /z + 1.6o when r = c = 10. For each randomly 
generated table we calculated G2(I), G2(U), (72(I [U), corresponding Pearson 
statistics, and the squares of z U, zua = vrn(fi - f l) /8,  z s, and Zsa = ~/-n(S- 
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E S ) / 8  s. Upon completion of the 5000 simulations, we analyzed the asymptotic 
approximations in the upper tail for these statistics, by giving sample proportion 
estimates for probabilities of exceeding the 100(1- a) percentage point of the 
relevant chi-squared distribution, for a = 0.01, 0.05, 0.10, and 0.25. We used the 
GGMTN routine in IMSL for random generation of multinomial distributions, 
on the IBM 3081 mainframe computer. Assuming the adequacy of the generator, 
the standard error for these estimates is about 0.006 when the true proportions 
are about 0.25, and it is about 0.0014 when the true proportions are about 0.01. 

3. Results 

The results of this investigation are reported in the following subsections. 

3.1. Effect of sparseness on G 2 

Consider first the case in which independence holds. Table 1 gives the 
performance of G2(I), G2(U), and G2(I IU), for the four table sizes and the two 
sample sizes. For goodness-of-fit testing of a completely specified multinomial 
distribution, Koehler and Larntz [14] observed that the distribution of G 2 is 
generally not well approximated by its asymptotic chi-squared distribution when 
n / t <  5. Similar results are observed here for the I and U models. The G2(I) and 
G2(U) goodness-of-fit statistics behave adequately at both sample sizes for 2 × 3 
tables, but deteriorate dramatically for larger tables. These statistics are highly 
liberal except for the 10 x 10 case with n = 50, when they are highly conservative. 
This is consistent with the observation made by Koehler and Larntz that the 

Table 1 
Proport ion of times likelihood-ratio statistic exceeds chi-squared percentage point, when there is 
independence 

Statistic r x c n -= 50, a -- n ---100, a = 

0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 

G2(I) 2 x 3 0.013 0.051 0.107 0.261 0.011 0.058 0.108 0.258 
4 x 4 0.027 0.102 0.173 0.371 0.016 0.075 0.131 0.304 
6 x 6 0.024 0.126 0.236 0.501 0.031 0.129 0.224 0.445 

10 x 10 0.000 0.000 0.002 0.028 0.013 0.086 0.188 0.464 

G2(U) 2 × 3 0.010 0.050 0.102 0.255 0.011 0.055 0.104 0.265 
4 ×  4 0.030 0.102 0.178 0.374 0.016 0.074 0.137 0.303 
6 × 6 0.024 0.125 0.237 0.506 0.031 0.128 0.227 0.449 

10 × 10 0.000 0.000 0.003 0.029 0.013 0.085 0.187 0.462 

G2(I I U) 2 × 3 0.013 0.054 0.108 0.263 0.011 0.054 0.103 0.250 
4 × 4 0.011 0.054 0.111 0.267 0.012 0.052 0.100 0.241 
6 × 6 0.016 0.060 0.109 0.249 0.012 0.054 0.103 0.257 

10 × 10 0.009 0.055 0.104 0.254 0.010 0.052 0.109 0.253 
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mean and variance of G 2 tend to be smaller than the chi-squared moments when 
n,/t < 0.5 and larger when n / t  > 1. 

Unlike G2(I) and G2(U), G2(I I U) behaves quite well for all table sizes, even 
when n is only 50. This is not surprising, since the {mi+} or {re+j} are of 
moderate size for these table sizes. More generally, whenever the difference 
between the dimensions of two models converges to a constant d as t---, oc, 
Theorem 4 in Haberman [11] suggests that G2(M1 [Mz) may have a limiting null 
X~ distribution even if t grows proportionally to n. 

3.2. Effect of sparseness on X 2 

Other investigators (e.g. Haberman [12, p. 325] and Larntz [14]) have indicated 
that the Pearson statistic performs better than the likelihood-ratio statistic for 
sparse tables. For direct tests of a model, this was true in this study as well. Table 
2 contains results for X2(I) and X2(U), when there is independence. The Pearson 
statistics were adequate whenever n / t  > 1; that is, for all cases except the 10 × 10 
table with n = 50. Unlike G2(I [U), however, X2(I) - X2(U) depends on the cell 
counts as well as the sufficient statistics, and its behavior resembled that of X2(I) 
and X2(U). Its performance was poorer than that of G2(II U) for the most sparse 
tables. 

