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Abstract: A simulation study investigates some effects of having ‘sparse’ categorical data, for which
the ratio of the sample size to the number of cells is relatively small. In this study, the true cell
proportions satisfy the uniform association model for ordinal variables. Conclusions include the
following: (1) For direct testing of the model, the distribution of the Pearson goodness-of-fit
statistic is closer to the asymptotic chi-squared distribution than is the distribution of the
likelihood-ratio statistic. (2) For comparing two unsaturated loglinear models (such as in testing
independence under the assumption that a particular model holds), it is usually preferable to
compare likelihood-ratio statistics rather than Pearson statistics. (3) A beneficial aspect of sparse-
ness is that the power of certain single-degree-of-freedom test statistics tends to increase as the table
becomes more sparse, for a fixed sample size. (4) The common practice of adding constants to
empty cells can cause havoc with the distribution of the Pearson statistic.

Keywords: Independence, Likelihood-ratio statistic, Ordinal variables, Pearson chi-squared statistic,
Uniform association model.

1. Introduction

Contingency tables are said to be sparse when the ratio of the sample size to
the number of cells is relatively small. For Poisson or multinomial sampling
models, standard asymptotic theory is valid as the cell expected frequencies go to
infinity, for a fixed number of cells. These asymptotic approximations may be
quite poor for sparse tables, even if the total sample size is quite large. For
examples of investigations into the adequacy of chi-squared approximations for
goodness-of-fit statistics for multinomial distributions, see Larntz [15] and Koehler
and Larntz [16] and the references in those articles.

The dangers inherent in analyzing sparse contingency tables have been well
advertised. Less attention has been given to ways that sparseness may not be
harmful, or indeed may even be beneficial, to inference-making for categorical
data. This article considers two related analyses for which this can be the case.
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Results are given of a simulation study that investigates the effects of sparseness
on these analyses. In this study, the effects are studied by increasing the number
of cells in the table, for a fixed sample size and underlying distribution.

Let {n,} denote observed cell counts and let { 71, } denote maximum likelihood
(ML) estimates of corresponding expected values { m,;} for a particular model.
Let

Gz(M) = 22”1‘ log("i/'hi) and X?(M)= Z(ni - ’hi)z/’%z‘

denote the likelthood-ratio and Pearson statistics for testing the goodness of fit of
model M. Let M; and M, denote two models such that M, 1s a special case of
M,. The statistic G*(M; | M,) = G*(M,) — G*(M,) is used to test the fit of M,,
given that M, holds. It is commonly employed for comparing models in model-
building procedures. For loglinear models, from Bishop et al. [1, p. 126],

GZ(M1|M2) = 22"1 IOg(”hiz/rhu) = 2Zﬁ1i2log(ﬁ7i2/ﬁlil)’

where {1, } refers to model M,, k=1, 2.

Suppose we want to test a hypothesis that can be expressed as the condition
that some model M, holds. In practice it is usually possible to imbed the model
in a slightly more complex model M, that reflects the pattern of departures from
the hypothesis that one expects. The first purpose of this paper is to show that,
even for fairly sparse data, the standard asymptotic approximation for the
statistic G*(M, | M,) can hold quite well. The estimates {#:,,} are functions of
cell counts in the lower-dimensional marginal tables that are the minimal suffi-
cient configurations for model M,, and these tables are much less sparse than the
full table {n,}. Thus, although the chi-squared approximation for the statistic
G*(M,) may be quite poor for sparse tables, it is possible that the null distribu-
tion of G*( M, | M,) may be well approximated by the usual reference chi-squared
distribution. Several studies have noted that X2(M) follows a chi-squared
distribution more closely than does G*( M), for sparse tables. However, X*(M,)
— X?(M,) depends on the cell counts as well as the sufficient statistics for model
M,, so its behavior is more uncertain. The simulation study in this article
investigates the behaviors of G2(M, | M,) and X?*(M,) — X*(M,), for a particu-
lar pair of models, as a function of the degree of sparseness in the table.

