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ABSTRACT 

The feasibility of maximum likelihood (ML) analyses of 
marginal distributions of repeated categorical measurement 
data diminishes as the numbers of response occasions and 
response categories increases. This article describes alternative 
approaehes that are much more feasible. To estimate model 
parameters, we recommend a "pseudo ML" approach that 
treats repeated responses as independent and uses a jackknife 
to estimate the covariance matrix of tbose estimates. Tests of 
hypotheses about response distributions (e.g., marginal 
homogeneity) use Wald statistics or adapted score statistics 
from the independent-samples case. We illustrate these 
analyses with a seven-dimensional table having 78,125 cells. 
Simulation results show no substantive loss of efficiency from 
using pseudo ML estimates. 

1. Introduction 

Many studies involve observing a response variable for 
each subject at several occasions -- for instance, at several 
time points or under several conditions. Such "repeated 
measurement" data are common in health-related 
applications. For example, a clinician might evaluate patients 
at weekly intervals regarding whether a new drug treatment is 
successful. When the response is categorical (e.g., success VS. 

failure), data can be displayed in a contingency table having 
the same categories for each dimension. When we observe 
each of n subjects at T occasions on an I-cat1ory response, a 
T-dimensional contingency table having I cells cross­
classifies the T responses for those subjects. 

The "occasions" for a repeated response need not refer 
to different times. For instance, a biomedical response might 
be measured at T locations on a subject's body, or by T 
raters. To illustrate, consider Table 1, based on data 
presented by Landis and Koch (1977). This table presents 
classifications on a 5-level ordinal scale regarding carcinoma in 
situ of t~e uterine cervix, for seven pathologists evaluating n 
== 118 shdea. Here I = 5 and T = 7, and there are 5 T = 
78,125 possible joint ratings patterns for the seven raters. 
Table 1 shows that 77 distinct patterns occurred for these 118 
observations. The data can be organized in a contingency 
table having 57 cells, where each cell represents a possible 
rating pattern. For Table 1, only 77 cells have positive 

counts. 

A key feature of repeated measurement data is within­
subject dependence of observations. ]n Table I, for instance, 
since each rater evaluates the same subjects (slides), the seven 
sample distributions of ratings must be treated as dependent 
rather thau independent samples. These sample distributions 
are the first-order marginal distributions of the 57 contingency 
table. 

At occasion g, let IJ'Ih(g) denote the probability that a 
subject makes response h. The probabilities {lJ'Ih(g). h = 
l •... ,l} form the gth first-order marginal distribution of the 
response. There is marginal homogeneity, which we denote by 
MR, if 

~h(l) = ~h(2) = ... = ~h(T), fo, h = 1, ... ,1. (1.1) 
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The hypothesis of marginal homogeneity states that 
the T first-order marginal distributions of the response are 
identical. This article discusses ways of comparing marginal 
distributions for large, sparse contingency tables. For 
instance, for Table I, we will see how to test whether the 
seven pathologists have identical response distributions. 

Madansky (1963) gave a likelihood-ratio test of MH. 
lt assumes a multinomial likelihood for the [T cells. and it 
compares the likelihood maximized subject to constraint (1.1) 
to the likelihood maximized. in the unrestricted case. Lipsitz 
(1988) showed how to conduct this test using standard 
software such as SAS. Another likelihood-based approach 
tests MR in the context of the quasi-symmetry model. lt tests 
the hypothesis that the quasi-symmetry model holds with MR 
(i.e., that there is symmetry) against the alternative that 
quasi symmetry holds without MR. by comparing the 
maximized likelihoods for the symmetry and quasi-symmetry 
models. s.. D.noch (1981) and Agresti (1990, s... 11.2) fo, 
details on these and other methods for testing MH. 

Even in this age of computers, these likelihood-ratio 
tests are infeasible when I and T are moderately large. because 
of the huge number of cells and the extreme sparseness of the 
table. In Table 1, for instance, many sums of cell counts that 
are sufficieut statistics for the symmetry and quasi-symmetry 
models equal zero, and regular ML estimates do not exist for 
these models. Madansky's ML test must maximize a 
multinomial likelihood defined over the 78,125 cells, subject to 
constraints for the first-order marginal distributions. 
Methodology for doing this has been available for some time 
(Aitchison and Silvey 1958), but published examples of such 
analyses (e.g., Haber 1985) have dealt only with small tables. 

This article describes simple strategies for comparing 
marginal distributions of large, sparse contingency tables. We 
test MH in the context of a model for the marginal 

distributions, such that MH is a special case of the model. 
This leads naturally to post-test description and inference 
regarding the nature of the marginal heterogeneity. Also, 
models can be generalized to incorporate explanatory 
variables, so that effects of those variables can also be 
analyzed or so one can make adjusted comparisons of 
marginal distributions. For instance, one might want to 
analyze whether changes across occasions in marginal 
distributions differ according to gender, age, or treatment. It 
is often sensible to use a directed alternative to MH 
corresponding to a parsimonious model, so that the test 
statistic has fewer degrees of freedom, and hence potentially 
greater power. This is particularly true when the response is 
ordinal. Koch et al. (1977) and Agresti (1989) described ways 
of modeling marginal distributions. and we consider some 
models for Table 1 in Sections 5 and 6. 

