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ABSTRACT

The feasibility of maximum likelihood (ML) analyses of
marginal distributions of repeated categorical measurement
data diminishes as the numbers of response occasions and
Tesponse categories increases. This article describes alternative
approaches that are much more feasible. To estimate model
parameters, we recommend a “pseudo ML™ approach that
treats repeated responses as independent and uses a jackknife
to estimate the covariance matrix of those estimates. Tests of
hypotheses about response distrihutions (e.g., marginal
homogeneity) use Wald statistics or adapted score statistics
from the independent-samples case. We illustrate these
analyses with a seven-dimensional table having 78,125 cells.
Simulation results show no substantive loss of efficiency from
using pseudo ML estimates.

1. Intreduction

Many studies involve observing a response variable for
each suhject at several occasions -- for instance, at several
time points or under several conditions, Such “repeated
measurement” data are common in  health-related
applications. For example, a clinician might evaluate patients
at weekly intervals regarding whether a new drug treatment is
successful. When the response is categorical {e.g., success vs.
failure), data can be displayed in 2 contingency table having
the same categories for each dimension, When we observe
each of n subjects at T occasions on an I-category response, a
T-dimensional contingency table having I
classifies the T responses for those subjects.

cells cross-

The “occasions™ for a repeated response need not refer
to different times, For instance, a biomedical response might
be measured at T locations on a subject’s body, or by T
raters.  To illustrate, consider Table 1, based on data
presented by Landis and Koch (1977). This table presents
classifications on a 5-level ordinal scale regarding carcinoma in
situ of the uterine cervix, for seven pathologists evaluating n
= 118 slides, Here I = 5 and T = 7, and there are 5' =
78,125 possible joint ratings patterns for the seven raters.
Table 1 shows that 77 distinct patterns occurred for these 118
observations. The data can be organized in a contingency
table having 57 cells, where each cell represents a possible
rating pattern. For Table 1, only 77 cells have positive

counts.

A key feature of repeated measurement data is within-
subject dependence of observations. In Table 1, for instance,
since each rater evaluates the same snbjects (slides), the seven
sample distributions of ratings must be treated as dependent
rather than independent samples. These sample distributions
are the first-order marginal distributions of the 57 contingency
table.

At occasion g, let ¢, (g) denote the probability that &
subject makes response h. The probabilities {¢,(g), b =
1,...,1} form the gth first-order marginal distribution of the
response. There is marginal homogeneity, which we denote by
MH, if

#n(1) = $4(2) = o = $p(T), for h = 1,....1. (1.1)
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The hypothesis of marginal homogeneity states that
the T first-order marginal distributions of the response are
identical. This article discusses ways of comparing miarginal
distributions for large, sparse conlingency tahles. For
instance, for Tahle 1, we will sec how to test whether the
seven pathologists have identical response distrihutions.

Madansky (1963) gave a likelihood-ratio test of MH.
It assumes a multinomial likelihood for the IT cells, and it
compares the likelihood maximized suhject to constraint (1.1)
to the likelihood maximized in the unrestricted case. Lipsitz
(1988) showed how to conduct this test using standard
sofiware such as SAS. Ancther likelihood-based approach
tests MH in the context of the quasi-symmetrty model. It tests
the hypothesis that the quasi-symmetry model holds with MH
(i.., that there is symmeiry) against the alternative that
quasi symmetry holds without MH, hy comparing the
maximiged likelihoods for the symmetry and quasi-symmetry
models. See Darroch (1981) and Agresti (1990, Sec. 11.2) for
details on these and other methods for testing MH.