The second purpose of the paper is to note that sparseness need not adversely
affect inferences involving certain single-degree-of-freedom statistics that describe
characteristics of the entire table. As the number of cells increases, improved
normal approximations resulting from increasing the number of approximately
additive effects of similar order of magnitude on the statistic may counterbalance
the increase in sparseness. The specific types of statistics we have in mind here
involve ordinal variables, for which it is usually plausible to hypothesize underly-
ing continuous variables. The refinement of the measurement scales, though
increasing the degree of sparseness, can improve the agreement between the
descriptive and inferential conclusions reached with ordinal categorical data
methods and with analogous methods for continuous variables. Asymptotic
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approximations usually are valid for smaller sample sizes in the continuous case,
so sparseness may even be beneficial in this respect. In addition, refining the
measurement scales can result in improved power for detecting associations,
through eliminating ‘tied’ pairs of observations that provide no information
about the direction of association.

The simulation study described in the next section considers these two types of
analyses in the context of an important association model for ordinal variables.
As a by-product of this study, it is noted that the standard practice of adding a
small constant to cells in sparse tables before fitting models can have a severe
impact on asymptotic approximations for goodness-of-fit statistics.

The empirical results obtained in this study are not surprising or even espe-
cially innovative, as corjectures such as the one regarding G*( M, | M,) already
appear in the literature (see, e.g., Haberman [12, p. 326] and Imrey et al. [13]).
However, some of these results illustrate the utility of the limit theorems in
Haberman [11] for sparse tables, and suggest that not enough attention has been
paid to that paper in the contingency table literature.

2. Sparse uniform association

Let ¢ denote the number of cells in the contingency table, and let » denote the
total sample size. The issues discussed in Section 1 will be considered in this
article only for two-way tables, with = rc cells. We illustrate our arguments
using two loglinear models for the r-by-c table, the independence (I) model

log m,.j=)\+)\’f+)\§, (2.1)
and the linear-by-linear association model
- X | \Y
log m; =X+ A+ N+ Bu,y, (2.2)

for ordinal variables, in which fixed monotone scores {#,} and {v;} are assigned
to the rows and to the columns. We shall use the version of model (2.2) having
scores {u;, =i} and {v;=j}, called the uniform association (U) model [6] because
it implies uniformity of local odds ratios {m;m,., ; ,/m; ;. ym,., ;= exp(B)}.
Goodness-of-fit statistics have degrees of freedom df =(r—1)(c—1) for the I
model and df = (r — 1)(¢ — 1) — 1 for the U model.

We chose model (2.2) as the alternative to independence because it corresponds
to a family of distributions that contains a discrete analog of the bivariate normal
distribution as a special case [8]. In particular, the U model describes well a
bivariate normal distribution that has been categorized by selecting cutpoints that
are equally-spaced. Thus, through the addition of a single parameter to model
(2.1), we obtain a model that describes departures from independence of the type
often expected for ordinal variables.

Sufficient statistics for fitting the U model are the row totals {n,, }, the
column totals {n,;}, and XXu,v;n,; (or, equivalently, the correlation). The
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likelihood-ratio statistic G*(I1|U) = G*(I) — G*(U) for testing independence, as-
suming that the U model holds, depends on the data only through these sufficient
statistics. The first argument in Section 1 is that the null distribution of G*(I1|U)
should be reasonably well approximated by the x; distribution if the {m, +} and
{m,,} are pot particularly small even though the distribution of G*(I) may be
poorly approximated by the x? (r—1)c—1y distribution.