The simplicity of our approach results from using ML 
to estimate model parameters under the naive assumption 
that the repeated responses are independent. For Table 1, in 
treating the 7 marginal distributions for the 118 observations 
with 5-category response as independent, we apply standard 
ML methods to 7x118 = 826 observations in cells of a 7x5 
table. Problems of sparseness and complex computations then 
disappear. We use the jackknife technique to obtain an 
appropriate estimated covariance matrix of the estimates. To 
test MR. we conduct a Wald test using these estimates, or 



simply modify the covariance strudure in score statistics for 
comparison of independent multinomial distributions. 

Sections 2-4 present the strategies for comparing 
marginal distributions. We illustrate their use for ordinal 
classifications in Section 5, and apply them in Section 6 to 
compare the marginal distributions of Table 1. Section 7 
gives results of a simulation study that suggests the naive 
estimates are surprisingly efficient. Section 8 briefly describes 
use of the methods for nominal classifications, and Section 9 
describes complications resulting from missing data. 

2.Pseudo ML Estimation Assuming Independent Multinomials 

For large, sparse tables, one can easily fit models for 
the T first-order marginal distributions by treating sample 
counts from different margins as statistically independent. 
Liang and Zeger (1986) used this naive approach for 
univariate longitudinal data problems. Consider the Txl 
table consisting of the T sample marginal distributions. A 
single observation in the original IT table is replaced by T 
observations in this Txl table. One obtains parameter 
estimates by using ML to fit the model to this table, treating 
tbe rows as having independent multinomial distributions. 
The resulting estimates are not truly ML. since tbose 
distributions are not truly independent and the function 
maximized is not the true likelihood. But, the consistency of 
the sample estimators of tbe marginal probabilities implies 

that these "pseudo ML" estimators are consistent. assuming 
tbat tbe model bolds. The estimated covariance matrix 
obtained by treating the margins as independent is not 
consistent for the true covariance matrix of the estimators, 
however. 

For tables that are too large for ordinary ML 
methods. we recommend estimating model parameters using 
the pseudo ML estimates and estimating the covariance 
matrix of those estimators using the jackknife method. This 
involves re-fitting tbe model repeatedly. each time deleting 
one observation (which corresponds to T observations in the 
TxI table). Results of Lipsitz et al. (1990a) suggest that for 
each re-fit of tbe model, it is preferable to use & one-step 
jackknife. Tbis uses only the first step of tbe iterative process 
for fitting the model, with the pseudo ML estimates as the 
initial estimates. 

White (1982) gave the true asymptotic covariance 
matrix for ML estimators in models with misspecified 
likelihood.. The one-step jackknife estimator is asymptotically 
equivalent to an estimator White proposed of that matrix. but 
is simpler to compute for many models. We outline the 
reasons for the asymptotic equivalence in the Appendix. 

For a model having parameter vector P ,denote the 
pseudo ML estimator by 1J and denote the ~timator when 
the jth observation is deleted by P _j' One form of the 
jackknife estimator of the covariance matrix of ~ is 

r (.e-j -.e) (.e-j -.e Y. 
We programmed calculation of the pseudo ML estimator and 
its jackknife estimated covariance matrix for models discussed 
in this article using IML in SAS (see Table 5). 

3. Tests of Marginal Homogeneity 

After obtaining model parameter estimates and an 
estimated covariance matrix, one can apply standard methods 
of inference. For instance, one can test MH using a Wald test 
for uniformity of certain parameters across the T occasions. 
The form of the Wald statistic is~' [Cov(g)rl,i, where ~ is a 
vector of differences of estimates across occasions. 
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Alternatively. one can formulate simple test statistics 
for MH by adapting score statistics for this hypothesis. For 
the model chosen to reflect possible departures from MH. one 
obtains the Fisher efficient score vector based on tbe pseudo 
likelihood that treats the T marginal distributions as 
independent. One then estimates the covariance matrix of tbe 
efficient score vector using the dependence structure across 
occasions implied by a multinomial assumption for the IT 
table. The test statistic is a quadratic form comparing the 
efficient score vector to its nun expected value, weighted by 
tbe inverse estimated covariance matrix. The pseudo score 

test approach is applicable when the overall sample size is 
~ge. enough that the score vector is approximately normally 
distrIbuted. 80 that the quadratic form has an asymptotic chi­
squared distribution. 

4. Weighted Least Squares Model-Fitting 

Another approach uses weighted least squares (WLS) 
methodology (Koch et al. 1911). This is also more amenable 
than 8tand~ ML for fitting models to margins of large. 
sparse contingency tables. We now give some attention to 
WLS. because it can be more readily implemented with SAS 
(using CATMOD) than other methods. 

In modeling first-order marginal fundions. WLS 
methods require only the second-order marginal tables to 
estimate the asymptotic covariance strudure of those response 
fundions. The second-order marginal counts must be 
sufficiently large that the sample response functions are 
approximately nonnally distributed and their estimated 
covariance matrix is Don-singular. In practice. this usually 
requires the first-order marginal counts to nearly all exceed 
about 5. Koch et al. (1971). Landis et al. (1988). and Agresti 
(1989) gave examples of the use of WLS for analyzing 
repeated categorical data. 

. When the model h0i-ds. WLS is asymptotically 
eqUIvalent to ML for the full I table. However. pseudo ML 
methods have the advantage of being applicable in cases when 
the data are too sparse to support WLS. ]n particular, unlike 
WLS. pseudo ML methods apply when there are continuous 
explanatory variables. Also. t.he example in Section 6 sbows 
that W~S can be unreliable and bighly sensitive to slight 
changes 10 the data when some marginal counts are small. 