Even in this age of computers, these likelihood-ratio
tests are infeasihle when I and T are moderately large, because
of the huge number of cells and the extreme sparseness of the
table. In Table 1, for instance, many sums of cell counts that
are sufficient statisties for the symmetry and quasi-symmetry
models equal zero, and regular ML estimates do not exist for
these models. Madansky’s ML test must maximize a
multinomial likelihood defined over the 78,125 cells, suhject to
constraints for the first-order marginal distributions.
Methodology for doing this has been available for some time
{Aitchison and Silvey 1958}, but puhlished examples of such
analyses (e.g., Haber 1985} have dealt only with small tables,

This article describes simple strategies for comparing
marginal distributions of large, sparse contingency tables. We
test MH in the context of a model for the marginal

distributions, such that MH is a special case of the model.
This leads naturally to post-test description and inference
regarding the nature of the marginal heterogeneity. Also,
models can be generalized to incorporate explanatory
variables, so that effects of thase variables can also be
analysed or 80 one can make adjusted comparisons of
marginal distributions, For instance, one might want to
analyze whether changes across occasions in  marginal
distributions differ according to gender, age, or treatment, It
is often sensible to use a directed alternative to MH
corresponding to a parsimonious model, so that the test
statistic has fewer degrees of freedom, and bhence potentially
greater power. This is particularly true when the response is
ordinal. Koch et al. {1977) and Agresti (1989) described ways
of modeling marginal distributions, and we consider some
models for Table 1 in Sections 5 and 6.

The simplicity of our approach results from using ML
to estimate model parameters under the naive assumption
tbat the repeated responses are independent. For Table I, in
treating the 7 marginal distributions for the 118 observations
with 5-category response as independent, we apply standard
ML methods to 7x118 = 826 observations in cells of a Tx5
table. Prohlems of sparseness and complex computations then
disappear. We use the jackknife technique to obtain an
appropriate estimated covariance matrix of the estimates. To
test MH, we conduct a Wald test using these estimates, or



simply modily the covariance struciure in score statistics for
comparison of independent multinomial distrihutions.

Sections 2-4 present the strategies for comparing
marginal distributions. We illustrate their use for ordinal
classifications in Section 5, and apply them in Section 6 to
compare the marginal distributions of Table 1. Section 7
gives results of a simulation study that suggests the naive
estimates are surprisingly efficient. Section 8 hriefly describes
use of the methods for nominal claseifications, and Section 9
describes complications resulting from missing data.

2.Pseudo ML Estimation Assuming Independent Multinomials

For large, sparse tables, one can easily fit models for
the T first-order marginal distributions hy treating sample
counts from different margins as statistically independent.
Liang and Zeger (1986} wused this paive approach for
univariate longitudinal data probiems. Consider the TxI
table consisting of the T sample marginal distributions. A
single observation in the original I tahle is eplaced by T
observations in this TxI table. One obtains parameter
eatimates by using ML to fit the model to this tahle, treating
the rows as having independent multinomial distributions.
The resulting estimates are not truly ML, since those
distributions are not truly independent and the function
maximized is not the true likelihood. But, the consistency of
the sample estimators of the marginal probabhilities implies

that these “pseudo ML” estimators are consistent, assuming
that the model holds. The estimated covariance matrix
ohteined by treating the marging as independent is not
consistent for the true covariance matrix of the estimators,
however.

For tables that are too large for ordinary ML
methods, we recommend estimating model parameters using
the pseudo ML estimates and estimating the covariance
matrix of those estimators using the jackknife method. This
involves re-fitting the model repeatedly, each time deleting
one observation (which corresponds to T observations in the
TxI table). Results of Lipsitz et al. (1990a) suggest that for
each re-fit of the model, it is preferable to use a one-step
jackknife. ‘This uses only the first step of the iterative process
for fitting the model, with the psendo ML estimates as the
initial estimates.

White (1982) gave the true asymplolic covariance
matrix for ML estimators in models with misspecified
likelihood. The one-step jackknife estimator is asymptotically
equivalent to an estimator White proposed of that moatrix, hut
is simpler to compute for many models. We outline the
reasons for the asymptotic equivalence in the Appendix.

For a model havicg parameter vector f§ , denote the
pseudo ML esiimator by / and denote the estimator when
the jth observation is deleted by Q_J. One form of the

jackknife estimator of the covariance matrix of § is

t(B; -8)(B,-58)-
(2 -2) (- 2)
We programmed calculation of the pseudo ML estimator and

its jackknife estimated covariance matrix for models discussed
in this article using IML in SAS {see Table 5).