Secondly, we consider inference regarding the association parameter 8 in
model (2.2). Let  denote the ML estimate of 8 and let 6/Vn denote its
estimated asymptotic standard error obtained from the inverse of the estimated
information matrix. We shall see that the normal approximation for the asymp-
totic distribution of vn (8 — B)/6 is not adversely affected by sparseness. Also,
we observe that when the U model holds with 8+ 0, the power of the test of
independence (8 = 0) based on the statistic z; = Vn B/6 tends to increase as the
degree of sparseness increases, for a fixed underlying disttibution. That is, the
improved precision of measurement can result in an increased noncentrality value
of nB?/62. In this regard, it follows from Cox and Hinkley [3, pp. 322-324] that
we should expect similar results from two other tests. Specifically, this ‘ML test’
has the same asymptotic efficacy for local alternatives as the likelihood-ratio test
based on G*(I|U) or a ‘score test’ based on the derivative of the log likelihood
evaluated at the null hypothesis. For the linear-by-linear association model, it is
easily seen that the score is

S = Z Zu,-vjp,,- - (ZuiPi+)(ZUjP+j)’

where p,, =n,/n. A related statistic for testing independence is zg = Vn S/dg,
where

2= T3 (- ) (0, y)'p,, — S

with fy=Yu;p,, and fiy=Xuv,p, . Here, 6 is the estimated asymptotic vari-

ance of Vn[S — E(S)], where

E(S)=[(n-1)/n][L Twom,— (Zum. ) Tor.,)].

with m, .= E(p,;) =m,;/n.

For our simulation study we used population cross-classification tables that
satisfy the U model perfectly and correspond to underlying normal distributions
with correlations p = 0 and p = 0.2. For sample sizes » = 50 and n = 100, and for
table sizes 2X 3, 4X 4, 6 X6, and 10 X 10, we generated 5000 multinomial
distributions. The purpose was to consider, for fixed n, how increasing the
sparseness (through increasing ¢ =rc) affected the sampling distributions of
various statistics. For the underlying marginal normal N(u, o) distributions, the
cutpoints were selected at p when r=2, at p+0.60 when c=3, at g and
p+0.80 when r=c=4, at p, p+0.60, p+ 126 when r=c=6, and at p,
p+t040, p+080, p+1.20, p+1.60 when r=c=10. For each randomly
generated table we calculated G*(I), G*(U), G*(I|U), corresponding Pearson
statistics, and the squares of zy, zy,=vVn(B—B)/8, zs, and zg, =Vn(S—
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ES)/é;. Upon completion of the 5000 simulations, we analyzed the asymptotic
approximations in the upper tail for these statistics, by giving sample proportion
estimates for probabilities of exceeding the 100(1 — a) percentage point of the
relevant chi-squared distribution, for a = 0.01, 0.05, 0.10, and 0.25. We used the
GGMTN routine in IMSL for random generation of multinomial distributions,
on the IBM 3081 mainframe computer. Assuming the adequacy of the generator,
the standard error for these estimates is about 0.006 when the true proportions
are about 0.25, and it is about 0.0014 when the true proportions are about 0.01.

3. Results
The results of this investigation are reported in the following subsections.
3.1. Effect of sparseness on G*

Consider first the case in which independence holds. Table 1 gives the
performance of G*(I), G?(U), and G*(I|U), for the four table sizes and the two
sample sizes. For goodness-of-fit testing of a completely specified multinomial
distribution, Koehler and Larntz [14] observed that the distribution of G? is
generally not well approximated by its asymptotic chi-squared distribution when
n/t < 5. Similar results are observed here for the I and U models. The G*(I) and
G*(U) goodness-of-fit statistics behave adequately at both sample sizes for 2 X 3
tables, but deteriorate dramatically for larger tables. These statistics are highly
liberal except for the 10 X 10 case with n = 50, when they are highly conservative.
This is consistent with the observation made by Koehler and Larntz that the

Table 1
Proportion of times likelihood-ratio statistic exceeds chi-squared percentage point, when there is
independence

Statistic rxc n=150, a= n=100, a=
0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25
G 2x 3 0.013 0051 0107 0261 0011 0.058 0108 0.258

4x 4 0027 0102 0173 0371 0016 0075 0131 0304
6x 6 0024 0126 . 0236 0501 0031 0129 0224 0445
10x10 0000 0.000 0002 0.028 0.013 0.08 0188 0.464

G*(U) 2x 3 0010 0050 0102 0255 0.011 0055 0104 0.265
4xX 4 0030 0102 0178 0374 0016 0074 0137 0.303

6xX 6 0024 0125 0237 0506 0.031 0128 0227 0.449

10x10 0000 0000 0.003 0.029 0.013 0.085 0187 0462

G*Qv) 2xX 3 0013 0.054 0108 0263 0011 0054 0103 0250
4X 4 0011 0054 0111 0267 0.012 0052 0100 0241

6x 6 0016 0060 0109 0249 0.012 0054 0103 0257

10x10 0009 0.0s5 0.104 0254 0010 0052 0109 0.253
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mean and variance of G? tend to be smaller than the chi-squared moments when
n/t <0.5 and larger when n/t > 1.