5. Marginal Comparisons of Ordinal Classifications 

. . • To illustrate metbods for comparing marginal 
dIstrIbutIOns. we discuss a general class of models, 

Linkj (g) = OJ - Pog. j=l •.••• I-l. g=l •...• T, (5.1) 

for ordinal response variables. Two important special cases 
are (1) the cumulative logit model, whereby 

Linkj (g) = logith;(g)], (5.2) 

wi~h ~j(g) = ~,(g) + ... + ~j(g), and (2) the 
adjacent-categories logit model, whereby 

(5.3) 

Models for these logits are easy to fit using CATMOD (with 
RESPONSE CLOG]TS or RESPONSE ALOGITS options), 
and the cumulative logit is also an option in procedure 

LOGISTIC. 

Model (5.1) implies that the margins are location 
shifts on some scale. and uses 1-1 parameters to describe 



marginal heterogeneity. For this model, MH corresponds to 
1'1 = ..• =PT' Using results from our pseudo ML approach, 
with jackknife estimated covariance matrix for estimates of 
{Pi}, we can test MH using a Wald test. The chi-squared 
asymptotic distribution has df = T-l, rather than df = 
(T-l)(I-l) as in the most general (unstructured) tests. 

For many versions of model (5.1), pseudo score 
statistics are simple alternatives for testing MH. Let ntj 
denote the number of subjects who make response j at 
occasion t. Assuming no missing data, let n = nt+ = E.ntj. 
For & set of monotone response scores {Vj} for the or&nal 
response scale, let 

and 

Then Mt is the "mean" response at occasion t for the response 
scores {v.}, and M = EtMt/T is the mean response for the 
sum of the single--factor response distributions. For model 
(5.3) with tows in the TxI table treated as independent 
multinomials, the efficient score vector for testing MH has 
components n(Mt - M) with {Vj = n. To test MH, we use a 
statistic that is a quadratic form describin« variation among 
these means, or equivalently variation from 0 among {dt = 
[(Mt - M) - (MT - M)] = Mt - MT , t = 1, ... ,T-l}. Such a 
quadratic form must utilize the true dependence structure in 
estimating covariances among {dt }. 

Let Ph(t) = nth/n, and let Phi(tu) denote the 
proportion of subjects making response h at occasion t and 
response i at occasion u. Let cJ = (di, ... ,dT_i )', and for all 
Q,k) with j < T, k < T, let ~ denote the matrix having 
elements 

SjO = EhE; VhV; [Ph; Uk). Ph;UT) - Ph;(kT) + Ph(T)6h;] 

-(M;- MT )(Mo - MT ) 

Then s~/n is the unrestricted ML estimate of Cov(~, dk)t 
and n4 g-1<J is a pseudo score statistic for testing MH using 
model (5.3), based on df = T-1. When we let the {Vj} be ridit 
scores for margin {n+j' j = 1, ... ,I}, this is a pseudo score 
statistic for the cumulative logit model (5.2). 

The pseudo score statistic just 
WLS goodness-of-fit statistic for 
mean response model 

E(Mt) = a, t = 1, •.. ,T 

described is also the 
testing the null 

assuming multinomial sampling for the IT table. For T=2, 
Bhapkar (1970) proposed te5ta of this form. One can Ulle 

CATMOD to compute this statistic, as well as to do standard 
WLS fits of models (5.2) and (5.3) for this multinomial 
sampling model, at least when the data are not too sparse. 

6. Marginal Comparison of Carcinoma RatiDgs 

Table 1 is highly sparse, with 118 observations in 
78,125 cells. The first-order marginal counts are much less 
sparse, varying between 1 and 69, with 23 of the 35 counts 
exceeding 10. We first tested MH with Wald statistics for 
model (5.1), using the jackknife to estimate the covariance 
matrix of pseudo ML estimators. The WaId statistic equals 
113.6 for the cumulative logit case and 57.5 for the adjacent­
categories logit case. Both statistics are based on df = 6, and 
give very strong evidence against MH. 
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Pseudo score statistics for model (5.1) also give strong 
evidence of marginal heterogeneity. For instance, the version 
with {Vj = j} gives a chi-squared statistic of 161.4, also based 
ondf=6. 

Table 2 gives pseudo ML and jackknifed pseudo ML 
model parameter estimates for the cumulative lopt model, as 
well as estimated standard errors. The standard errors we 
report for the pseudo ML estimates are the ones that treat the 
samples as independent, and ate incorrect. The ones for the 
jackknife recognize tbe dependence, and hold for the pseudo 
estimates as well. We included the incorrect ones to show 
how one can drastically overestimate variability in describing 
within-subject effects by naively treating the samples as 
independent. 

In addition, we used WLS to fit the cumulative logit 
model to margins of the table, directly incorporating 
estimates of dependence from a multinomial structure fOI the 
full 57 table (We added a count of .001 to cell (4,4,4,4,4,4,5) 
to obtain a nonsingular covariance matlix). The reliability of 
these estimates is questionable, since two of the marginal 
counts equal 1 and two equal 2. The WLS WaId statistic for 
testing Pi = ... =P7 equals 85.8, based on df = 6. The WLS 
fit has residual chi-squared equal to 98.4, based on df = 18. 
The model does not fit well, but it detects enough of the 
departure from MH to also give a very small P-value. 