One would expect the Pearson statistic of the form X2(MIIM2) -----~(v~'/i2- 
rh,1)2/rhil (Haberman [10, p. 108]), to perform better than X2(M1) - X2(M2) for 

Table 2 
Proportion of times Pearson statistic exceeds chi-squared percentage point, when there is indepen- 
dence 

Statistic r x c n = 50, a -- n = 100, a = 

0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 

x2(I) 

X2(U) 

X 2 ( I ) -  X2(U) 

x2(IIO) 

2 x 3 0.008 0.046 0.100 0.255 0.009. 0.055 0.106 0.255 
4 x  4 0.010 0.052 0.104 0.265 0.008 0.048 0.103 0.267 
6 x 6 0.008 0.043 0.093 0.255 0.010 0.048 0.095 0.253 

10 x 10 0.010 0.036 0.070 0.188 0.010 0.047 0.096 0.245 

2 x 3 0.009 0.047 0.099 0.254 0.011 0.054 0.104 0.265 
4 x 4 0.009 0.052 0.107 0.273 0.009 0.047 0.106 0.270 
6 x 6 0.009 0.046 0.095 0.258 0.009 0.049 0.096 0.258 

10 x 10 0.012 0.041 0.074 0.185 0.011 0.048 0.093 0.250 

2 x 3 0.010 0.048 0.101 0.257 0.010 0.051 0.099 0.249 
4 x 4 0.009 0.049 0.097 0.242 0.012 0.045 0.091 0.235 
6 x 6 0.016 0.060 0.107 0.231 0.011 0.052 0.105 0.245 

10 × 10 0.077 0.159 0.222 0.344 0.034 0.097 0.149 0.282 

2 × 3 0.007 0.051 0.101 0.253 0.010 0.050 0.102 0.254 
4 × 4 0.010 0.053 0.108 0.267 0.012 0.050 0.099 0.240 
6 × 6 0.015 0.058 0.108 0.249 0.011 0.054 0.104 0.258 

10 × 10 0.011 0.059 0.108 0.257 0.011 0.052 0.109 0.252 
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comparing models for sparse tables. Theorem 4 in [11] suggests that x2(ml I m2) 
is asymptotically equivalent to G2(M1 [M2) for certain sequences of sparse tables 
in which M 1 holds, when the difference between the dimensions of the two 
models converges. Table 2 indicates that for these simulations XZ(M1 I M2) 
behaves much better than X2(M1) -XZ(M2)  and, in fact, very much like 
G2(MI IM2). 

3. 3. Effects of sparseness on power 

Table 3 contains estimated powers for X 2 ( I ) ,  X 2 ( I  l U ) ,  G2(IIU), zu, and z s 
when the U model holds and there is an underlying normal distribution having 
correlation 0.2. We report X2(I) rather than G2(I) for the direct test of the 
independence model, since the poor null approximation for G2(I) implies that 
power comparisons with it are less meaningful. The statistics X2(I IU), G2(I IU), 
z v, and z s behave very much alike, the apparent slight reduction in power for z u 
explained by its null approximation being slightly more conservative (see Table 
4). Note that these statistics become more powerful for sparser tables (i.e., as t 

Table 3 

Estimated powers, when the U model holds and there is an underlying bivariate normal distribution 
with correlation 0.2 

Statistic r x c n = 50, a = n = 100, a = 

0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 

X2(I) 2 X 3 0.033 0.131 0.224 0.432 0.088 0.234 0.349 0.552 
4 x 4 0.022 0.095 0.168 0.371 0.049 0.162 0.265 0.482 
6 X 6 0.015 0.070 0.138 0.333 0.032 0.125 0.203 0.416 