Unlike G*(I) and G*(U), G?*(1|U) behaves quite well for all table sizes, even
when n is only 50. This is not surprising, since the {m,,} or {m, } are of
moderate size for these table sizes. More generally, whenever the difference
between the dimensions of two models converges to a constant d as ¢ — oo,
Theorem 4 in Haberman [11] suggests that G*( M, | M,) may have a limiting null
x 7 distribution even if ¢ grows proportionally to .

3.2. Effect of sparseness on X’

Other investigators (e.g. Haberman [12, p. 325] and Larntz [14]) have indicated
that the Pearson statistic performs better than the likelihood-ratio statistic for
sparse tables. For direct tests of a model, this was true in this study as well. Table
2 contains results for X?(I) and X?(U), when there is independence. The Pearson
statistics were adequate whenever n/¢ > 1; that 1s, for all cases except the 10 X 10
table with » = 50. Unlike G*(I1|U), however, X*(I) — X*(U) depends on the cell
counts as well as the sufficient statistics, and its behavior resembled that of X2(I)
and X?(U). Its performance was poorer than that of G*(1|U) for the most sparse
tables.

One would expect the Pearson statistic of the form X*(M, |M,) =Y(m ,
M, )?/m, (Haberman [10, p. 108]), to perform better than X*(M,) — X*(M,) for

Table 2
Proportion of times Pearson statistic exceeds chi-squared percentage point, when there is indepen-
dence

Statistic rxec n=350, a= n=100, a=
0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25
X3 2X 3 0008 0046 0100 0255 0.009 0055 0106 0.255

4x 4 0010 0.052 0104 0265 0.008 0.048 0103 0267
6x 6 0008 0.043 0093 0255 0010 0048 0.095 0.253
10x10 0.010 0.036 0070 0188 0.010 0047 0096 0.245

X*3(U) 2xX 3 0009 0.047 0.09 0254 0011 0054 0104 0265
4x 4 0009 0052 0107 0.273 0.009 0047 0106 0.270

6xX 6 0009 0046 0.095 0258 0.009 0049 0.096 0.258

10x10 0.012 0.041 0074 0185 0011 0048 0.093 0.250

X*(MH-X*(U) 2x 3 0010 0048 0101 0257 0010 0051 0099 0249
4x 4 0009 0049 0097 0242 0012 0045 0091 0235
6x 6 0016 0060 0107 0231 0011 0052 0105 0.245
10X10 0077 0159 0222 0344 0034 0097 0149 0282

X31ju) 2x 3 0007 0051 0101 0253 0.010 0050 0102 0254
4x 4 0010 0.053 0108 0.267 0.012 0050 0.099 0.240

6x 6 0015 0.058 0108 0249 0.011 0.054 0104 0.258

10x10 0011 0.05 0108 0.257 0.011 0052 0109 0252
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comparing models for sparse tables. Theorem 4 in [11] suggests that X(M, | M,)
is asymptotically equivalent to G*(M, | M,) for certain sequences of sparse tables
in which M; holds, when the difference between the dimensions of the two
models converges. Table 2 indicates that for these simulations X2*(M, | M,)
behaves much better than X?(M,)— X*(M,) and, in fact, very much like
G*(M, | M,).