Table 2 also contains the WLS model parameter 
estimates, as well as pseudo WLS estimates based on treating 
the samples as independent. The pseudo WLS estimates are 
similar to the pseudo ML estimates. The standard WLS 
estimates differ from the others, and have smallest estimated 
standard errors. A sensitivity analysis revealed that these 
WLS estimates are unreliable, because of the very small 
marginal counts. For instance, all raters made rating 4 more 
often than rating 5 except for rater F, who made rating 4 only 
once and rating 5 four times. If we change the observation 

(4,3,3,3,3,5,3) to (4,3,3,3,3,4,3), thus increasing rater F's 
marginal count for rating 4 from 1 to 2, the WLS Wald test 
statistic for MH drops from 85.8 to 32.1, and the third column 
of estimates in Table 2 changes dramatically from (0.31, 0.30, 
0.02, -0.38, 0.34, -0.67, 0.02) to (0.28, -0.04, -0.02,-0.27, 0.12, 
-0.05, -0.02). By contrast the pseudo WLS estimates hardly 
change at all, the largest change being the first, which changes 
from 0.520 to 0.528. 

For only 8 of the 118 slides did any raters use rating 
5, and all ten of the marginal counts that ate less than 10 
refer to rating 4 or 5. Thus, combining these rating categories 
should improve the reliability of methods that are highly 
susceptible to sparseness. When we combined categories 4 and 
5, all marginal counts equal at least 5. The WLS model 
estimates then changed to (0.43, 0.44, -0.19, -0.37, 0.41, -0.84, 
-0.12), which are much closer to the pseudo WLS and ML 
estimates in Table 2. In this case, the WLS estimated. 
standard errors also increased to levels dose to those reported 
for the jackknife. Combining columns had trivial results on 
the other approaches. For instance, the pseudo WLS 
estimates aU changed by less than 0.02 (reflecting the property 
of invarianc.e to scale collapsings that McCullagh (1980) gave 
as an important quality of this model), and their naive 
estimated. standard errors all changed by less than 0.001. 

Table 3 shows the use of CATMOD for some of these 
analyses. The first use of it fits the cumulative logit model 
and conducts the WLS test of MH for it, using the 
multinomial dependence structure; the second use gives the 
pseudo score test of MH that is the goodness-of-fit test of the 
null mean response model, using response scores {l,2,3,4,5}. 
The design matrix for the cumulative logit model corresponds 



to ten parameters, the cutpoint parameters tal' £t2' 0'3' Q'4} 

and tbe marginal effect parameters {Pl ..... P6}, with 1'7 
(PI + ... + 1'6) determined by the constraint E Pj ;;; O. 

7. Efficiency of Pseudo ML and WLS Estimates 

It: is important to consider whether the ~udo 
estimates are much less efficient than the ordinary estimates. 
When responses are strongly correlated across occasions, one 
would expect that a pseudo ML estimator might have larger 
mean squared. error (MSE) than an ordinary ML estimator, 
since the pseudo estimator ignores the dependence. However, 
we performed a small-scale simulation study that gave 
promising results for the relative efficiency of pseudo 
estimators. For marginal comparisons using the adjacent­
categories logit model, there was no reduction in precision 
using pseudo estimators. 

Because of the extremely time-consuming nature of 
the ordinary ML estimation process, we limited our 
investigation to T ;;; 2 occasions and I ;;; 3 categories. We 
generated independent samples of size n from multinomial 
distributions defined over the 3x3 table. The marginal 
probabilities satisfied model (5.3) with {'lri+ ;;; 1/3} and with 
{1r+J} determined by the model, for a fixed value of I'd ;;;1'2-
Pl' The cell probabilities in the table were those of an 
underlying bivariate normal distribution having the given 
marginal probabilities. Eight combinations of n, correlation p, 
and I'd were chosen: n ;;; 20 and 50, p ;:; 0.2 and 0.8, and I'd 
::::: 0.0 (marginal homogeneity) and 0.4. 

The algorithm for calculating constrained ML 
estimators used techniques developed by Aitchison and Silvey 
(1958) and Haber (1985). For generated tables in which at 
least one estimate did not exist, we added 0.00001 to each cell 
count, which always resulted in existence. Table 4 reports the 
square root of the MSE estimates for four estimators (ML, 
WLS, pseudo ML, pseudo WLS). based on 1000 simulations at 
each setting of (n, p, I'd)' With probability .95, for the n ::::: 
20 eases, the root MSE estimates are good to within about 
0.020 when p ::::: .2 and 0.015 when p ;;; .8; for the n ::::: SO 
cases, they are good to within about 0.012 and 0.009, 
respectively. 

Table 4 shows that, to the degree of accuracy 
obtained in this simulation study, the four estimators 
performed equally well. Surprisingly, the pseudo estimates 
performed adequately even when p was large. The WLS 
estimates performed as well as the ML estimates, though the 
marginal counts were not small eoough to cause the sorts of 
problems WLS estimates can have with sparse data. 

8. Marginal Comparisons of Nominal Classifications 

The pseudo ML fitting procedure for models for 
nominal classifications proceeds in a similar way. For 
instance, suppose we want to fit a multi.nomial logit model 
that has additive occasion and treatment effects as 
explanatory variables. The pseudo ML estimates, which treat 
the occasions as independent, are identical to the regular ML 
estimates for the loglinear no three-factor interaction model 
fitted to the treatment x occasion x response table. 