10 X 10 0.014 0.054 0.101 0.235 0.026 0.091 0.153 0.341 

X2(I IU) 2 x  3 0.053 0.177 0.279 0.473 0.130 0.305 0.417 0.621 
4 x 4 0.086 0.245 0.348 0.553 0.193 0.416 0.540 0.736 
6 x 6 0.099 0.263 0.376 0.583 0.249 0.474 0.611 0.774 

10 x 10 0.116 0.282 0.396 0.598 0.276 0.509 0.634 0.795 

G2(I  I U) 2 x 3 0.056 0.180 0.282 0.473 0.135 0.308 0.420 0.621 
4 x 4 0.094 0.249 0.350 0.552 0.197 0.418 0.541 0.735 
6 x 6 0.103 0.263 0.375 0.579 0.253 0.475 0.610 0.771 

10 X 10 0.116 0.279 0.391 0.593 0.273 0.505 0.631 0.790 

f~n /~ /~  2 x 3 0.035 0.159 0.263 0.469 0.116 0.295 0.411 0.619 
4 x  4 0.054 0.220 0.330 0.547 0.171 0.401 0.529 0.734 
6 x 6 0.065 0.229 0.353 0.573 0.212 0.457 0.599 0.771 

1 0 x 1 0  a 0.117 0.283 0.388 0.618 0.248 0.501 0.637 0.805 

v~nS/~ s 2 x  3 0.071 0.195 0.290 0.477 0.147 0.316 0.423 0.623 
4 X 4 0.106 0.260 0.355 0.559 0.206 0.420 0.543 0.737 
6 X 6 0.114 0.275 0.386 0.590 0.255 0.483 0.611 0.774 

10 x 10 0.117 0.285 0.396 0.599 0.282 0.503 0.631 0.796 

a Due to computing expense, this case is based on 1000 simulations. 
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Table 4 
Estimated proportion of times statistic exceeds normal critical value, when U model holds and there 
is an underlying bivariate normal distribution with correlation 0 

Statistic r × c n = 50, a = n = 100, a = 

0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 

p = 0 2 × 3 0.006 0.044 0.096 0.257 0.010 0.049 0.098 0.250 
4 x 4 0.005 0.042 0.096 0.259 0.009 0.046 0.095 0.238 
6 × 6 0.007 0.047 0.097 0.248 0.009 0.050 0.095 0.252 

10 × 10 a 0.008 0.042 0.087 0-240 0.008 0.046 0.089 0.236 

O -- 0.2 2 X 3 0.006 0.045 0.089 0.261 0.007 0.049 0.097 0.259 
4 X 4 0.008 0.048 0.096 0.262 0.007 0.050 0.100 0.249 
6 × 6 0.006 0.042 0.089 0.240 0.006 0.043 0.097 0.253 

10 × 10 ~ 0.017 0.060 0.115 0.257 0.014 0.060 0.105 0.262 

~ [  s - E( S)]/~s 

p = 0 2 ×  3 0.016 0.060 0.115 0.267 0.014 0.056 0.105 0.254 
4 × 4 0.014 0.059 0.113 0.275 0.014 0.053 0.103 0.245 
6 ×  6 0.017 0.061 0.112 0.254 0.014 0.058 0.106 0.255 

10 × 10 0.011 0.056 0.106 0.254 0.010 0.051 0.109 0.256 

0 = 0.2 2 X 3 0.015 0.059 0.109 0.266 0.013 0.057 0.106 0.263 
4 × 4 0.018 0.066 0.116 0.274 0.012 0.055 0.108 0.254 

6 × 6 0.015 0.057 0.108 0.258 0.011 0.053 0.105 0.265 
10 × 10 0.013 0.059 0.112 0.258 0.016 0.058 0.113 0.268 

a Due to computing expense, this case is based on 1000 simulations. 

increases, for fixed n), whereas X2(I) loses power. Thus, sparseness is actually 
advantageous for these four statistics. 