3.3. Effects of sparseness on power

Table 3 contains estimated powers for X*(I), X*(I1|U), G*(1|U), z, and zg
when the U model holds and there is an underlying normal distribution having
correlation 0.2. We report X?*(I) rather than G*(I) for the direct test of the
independence model, since the poor null approximation for G2(I) implies that
power comparisons with it are less meaningful. The statistics X2(I|U), G*(1|U),
zy, and zg behave very much alike, the apparent slight reduction in power for zy
explained by its null approximation being slightly more conservative (see Table
4). Note that these statistics become more powerful for sparser tables (i.e., as ¢

Table 3
Estimated powers, when the U model holds and there is an underlying bivariate normal distribution
with correlation 0.2

Statistic rxc n=50, a= n=100, a=
0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25
X2(D) 2X 3 0.033 0.131 0224 0432 0.088 0234 0349 0552

4x 4 0022 0.095 0168 0371 0049 0.162 0265 0.482
6x 6 0015 0.070 0138 0333 0.032 0.125 0203 0416
10x10 0014 0054 0101 0235 0.026 0.091 0153 0341

X1 |U) 2x 3 0053 0177 0279 0473 0130 0305 0417 0.621
4x 4 008 0245 0348 0.553 0193 0416 0.540 0.736

6x 6 009 0263 0376 0583 0249 0474 0611 0.774

10x10 0116 0282 039 0598 0276 0.509 0.634 0.795

G*(A|U) 2x 3 0056 0180 0282 0473 0135 0.308 0420 0.621
4x 4 0094 0249 0350 0552 0197 0418 0541  0.735

6x 6 0103 0263 0375 0579 0253 0475 0610 0.771

10x10 0116 0279 0391 0593 0273 0505 0.631 0.790

VnB/6; 2% 3 0035 0159 0263 0469 0116 0295 0411 0619
4x 4 0054 0220 0330 0547 0171 0401 0529 0734
6X 6 0065 0229 0353 0573 0212 0457 0599 0771
10x10° 0117 0283 0388 0618 0248 0501 0637 0805

VnS/ g 2x 3 0071 0195 029 0477 0147 0316 0423  0.623
4x 4 0106 0260 0355 0559 0206 0420 0543  0.737

6xX 6 0114 0275 038 059 0.255 0483 0611 0.774

10x10 0117 0285 039 0599 0.282 0503 0631 0.796

? Due to computing expense, this case is based on 1000 simulations.



16 A. Agresti, M.-C. Yang / Sparseness in contingency tables

Table 4
Estimated proportion of times statistic exceeds normal critical value, when U model holds and there
is an underlying bivariate normal distribution with correlation p

Statistic rXc n=>50, a= n=100, a=
0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25

Vn (B - B)/8
p=0 I% 3 0006 0044 009 0257 0010 0049 0098 0.250
4x 4 0005 0042 009 0259 0009 0046 0095 0238

6x 6 0.007 0.047 0097 0248 0009 0.050 0.095 0.252
10x10* 0.008 0.042 0.087 0.240 0008 0.046 0.089 0.236

p=102 2x 3 0.006 0.045 0.089 0261 0.007 0049 0.097 0.259
4% 4 0.008 0.048 0.096 0262 0.007 0050 0.100 0.249

6X 6 0006 0042 0089 0240 0006 0.043 0097 0.253

10x10* 0.017 0060 0115 0.257 0014 0.060 0.105 0.262

Vn[S — E(S))/6s

p=0 2Xx 3 0016 0060 0115 0267 0014 005 0105 0.254
4% 4 0014 0059 0113 0275 0014 0.053 0103 0.245

6x 6 0017 0061 0112 0254 0014 0058 0.106 0.255

10x10 0011 0.056 0106 0254 0010 0051 0109 0.256

p=02 2X 3 0015 0.059 0109 0266 0.013 0057 0106 0.263
4X 4 0018 0.066 0116 0274 0012 0055 0108 0.254

6X 6 0.015 0.057 0.108 0.258 0.011 0.053 0.105 0.265

10x10 0.013 0.059 0112 0258 0.016 0058 0.113 0.268

? Due to computing expense, this case is based on 1000 simulations.

increases, for fixed n), whereas X2(I) loses power. Thus, sparseness is actually
advantageous for these four statistics.