Suppose we want to construct a pseudo score statistic 
to test MH for a nominal classification. When there are no 
covariates, we consider the saturated loglinear model for the 
Txl table {nrl. The components of the efficient score vector 
for testing MB (Le., independence for the TxI table) are {Uij 
;;; nij - n+/T, i ::::: 1, ... ,T-l, j == 1, ... ,I-l}. ~ote that EjUij ;;; 
E·U·· ;;; O. Let d·· ::: Uij - UTj ::::: n·· - nTj' I ;;; 1, ... ,T-l, J ;;: 
1,~ .. ~-1. Then, M'h is equivalent to ~(dij) ;;; 0 all i and j, and 
a pseudo scote statistic is given by a quadratic form in the 
vector of (T-l){I-l) {djj } and their estimated covariances. 
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One can conduct a WLS test of MH based on the 
unrestricted ML estimators of marginal probabilities (Le., the 
sample marginal proportions) and the unrestricted ML 
estimator of the covariance matrix of differences of those 
estimators. See Bhapkar (1973) and Darroch (1981). But this 

is preci5ely the 8lWle as the pseudo Beare test just described. 
That is, the pseudo score test is the WLS goodness-of-fit test 
of the model of MH for the IT contingency table, having df ;;; 
(T-l)(I-l). It can be implemented with CATMOD. The third 
use of CATMOD in Table 4 implements this test for Table 1, 
yielding a chi-squared statistic of 303.4 based on df ;;; 24. 

9. Missing Data Issues 

Although a goal of longitudinal studies is normally to 
collect data on every subject in the sample at each ti.me of 
follow-np, it often happens that some subjects are not 
observed at all occasions. In this case, ML estimates and ML 
score tests are consistent when data are "missing at random" 
(Rubin 1976), meaning that the missing data process depends 
on the observed responses. All other estimators and test 
statistics discussed. in this article require the data to be 
missing completely at random (Rubin, 1976), which is a 
stronger assumption, meaning that the missing data process 
cannot depend on the observed responses. 

To be consistent under the appropriate missing data 
conditio~ however, ML also requires the correct specification 
of the I joint multinomial distribution, whereas "pseudo 
ML" requires only the correct specification of the T marginal 
distributions. Thus, ML is consistent under weaker missing 
data conditions and pseudo ML is consistent under weaker 
conditions about the joint distribution of the responses over 
time. 

Assuming the appropriate missing data conditions 
hold, the estimates, standard errors, and test statistics 
discussed change minimally with missing data. The ML 
estimates can be obtained nsing either the EM algorithm 
(Dempster, et. aI. 1977) or the Newton-Raphson algorithm 
(Hocking and Oxspring. 1971) and the asymptotic variance is 
consistently estimated by the inverse of the observed 
information. When the data are missing at random, the 
expected information can only be obtained if we are also 
willing to specify the missing data process. Fortunately, one 
need not specify the missing data process to estimate the 
variance of the ML estimate when the data are missing at 
random, since the observed information will converge in 
probabili~ to its expectation over this missing data process 
and the I multinomial distribution. 

When using pseudo ML estimates and score statistics 
with missing data, the rows of the Txl contingency table are 
still treated as independent, but a row sum will not be 
identically n, and instead will satisfy nt+ ~ n. Then, when 
performing the jackknife to estimate the variance of the 
pseudo ML estimate, we delete each subject as before (i.e., for 
subjeet i, we delete T j responses, where Ti $ T). In the 
pseudo score tests, a modification that gives consistent results 
when data are missing completely at random is 

and, when calculating Sjk' 

where ntuhi is the number of subject who have reponse h at 
occasion t and response i at occasion u. 

In modifying WLS with missing data, two-step 
methods have been proposed by Koch et. al. (1972), Woolson 



and Clarke (1984), Landis et aI. (1988). and Lipsitz et aI. 
(1990b). The first steps' of the approaches are different 
methods of estimating the probabilities in the Tx] table as 
well as the covariance matrix of these estimates. The second 
steps of the methods are identical: perform weighted least 
SQuares on the estimates from step one to estimate the 
parameters under the appropriate model. ]n particular, Koch 
et. al. (1912) further stratified individuals hy their pattern of 
non-response, and then used weighted least squares to estimate 
the TxI probabilities. Woolson and Clarke (1984) estimated 
the marginal probability of response h at occasion t by the 
proportion of individuals with response h among tbose who 
respond at that occasion. To estimate the variance, they 
proposed an (I+l)T multinomial distribution. adding one 
response category at each time point that corresponds to 
missing. Lipsitz et. aI. (1990b) estimated the Tx] 
probabilities using the EM algorithm with the underlying ]T 
joint multinomial distribution. The Lipsitz et. al. method is 
consistent when the data are missing at random, whereas the 
other two require data to be missing completely at random. 

10. Discussion 

There are yet other ways of oomparing marginal 
distributions and estimating covariance matrices that we 
have not discussed in this article. For instance, an alternative 
to the jackknife for estimating the covariance matrix is to 
adapt an empirical estimator described by Liang and Zeger 
(1986). Results in Lipsitz et al. (1990a) suggest this is also 
asymptotically equivalent to using the jackknife. Stram et aI. 
(1988) presented an alternative strategy of estimating a 
separate set of parameters at each occasion. and then 
empirically estimating the joint tovariance matrix of 
estimated parameters from different occasions. They then 
used standard methods such as Wald tests to compare 
parameters across occasions. This is a special case of the 
Liang and Zeger approach using tbe naive "independence" 
estimates, if one fits a model in which the sets of parameters 
for different occasions are completely separate. Another 
approach is to estimate parameters using some assumed 
structure for the covariance matrix of the sample marginal 
responses. When we use the covariance structure induced by 
assuming a multinomial distribution over the full IT table. 

this simplifies to the ordinary WLS approach. 