For local alternatives to independence, the statistics in this study have asymp- 
totic noncentral chi-squared distributions. Das Gupta and Perlman [4] showed 
that for fixed noncentrality, the power of chi-squared statistics increases as the 
degrees of freedom decrease. When the U model holds, G2(I [U) and G2(I) have 
the same noncentrality, so we expect G2(I ]U) (for which the noncentrality is 
focused on a single degree of freedom) to be more powerful than G2(I). The same 
remark applies to X2(I IU) and X2(I). As t increases for the normal underlying 
distribution, the noncentrality increases and is still focused on a single degree of 
freedom for z~, z~, X2(I IU), and G2(I [U), resulting in increased power. On the 
other hand, df also increases for X2(I) or G2(I), more than off-setting the 
increase in noncentrality. The single-degree-of-freedom statistics would be inap- 
propriate when the U model fits very poorly, such as when the association is 
non-monotonic. In practice, though, many associations are nearly monotonic in 
some sense, and it is important to investigate how the power behaves if the U 
model holds only approximately. This was considered in a Ph.D. dissertation by 
A. Kezouh at the University of Florida (1984), who studied these tests when 
model (2.2) actually holds with monotone but unequally-spaced scores. He 
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concluded that statistics such as G2(I [U) still tend to outperform greatly ones 
such as G2(I), except when the true table is 'close' to independence. The relative 
advantage of G2(I [U) tended to increase as the strength of association increased 
and as r and c increased. 

Table 4 shows that the asymptotic approximations for the distributions of gUa 
and Zsa did not deteriorate as sparseness increased, for either value of O. Hence, 
confidence intervals for association parameters that describe characteristics of the 
entire table (such as fl in the U model, or the correlation) retain their usefulness 
for sparse tables. This result for fi can be regarded as an illustration of Theorem 1 
in Haberman [11], which indicates that functionals of (rhi} can have asymptotic 
normal distributions even if the number of cells grows at the same rate as the 
sample size. 

3. 4. Effects of adding cell constants 

Sparse tables typically contain many empty cells. This can cause problems with 
existence of estimates for loglinear model parameters or cell probabilities, prob- 
lems with severe bias in estimation of descriptive statistics such as odds ratios, 
problems with the performance of computational algorithms, as well as problems 
with asymptotic approximations of chi-squared statistics (see, e.g., Brown and 
Fuchs, [2]). Thus, it is common practice for researchers to add a small constant to 
cell counts before conducting the analysis. Goodman [5] suggests adding 0.5 to 
each cell count before computing model parameter estimates. Weighted least 
squares solutions require all cell counts to be positive, so Grizzle et al. [9] suggest 
adding to each empty cell the inverse of the number of categories of the response 
variable. Bishop et al. [1, p. 401] indicate that it is generally accepted practice to 
add 0.5 to each cell count of large, sparse tables, though they instead recommend 
Bayes or empirical Bayes approaches whereby a prior distribution induces the 
smoothing. 

Our simulations have indicated that adding constants to cells in sparse tables 
can cause havoc with the distribution of X2(M) statistics. Adding a constant to 
each cell or to each empty cell represents a smoothing towards independence, 
resulting in a conservative influence on the statistics. To illustrate, Table 5 shows 
the effect of adding 1/c to every cell. This approach makes X2(I) far too 
conservative when n/t  is less than about 5, the effect becoming very severe for 
larger tables. The 1/c adjustment results in an improvement for the G2(I) 
statistic for those situations in which it was highly liberal for the unadjusted 
table. However, as n/t decreases the adjustment becomes overly severe, particu- 
larly for cases where G2(I) is itself conservative for the original table. The 
statistics GZ(u) and X2(U) behaved much like G2(I) and X2(I), respectively, and 
are not reported here. Again, G2(I I U) and X2(I I U) behaved alike and were 
much better than G2(I) and X2(I), particularly for very sparse tables. However, 
these statistics performed more poorly than when they were applied to the 
unadjusted table (compare with Table 1). 