For local alternatives to independence, the statistics in this study have asymp-
totic noncentral chi-squared distributions. Das Gupta and Perlman [4] showed
that for fixed noncentrality, the power of chi-squared statistics increases as the
degrees of freedom decrease. When the U model holds, G%(1|U) and G*(I) have
the same noncentrality, so we expect G>(I|U) (for which the noncentrality is
focused on a single degree of freedom) to be more powerful than G2(I). The same
remark applies to X2(1|U) and X2(I). As ¢ increases for the normal underlying
distribution, the noncentrality increases and is still focused on a single degree of
freedom for z}, z2, X?(1|U), and G*(I|U), resulting in increased power. On the
other hand, df also increases for X*(I) or G?*(I), more than off-setting the
increase in noncentrality. The single-degree-of-freedom statistics would be inap-
propriate when the U model fits very poorly, such as when the association is
non-monotonic. In practice, though, many associations are nearly monotonic in
some sense, and it is important to investigate how the power behaves if the U
model holds only approximately. This was considered in a Ph.D. dissertation by
A. Kezouh at the University of Florida (1984), who studied these tests when
model (2.2) actually holds with monotone but unequally-spaced scores. He
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concluded that statistics such as G*(I|U) still tend to outperform greatly ones
such as G%(I), except when the true table is ‘close’ to independence. The relative
advantage of G*(I1|U) tended to increase as the strength of association increased
and as r and ¢ increased.

Table 4 shows that the asymptotic approximations for the distributions of z;,
and zg, did not deteriorate as sparseness increased, for either value of p. Hence,
confidence intervals for association parameters that describe characteristics of the
entire table (such as B in the U model, or the correlation) retain their usefulness
for sparse tables. This result for ,é can be regarded as an illustration of Theorem 1
in Haberman [11], which indicates that functionals of {#,} can have asymptotic
normal distributions even if the number of cells grows at the same rate as the
sample size.

3.4. Effects of adding cell constants

Sparse tables typically contain many empty cells. This can cause problems with
existence of estimates for loglinear model parameters or cell probabilities, prob-
lems with severe bias in estimation of descriptive statistics such as odds ratios,
problems with the performance of computational algorithms, as well as problems
with asymptotic approximations of chi-squared statistics (see, €.g., Brown and
Fuchs, [2]). Thus, it is common practice for researchers to add a small constant to
cell counts before conducting the analysis. Goodman [5] suggests adding 0.5 to
each cell count before computing model parameter estimates. Weighted least
squares solutions require all cell counts to be positive, so Grizzle et al. [9] suggest
adding to each empty cell the inverse of the number of categories of the response
variable. Bishop et al. [1, p. 401] indicate that it is generally accepted practice to
add 0.5 to each cell count of large, sparse tables, though they instead recommend
Bayes or empirical Bayes approaches whereby a prior distribution induces the
smoothing.

Our simulations have indicated that adding constants to cells in sparse tables
can cause havoc with the distribution of X?(M) statistics. Adding a constant to
each cell or to each empty cell represents a smoothing towards independence,
resulting in a conservative influence on the statistics. To illustrate, Table 5 shows
the effect of adding 1/c to every cell. This approach makes X2(I) far too
conservative when n/7 is less than about 5, the effect becoming very severe for
larger tables. The 1/c adjustment results in an improvement for the G2(I)
statistic for those situations in which it was highly liberal for the unadjusted
table. However, as n/t decreases the adjustment becomes overly severe, particu-
larly for cases where G*(I) is itself conservative for the original table. The
statistics G*(U) and X?(U) behaved much like G*(I) and X?(I), respectively, and
are not reported here. Again, G*(I|U) and X?(I|U) behaved alike and were
much better than G*(I) and X?(1), particularly for very sparse tables. However,
these statistics performed more poorly than when they were applied to the
unadjusted table (compare with Table 1).