In future research. it would be useful to compare 
various ways of obtaining pseudo estimates. We believe that 
the simple estimates based on treating occasions as 
independent will be adequate for most purposes. It is also 
,important in future work to compare ways of estimating the 
covariance matrix of pseudo estimates. 

Finally, we note that when the main focus is purely 
testing of MR, another strategy uses generalizations of the 
Cochran-Mante1-Haenszel test. For details, 8ee Agresti (1990, 
Sections 1.4 and 8 .... ). Darroch (1981), White et aI. (1982). 
and Landis et at. (1988). 
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APPENDIX: Asymptotic equivalence of jackknife estimator 
and White's estimator of covariance matrix . 

For a~ model having parameter vector fJ, the pseudo 
ML estimate f! is obtained by setting -

Y(~) = E Y;(~) = 9 (A.I) 

and solving for ~ , where Yj(.8) denotes the contribution to 
the score v~ector (the derivative of the log likelihood with 

. respect to I!) from subject i. Given iJ and deleting the jth 
subject, the first step of the Newton-Raph80n algorithm 
produces 

(A.2) 

where E]i (P) == -E ou_-(fJ)/o{J is the information matrix. 
From (A.l). - I - -

.!i. Y; (ill = -YJ(iJ) 
lrJ - -

so that (A.2) becomes 

On! form of the jackknife estimator of the CQv&l'iance matrix 
of f! is 

- - ~ -, 1 (I!-J -I!) (I!-J -I!) (A.3) 

Under regularity conditions needed for iJ to be consistent, 
this is asymptotically equivalent to -

which is the estimator proposed by White. The asymptotic 
equivalence refers to tbe sample size times each of these 
estimators converging to the true asymptotic covariance 
matrix of fii (.8 - {J). The usual estimator of the covariance 
ma~rix, the inverse information [E ]i (~>rl. is asymptotically 
equivalent to (A.3) and (A.4) under the additional assumption 
that 

where the expectation is taken with respect to the true 
distribution (i.e_, not the naive "independence" distribution) 
of the data. 



Table 1. Crose-Classification of Seven Pathologiste 
on Five Categories 

Pathologist Pathologist Pathologist 
Ratings Count Ratings Count Ratings Count 

A BCD E F G ABC DE F G A BCD E F G 
1 1 1 1 1 1 1 10 2 3 2 2 2 1 2 1 3 3 3 4 3 2 3 1 
i 1 1 1 2 1 1 8 23223 1 3 1 3 33 4 3 2 4 1 
1 121 1 1 1 2 2 3 2 2 3 2 2 1 4 23 2 3 2 3 1 
1 1 2 1 2 1 1 2 2 3 2 2 3 2 3 2 4 3 1 1 2 1 2 1 
1 2 1 1 1 1 1 1 2 3 2 2 4 1 2 1 4 3 1 33 2 3 1 
1 221 2 1 2 1 23224 1 3 1 4 3 3 23 2 3 1 
1 3 2 1 2 1 1 1 32222 1 1 1 4 3 3 3 3 2 3 2 
1 322 2 1 2 1 3 2 2 2 2 1 2 1 4 33333 3 3 
2 1 1 1 2 1 1 1 33213 2 2 1 4 3 333 5 3 1 
2 1 121 1 1 1 3 3 2 2 2 1 2 1 4 3 3 433 3 2 
2 1 2 1 1 1 1 1 33222 2 3 1 4 3 3 443 3 1 
2 1 2 1 2 1 1 1 33223 1 3 4 4 34233 3 1 
2 1 2 2 2 1 2 1 33223 2 2 1 4 3 4 2 4 1 3 1 
2 2 1 1 2 1 1 1 3 3 2 2 3 2 3 2 4 4 3 2 4 1 3 2 
2 2 1 1 2 1 2 1 3 3 2 2 3 3 3 1 4 4 3 3 4 3 3 1 
2 2 1 2 2 1 2 1 33224 2 3 1 4 4 3 4 4 3 4 1 
2 2 2 1 1 1 2 1 3 3 2 3 2 2 3 1 4 4 4 2 4 3 3 1 
2 2 2 1 2 2 2 1 3 3 2 3 3 1 3 1 4 4 4 2 5 1 3 1 
2 2 2 2 3 1 2 2 3 3 2 3 3 3 3 2 4 4 4 3 3 3 3 1 
2 3 1 1 2 1 1 1 33323 1 3 2 5 3 3 2 3 2 3 1 
2 3 1 1 2 1 2 1 33323 2 3 3 5 3 3 3 4 1 3 1 
2 3 1 1 3 1 1 1 33323 3 3 1 5 3 423 4 3 1 
2 3 1 2 3 1 3 1 33324 2 3 2 55 1 4 5 5 4 1 
2 3 2 1 3 2 2 1 333 2 4 3 3 1 55 5 4 5 5 5 1 
2 3 2 2 2 1 3 1 333 3 3 2 3 5 5 5 555 5 5 1 
2 3 2 2 2 2 2 1 333 3 3 3 3 4 