Effects on the statistics of adding 1/c only to the empty cells were very similar, 
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Table 5 
Proportion of times statistic exceeds chi-squared percentage point when there is independence and 
constant 1/c  added to all cells 

Statistic r x c n = 50, a = n = 100, a = 

0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25 

G2(I) 2 x 3 0.009 0.046 0.095 0.244 0.008 0.051 0.104 0.255 
4 x 4 0.007 0.045 0.095 0.254 0.008 0.053 0.103 0.264 
6 x 6 0.000 0.009 0.027 0.118 0.007 0.041 0.092 0.248 

10 x 10 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.023 

X2(I) 2 x 3 0.006 0.042 0.088 0.238 0.007 0.048 0.100 0.251 
4 x 4 0.004 0.027 0.066 0.196 0.006 0.037 0.084 0.235 
6 X 6 0.001 0.007 0.024 0.089 0.004 0.023 0.054 0.166 

10 × 10 0.000 0.000 0.000 0.003 0.001 0.005 0.011 0.040 

G2(I  [U) 2 x  3 0.010 0.048 0.099 0.250 0.009 0.049 0.100 0.250 
4 × 4 0.007 0.041 0.090 0.240 0.011 0.046 0.093 0.230 
6 × 6 0.006 0.034 0.078 0.208 0.008 0.045 0.087 0.238 

10 x 10 0.004 0.022 0.054 0.176 0.003 0.031 0.072 0.209 

X2(I  I U) 2 × 3 0.008 0.046 0.095 0.247 0.008 0.048 0.098 0.249 
4 × 4 0.006 0.039 0.088 0.240 0.010 0.045 0.092 0.230 
6 x 6 0.005 0.033 0.077 0.207 0.008 0.043 0.086 0.237 

10 x 10 0.004 0.021 0.055 0.175 0.003 0.031 0.072 0.210 

producing slightly more conservative results for the very sparse tables. The effects 
were far more severe when a larger constant, such as 0.5, was added to every cell. 
For instance, for 6 x 6 tables with n = 50, the estimated true tail probabilities for 
X2(I) are 0.000, 0.000, 0.001, and 0.010, corresponding to the nominal values 
0.01, 0.05, 0.10, and 0.25, respectively. 

4. Conclusions and recommendations 

The study reported here was limited in scope, and one cannot use it to make 
sweeping generalizations about the analysis of sparse data. However, certain 
tentative conclusions and further conjectures are suggested by the results in 
Tables 1-5. 

4.1. Behavior of G: and X 2 statistics 

Table 1 is consistent with previous findings that G2(M) behaves poorly for 
sparse tables. This statistic is likely to behave even more poorly when ther.e is 
more variation in the { mi} than encountered in this study. For goodness-of-fit 
testing of a specified multinomial, Koehler and Larntz [14] showed that a 
standardized version of G 2 is well approximated by the normal distribution for 
very sparse tables. For testing the fit of a model, it is also likely that a normal 
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limiting distribution will give better approximations than the usual reference 
chi-squared distribution, for sparse data. McCullagh [16] reviewed ways of 
handling sparse tables, and he presented a normal approximation for G 2 that 
may be a useful alternative. However, its use is computationally intensive, and it 
assumes that the dimension of the model parameter vector is fixed as the size of 
the table increases. 

Tables 1 and 2 are also consistent with previous studies that noted that the 
Pearson statistic X2(M) behaves much better than G2(M) for sparse tables. In 
this study, the asymptotic approximation for X2(M) was adequate for n/t as 
small as 1. The size of n/t that produces adequate approximations tends to 
decrease as t increases. For instance, Koehler and Larntz suggest the guideline 
n > ~ (i.e., n/t > l f~/ t )  for using X 2 for goodness-of-fit testing of the 
uniform multinomial probabilities (1/t, . . . ,1/t).  In testing models for which 
there is considerable variability in cell probabilities, n > 10~- might be a more 
reasonable guideline for use of XZ(M). As Koehler and Larntz note, it is 
hopeless to expect one rule to cover all cases, but further research with other 
models and other choices of underlying distributions may help to suggest ap- 
propriate guidelines of this type. 

4.2. Behavior of model-comparison statistics 

The adequacy of the asymptotic distribution of G2(M1 I M2) or X2(M1 I M2) is 
likely to be governed by the sufficient marginal configuration for M 2 that is 
farthest from its asymptotic distribution. For instance, the statistic G2(I IU) will 
be influenced by the most sparse marginal distribution, so it should usually 
behave well if n > 5[max(r, c)], when max(r, c) is relatively large. On the other 
hand, X2(M1)-  X2(M2) may be inadequate whenever X2(M1) is. Thus, even 
though the distribution of X2(M1) may be closer to chi-squared than that of 
G2(M1), usually one would prefer G2(M1) - G2(M2) to X2(M1) - X2(M2) for 
comparing two models or for testing a hypothesis by imbedding it within a 
model. 