Effects on the statistics of adding 1/c only to the empty cells were very similar,
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Table 5
Proportion of times statistic exceeds chi-squared percentage point when there is independence and
constant 1 /¢ added to all cells

Statistic rxc n=50, a= n=100, a=
0.01 0.05 0.10 0.25 0.01 0.05 0.10 0.25
G2(I) 2X 3 0.009 0.046 0.095 0.244 0.008 0.051 0.104 0.255

4x 4 0007 0.045 0095 0254 0.008 0.053 0103 0264
6x 6 0000 0.009 0027 0118 0007 0041 0.092 0.248
10x10 0.000 0.000 0.000 0.000 0000 0001 0004 0.023

X3 2x 3 0.006 0.042 0088 0238 0007 0.048 0100 0.251
4x 4 0004 0.027 0.066 019 0006 0.037 0.084 0.235

6x 6 0.001 0.007 0.024 0.08 0.004 0023 0054 0.166

10x10 0.000 0.000 0.000 0.003 0001 0005 0011 0.040

G*(11U) 2x 3 0010 0.0483 0.099 0250 0.009 0049 0100 0.250
4x 4 0007 0041 0090 0240 0011 0.046 0.093 0.230

6x 6 0006 0.034 0.078 0.208 0.008 0045 0.087 0.238

10x10 0.004 0.022 0.054 0176 0.003 0031 0072 0.209

X21uU) 2x 3 0008 0.046 0095 0247 0008 0.048 0.098 0.249
4x 4 0006 0.039 0088 0240 0010 0.045 0092 0230

6x 6 0005 0.033 0077 0207 0008 0.043 0.08 0.237

10x10 0.004 0.021 0.055 0175 0003 0031 0072 0.210

producing slightly more conservative results for the very sparse tables. The effects
were far more severe when a larger constant, such as 0.5, was added to every cell.
For instance, for 6 X 6 tables with n = 50, the estimated true tail probabilities for
X?2(I) are 0.000, 0.000, 0.001, and 0.010, corresponding to the nominal values
0.01, 0.05, 0.10, and 0.25, respectively.

4. Conclusions and recommendations

The study reported here was limited in scope, and one cannot use it to make
sweeping generalizations about the analysis of sparse data. However, certain

tentative conclusions and further conjectures are suggested by the results in
Tables 1-5.

4.1. Behavior of G* and X? statistics

Table 1 is consistent with previous findings that G*(M) behaves poorly for
sparse tables. This statistic is likely to behave even more poorly when there is
more variation in the {m;} than encountered in this study. For goodness-of-fit
testing of a specified multinomial, Koehler and Larntz [14] showed that a
standardized version of G2 is well approximated by the normal distribution for
very sparse tables. For testing the fit of a model, it is also likely that a normal
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limiting distribution will give better approximations than the usual reference
chi-squared distribution, for sparse data. McCullagh [16] reviewed ways of
handling sparse tables, and he presented a normal approximation for G? that
may be a useful alternative. However, its use is computationally intensive, and it
assumes that the dimension of the model parameter vector is fixed as the size of
the table increases.

Tables 1 and 2 are also consistent with previous studies that noted that the
Pearson statistic X?( M) behaves much better than G?( M) for sparse tables. In
this study, the asymptotic approximation for X*(M) was adequate for n/t as
small as 1. The size of n/t that produces adequate approximations tends to
decrease as ¢ increases. For instance, Koehler and Larntz suggest the guideline
n>y10: (ie., n/t>10/t) for using X? for goodness-of-fit testing of the
uniform multinomial probabilities (1/¢,...,1/¢). In testing models for which
there is considerable variability in cell probabilities, n > 10y might be a more
reasonable guideline for use of X2(M). As Koehler and Larntz note, it is
hopeless to expect one rule to cover all cases, but further research with other
models and other choices of underlying distributions may help to suggest ap-
propriate guidelines of this type.

4.2. Behavior of model-comparison statistics

The adequacy of the asymptotic distribution of G*(M, | M,) or X*(M, | M,) is
likely to be governed by the sufficient marginal configuration for M, that is
farthest from its asymptotic distribution. For instance, the statistic G>(1|U) will
be influenced by the most sparse marginal distribution, so it should usually
behave well if n > S[max(r, ¢)], when max(r, c) is relatively large. On the other
hand, X?*(M,)— X?(M,) may be inadequate whenever X?(M,) is. Thus, even
though the distribution of X?(M,) may be closer to chi-squared than that of
G?*(M,), usually one would prefer G*(M,) — G*(M,) to X*(M,) — X*(M,) for
comparing two models or for testing a hypothesis by imbedding it within a
model.