Table 2. Parameter Estimates Tor Cumulative Logit Model 

Pseudo Pseudo Dependent 
Rater ML WLS WLS Jackknife 

A 0.58 ( .165) 0.52 (.155) 0.37 ( .066). 0.58 ( .088) 
B 0.51 (.158) 0.49 (.165) 0.30 (.066) 0.51 ( .087) 
C -0.19 (.152) -0.19 (.156) 0.02 (.040) -0.19 ( .087) 
D -0.51 (.153) -0.47 ( .157) -0.38 (.073) -0.51 ( .083) 
E 0.62 (.156) 0.55 (.158) 0.34 (.075) 0.62 (.088) 
F -1.13 ( .164) -1.06 (.164) -0.67 ( .098) -1.13 (.128) 
G 0.12 (.156) 0.16 (.161) 0.02 (.039) 0.12 ( .058) 
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Table 3. SAS Code f'or WLS 
Fitting of Cumulative Logit 
Model and Adjusted Score 
Test of' MH -for Table 1. 

input a b c d e f g count @@j 
cards; 0 0 1 0 0 0 0 -1 0 0, 
1 1 1 1 1 1 1 10 0 0 0 1 0 0 0 -1 0 0, 1 1 1 1 2 1 1 8 1 0 0 0 0 0 0 0 -1 0, 

0 1 0 0 0 0 0 0 -1 0, 
0 0 1 0 0 0 0 0 -1 0, 

5 5 5 5 5 5 5 1 0 0 0 1 0 0 0 0 -1 0, 4 4 4 4 4 4 5 .001 1 0 0 0 0 0 0 0 0 -1, 
; 0 1 0 0 0 0 0 0 0 -1, proc catmod; weight count; 0 0 1 0 0 0 0 0 0 -1, response clogitsj 0 0 0 1 0 0 0 0 0 -1, model a*b*c*d*e*f'*g 1 0 0 0 1 1 1 1 1 1, (1 o 0 0 -1 0 0 0 0 0, 0 1 0 0 1 1 1 1 1 1, 0 1 00 -1 0 0 0 0 0, 0 0 1 0 1 1 1 1 1 1, 0 0 1 0 -1 0 0 0 0 0, 0 0 0 1 1 1 1 1 1 1) 0 0 0 1 -1 0 0 0 0 0, (1 2 3 4 ' cutpoints' , 1 000 0 -1 0 0 0 0, 5 6 7 8 9 10 ~ 'homo'); 
0 1 0 0 0 -1 0 0 0 0, 
0 0 1 0 0 -1 0 0 0 0, proc catmod; weight count; 0 0 0 1 0 -1 0 0 0 0, response means; 
1 0 0 0 0 0 -1 0 0 0, model a*b*c*d*e*f'*g ~ (1,1,1,1,1,1,1); 0 1 0 0 0 0 -1 0 0 0, 
0 0 1 0 0 0 -1 0 0 0, proc catmod; weight count; 0 0 0 1 0 0 -1 0 0 0, response marginalsj 
1 00 0 0 0 0 -1 0 0, model a*b*c>lcd*e*-f*g ::::; _response_; 0 1 0 0 0 0 0 -1 0 0, repeated raters 7; 

Table 4. Estimated Root Mean Squared 
Comparison of Margins Based 
Normal Distribution 

Error -for Logit 
on Underlying 

n 

Jld ::::; 0 

Estimator p-.2 r·8 

ML .384 .251 
WLS .372 .233 
P-ML .381 .233 
P ilLS .371 .229 

20 

Jld ::::; .4 

r· 2 r·8 

.410 .275 

.400 .272 

.413 .277 

.395 .272 

.241 

.239 

.238 

.237 

n - 50 

.143 

.140 

.140 

.139 

Jld ::::: .4 

p~.2 p~.8 

.246 

.243 

.242 

.240 

.159 

.157 

.157 

.155 

Note: P-ML denotes pseudo ML, P-WLS denotes pseudo WLS 
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Table 5. Using SAS to Obtain Jackknife 
Estimated Covariance Matrix 

DATA PATHOL; 
INPUT ABC DE!' G COUNT; 
cards; 
I I 1 1 1 1 1 10 
11112118 

55545551 
55555551 . 
run; 
1* sample size of data *1 
proc means noprint; 

var count; 
output out=total (drop""_type __ fre"l .. J 
SURl - totals; 

run; 
'macro cumlog; 
DATA PATHOL2(DROP-A BCD E F G ); 
set pathol; 

yeA; TIME-I; OUTPUT; 
Y=B; TIM&z2·; OUTPUT; 
yaC; TIME-3; OUTPUT; 
y=D; TIME-4; OUTPUT; 
Y=E; TIME-5; OUTPUT; 
Y=!'; TIME-6; OUTPUT; 
Y-G; TIME-7; OUTPUT; 
RUN; 
PROC SORT; BY TIME Y; 
1* summary data (path2) with margo counts *1 
1* separate record for each time y count */ 
proc means noprint; by time y; 

run; 

var count; 
output outnpath2(drop=_type __ fre~ 
sum - counts; 

data two; 
do time-l to 7. do y=l to 5; 

output; 
end; end; 

run; 
PROC SORT data-two. BY TIME Y; 

run; 
/* data 'three' like 'path2' except 'path2' */ 
/* will not have separate record when margo *1 
/* count is 0, and 'three' will */ 
data three; 

merge two path2; by time y. 
if counts= then counts=O; 
if y-5 then delete; 

run; 
/* IML to calc. pseudo-MLEs for cum. logit *1 
PROC rML WORKSIZE=300; 
reset noprint nolog; 

USE THREE; 
READ ALL INTO X; 
USE TOTAL; 
READ ALL INTO N; 

TIME-X{,I]. 
Y=X(,2J; 
COUNTS""X I, 3 J ; 
xa-designf(time) lidesign{y); 
nbeta=ncol (xa) • 

a""$! 0 0 0, 
1 1 0 0, 
III 0, 
1 1 1 1; 

ainV""inv(a); 
i7-i(7); 
ainvmi7@ain"t>. 
J4"'J(4,4,1) ; 

beta = j(6,1,0)11$.OS,.075,.l,.l25; 
CRIT=$l. 