4. 3. Sparseness and power 

Table 3 shows that increasing the numbers of categories, for a fixed sample 
size, tends to improve the power of statistics designed to detect associations 
between ordinal variables. We conjecture that statistics based on fi (when it 
exists) or the score S retain their inferential usefulness regardless of the degree of 
sparseness. For instance, suppose we consider a sequence of categorizations of an 
underlying bivariate normal distribution for which cutpoints are equally-spaced 
and equal-interval scores are assigned to the rows and columns. As r = c ~ oe 
with max{~rl+,...,%+, ~r+l,...,~r+c ) ~ 0 ,  the sampling distribution of S be- 
haves like that of the sample correlation for the underlying continuous distribu- 
tion. (Note that S is the sample correlation in the table, at each stage, when 
scores are chosen such that marginal standard deviations equal 1.) Also, fi has an 
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approximate functional relationship with the correlation in this case (see [7]). 
This conjecture does not apply to statistics for which df increases when 

categorizations are refined, as illustrated by X2(I) in Table 3. Also, in practice, 
sparseness often results from increasing the number of variables rather than from 
increasing the numbers of category levels (particularly for nominal variables), so 
this conjecture has limited applicability. 

4.4. Adding cell constants 
-¢ 

In using X2(M) to test the fit of a model, we observed that it can be risky to 
add a constant to the ceils. Even the addition of only 0.25 to the cells of a 4 × 4 
table with n = 50 has a marked conservative influence on the distribution of 
X2(I), for instance. This shrinkage towards independence also applies to model 
parameter estimates. For the 10 × 10 table with underlying correlation 0.2, the 
parameter fl in the U model equals 0.036. When n = 50, the expected value of/3 
is approximately 0.039 for the original table, but it is only 0.026 when 0.1 is 
added to each empty cell before one fits the model. If adding a constant is 
necessary to ensure existence of estimates, it may be preferable to select a very 
small constant, and it is wise to try constants of various sizes to assess the 
dependence of the result on that choice. In doing this, there may still be problems 
with weighted least squares estimation, since relatively more weight is given to 
cells when the cell proportion estimate (and resulting variance estimate) de- 
creases. 

In Tables 1 and 2 we noted that G2(M) behaves much more poorly than 
X2(M)  when n/t is approximately in the range 1 to 10, and Table 5 suggests that 
the addition of a constant can improve the asymptotic approximation of G2(M) 
for nit between about 2 and 10. It would be useful if future research could 
establish guidelines for the choice of this constant, as a function of n and t. 

4.5. Generalizations 

One conclusion from this research is the following: If we wish to test a 
hypothesis for sparse categorical data, it is wise to imbed that hypothesis as a 
special case of an unsaturated loglinear model, so that a statistic of the form 
G2(MIlM2) or X2(MIlM2) can be used. We illustrated this by imbedding the 
independence hypothesis in the uniform association model for two ordinal 
variables, but the idea extends quite generally. For instance, suppose we wish to 
test whether X and Y are conditionally independent, given Z, in an r-by-c-by-k 
table. Let (XZ, YZ) denote the loglinear model corresponding to this condition. 
The distribution of G2[( XZ,  YZ)] may be poorly approximated by the X 2 ( r  - 1)(c-1) 
distribution, particularly if n < 5rck. However, suppose that we test conditional 
independence under the assumption that the no three-factor interaction model 
(denoted by ( XY, XZ, YZ)) holds. The statistic G2[( XZ, YZ) I( XY, XZ, YZ)] 
should behave well if the two-dimensional margins are not particularly sparse, say 
n > 5[max(rc, rk, ok)]. If r =  c =  2, this is a single-degree-of-freedom statistic 
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that may (like the Mantel-Haenszel statistic) behave adequately even if k is quite 
large. Of course, if model (XY, XZ, YZ) fits poorly, it is inappropriate to test the 
fit of model (XZ,  YZ) in any case. 
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