4.3. Sparseness and power

Table 3 shows that increasing the numbers of categories, for a fixed sample
size, tends to improve the power of statistics designed to detect associations
between ordinal variables. We conjecture that statistics based on £ (when it
exists) or the score S retain their inferential usefulness regardless of the degree of
sparseness. For instance, suppose we consider a sequence of categorizations of an
underlying bivariate normal distribution for which cutpoints are equally-spaced
and equal-interval scores are assigned to the rows and columns. As r=¢— o
with max{m ,,..., 7, 7, q,...,7,. .} = 0, the sampling distribution of S be-
haves like that of the sample correlation for the underlying continuous distribu-
tion. (Note that S is the sample correlation in the table, at each stage, when
scores are chosen such that marginal standard deviations equal 1.) Also, 8 has an
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approximate functional relationship with the correlation in this case (see [7]).

This conjecture does not apply to statistics for which df increases when
categorizations are refined, as illustrated by X?(I) in Table 3. Also, in practice,
sparseness often results from increasing the number of variables rather than from
increasing the numbers of category levels (particularly for nominal variables), so
this conjecture has limited applicability.

4.4. Adding cell constants

In using X2(M) to test the fit of a model, we observed that it can be risky to
add a constant to the cells. Even the addition of only 0.25 to the cells of a 4 X 4
table with n =50 has a marked conservative influence on the distribution of
X?2(I), for instance. This shrinkage towards independence also applies to model
parameter estimates. For the 10 X 10 table with underlying correlation 0.2, the
parameter S8 in the U model equals 0.036. When n = 50, the expected value of I3
is approximately 0.039 for the original table, but it is only 0.026 when 0.1 is
added to each empty cell before one fits the model. If adding a constant is
necessary to ensure existence of estimates, it may be preferable to select a very
small constant, and it is wise to try constants of various sizes to assess the
dependence of the result on that choice. In doing this, there may still be problems
with weighted least squares estimation, since relatively more weight is given to
cells when the cell proportion estimate (and resulting variance estimate) de-
creases.

In Tables 1 and 2 we noted that G?(M) behaves much more poorly than
X?(M) when n/t is approximately in the range 1 to 10, and Table 5 suggests that
the addition of a constant can improve the asymptotic approximation of G*(M)
for n/t between about 2 and 10. It would be useful if future research could
establish guidelines for the choice of this constant, as a function of n and r.

4.5. Generalizations

One conclusion from this research is the following: If we wish to test a
hypothesis for sparse categorical data, it is wise to imbed that hypothesis as a
special case of an unsaturated loglinear model, so that a statistic of the form
G*(M, | M,) or X*(M,|M,) can be used. We illustrated this by imbedding the
independence hypothesis in the uniform association model for two ordinal
variables, but the idea extends quite generally. For instance, suppose we wish to
test whether X and Y are conditionally independent, given Z, in an r-by-c-by-k
table. Let (XZ, YZ) denote the loglinear model corresponding to this condition.
The distribution of G*[( XZ, YZ)] may be poorly approximated by the X7,_,y.,
distribution, particularly if n < Srck. However, suppose that we test conditional
independence under the assumption that the no three-factor interaction model
(denoted by (XY, XZ, YZ)) holds. The statistic G2[(XZ, YZ) (XY, XZ, YZ)]
should behave well if the two-dimensional margins are not particularly sparse, say
n > S[max(rc, rk, ck)]. If r=c=2, this is a single-degree-of-freedom statistic
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that may (like the Mantel-Haenszel statistic) behave adequately even if k is quite
large. Of course, if model (XY, XZ, YZ) fits poorly, it is inappropriate to test the
fit of model (XZ, YZ) in any case.
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