DO IT-l TO 12 WHILE(CRIT > .0000001); 
U= J(NBETA,$l,$O). 
pvo= J(NBETA,NBETA,$O); 

PHATO= EXP(XA*BETA)/(l+ EXP(XA*BETA) ); 
VO=diag( DIAG(PHATO)-PHATO*PHATO'); 

PHAT-AINV*PHATO. 
v"" DIAG(PHAT)-PHAT*PHAT'; 
V=(I7@J4)'V; 
DT-XA'*VO*AINV'. 

U-DT*INV(V)*{COUNTS-N'PHAT); 
DVD=N'DT*INV(V)*DT'; 
DELTA- SOLVE(DVD,U); 
BETA-BETA+DELTA; 
CRITz MAX ( ABS (DELTA) ) ; 
END; 
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%mend; 
'cumlog; 

vbsinv(dvd); *var. matrix under indep.; 
sebeta=sqrt(vecdiag(vb»; *vector of 

estimated standard errors of beta. 
z-beta/sebeta: *z-statistics; 
zsqsz'z; 
p=l-probchi(zsq,l): *two-sided p-value; 

variable"" $ 
"timel" "time2" "time3 n "time4" "timeS" ntime6" 
"respln "resp2" "resp3 n "resp4" 
variable c variable': 
print, $ 'cumulative logit'; 
print, $ , STANDARD ERRORS UNDER INDEPENDENCE' 

print, variable beta sebeta z p; 
contrast"" (i (6» II (j (6, 4, O)}; 
gsq=(contrast*beta) '*inv(contrast*vb*contrast') 

*(contrast*beta): 
df-nrow(contrast); 
p=l-probchi(gsq,df}: 
print, $ 'WALD STAT FOR MIl UNDER INDEPENDENCE': 
print, gsq df p; 
out""beta'. 
coIn c variable'; 
create qml from out (colname=coln); 
append from. out; 
close qm.l; 
quit; 
data jac.obs; 
input 
timel 
resp! 

cards; 

time2 
resp2 

time3 
resp3 

time4 
resp4. 

timeS time6 

run; 
1* use macro ord to calc. est. of pseudo-MLE *1 
/* dropping each non-empty cell of TxI table */ 
/* Used to compute jacknife estimates *1 
%macro ord(atart,atop}; 
%do i='start %to 'stoPI 
DATA PATHOLM; 

set pathol. 
IF N .., &I THEN COUNT=COUNT-l; 
run;-

proc means noprint; 
var count; 
output out=total(drop- type fre~ 
sum - totals; - - -

run; 
%cumlog; 
out=beta ': 
coln= $ 
"timel" "time2" "time3 n "time4" "timeS n 
"time6 n nresp!" "resp2 n "resp3" "resp4 n 
create bet from out [colname=coln]; 
append from out; 
close bet; 
quit; 
proc append base=jac.obs data=bet; 
run; 

%end; 
%mend ; 
1* now obtain summary stat's from macro 
/* Used to compute jacknife estimates 
%ord(l,77); 
run; 
data jac. obs 

ord */ 
*1 

(keep=timel time2 time3 time4 timeS time6 
respl resp2 resp3 resp4 count); 

merge pathol jac.obs; 
run; 

proc corr nocorr csscp out-var(type=csscp} 
noprint; 

freq count; 
run; 

data var (drop- type name ) • 
set var: - - - -
if (type ne 'CSSCP') then delete; 
RON;- -

proc means noprint data-pathol; 
var count; 
output out=total(drop= type fre~ 
sum .., totals; - - -

run; 



Tab1e 5 (continued) 

proc iml; 
reset nolog noprint; 

USE TOTAL; 
READ ALL INTO N; 
USE QML; 
READ ALL INTO BETA; 

beta=beta ' ; 
use var; 
read all into jackvar; 

vb=«N-lO/7)/N),jackvar; 
sebeta=sqrt(vecdiag{vb»; *vector of 

estimated standard errors of beta; 
z=beta/sebeta; *z-statistics; 
zsq-oztz; 

. p=l-probchi(zsq,l); *two-sided p-value; 
var.1.able= $ 
"timel" ntime2" "time3" "time4" "timeS" 
"time6" "respl" "resp2 n "resp3" "resp4n . 
variable == variable'; , 
print, $ 'cumulative logit'; 
print, $ 'STANDARD ERRORS FROM JACKKNIFE' 

print, variable beta sebeta z PI 
contrast- (i(6»II(j(6,4,O»; 

gsq=(contrast*beta) • 
*inv(contrast*vb*contrast')*(contrast*beta); 

df=nrow(contrast}; 
p=l-probchi(gsq,df); 
print, $ 'WALD STAT FOR MH FROM JACKKNIFE' 
print, gsq df p; 
quit; 
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