3. Tests of Marginal Homogeneity

After ohtaining model parameter estimates and an
estimated covariance matrix, one can apply standard methods
of inference. For instance, one can test MH using a Wald test
for uniformity of certain parameters across the T occasions.
The form of the Wald statistic is d° [Cov(tj)]‘l'@‘ , where d is a
vector of dillerences of estimates across occasions.
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Alternatively, one can formulate simple test statistics
for MH hy adapiing score statistics for this hypothesis. For
the model chosen to reflect possible departures from MH, one
ohtains the Fisher efficient score vector based on the pseudo
likelihood that treats the T marginal distributions as
independent. One then estimates the covariance matrix of the
efficient score vector using the dependence structure across
occasions implied by a multinomial assumption for the 14
table. The test statistic is a quadratic form comparing the
efficient score vector to its null expected value, weighted by
the inverse estimated covariance matrix. The pscudo score

test approach is applicable when the overall sample size is
large enough that the score vector is approximately normally
distrihuted, so that the quadratic fonm has an asymptotic chi-
squared distribution.

4. Weighted Least Squares Model-Fitting

Another approach uses weighted least squares (WLS)
methodology (Koch et al. 1977). This is also more amenable
than standard ML for fitting models to margins of large,
sparse contingency tables. We now give some attention to
WLS, because it can be more readily implemented with SAS
(using CATMOD) than other methods.

In modeling first-order marginal functions, WLS
methods require only the second-order marginal tahles to
estimate the asymptotic covariance structure of those response
functions.  The second-order marginal counts must be
sufficiently large that the sample response functions are
approximately normally distributed and their estimated
covariance matrix is non-singular. In practice, this usually
requires the first-order marginal counts to mearly all exceed
about 5. Koch et al. (1977), Landis et al. (1988), and Agresti
{1989) gave examples of the use of WLS for analyzing
repeated categorical data,

When ‘the model holds, WLS is asymptotically
equivaleat to ML for the full 1" tahle. However, pseudo ML
methods have the advantage of being applicable in cases when
the data are too sparse to support WLS. In particular, unlike
WLS, pseudo ML methods apply when there are continuous
explanatory variables. Also, the example in Section 6 shows
that WLS can be unreliable and higbly sensitive to alight
changes in the daia when some marginal counts are small.

5. Marginal Comparisons of Ordinal Classifications

To illustrate methods for comparing marginal
distributions, we discuss a general class of models,

Link_] {g) = aj - Hg, j=1:-"v1‘1’ 5=1!'"1Ta (5.1)

for ordinal response variables, Two important special cases
are (1) the cumulative logit inodel, whereby

Link, (g) = logit](@)) 52)

with 7@ = 68 + - + &), and (2) the
adjacent-categories logit model, wherehy

Linkj(g) = loglé;(€)/ ¢ 1(s)]- (5.3)

Models for these logits are easy to fit using CATMOD (with
RESPONSE CLOGITS or RESPONSE ALOGITS options),
and the cumulstive logit is also an option in procedure

LOGISTIC.

Model (5.1) implies that the margins are locati‘on
shifts on some scale, and uses I-1 parameters to describe



marginal heterogeneity. For this model, MH corresponds to
#q = .. =pr. Using results from our psendo ML approach,
with jackknife estimated covariance matrix for estimates of
{#;}, we can test MH using a Wald test. The chi-squared
asymptotic distribution has df = T-1, rather than df =
(T-1){I-1) as in the most general (unstructured) teste,

For many versions of model (5.1}; pseudo score
statistics are simple alternatives for testing MH. Let 1y
denote the number of suhjects who make response j at
occasion t. Assuming no missing datm, let n = Dy = En
For a set of monotone response scores {v;} for the ordllna.l
response scale, let

M; = Ejvjntj/n, t=1,..,T
and

M= By /T

Then M, is the “mean” response at oceasion t for the response
scores {v;}, and M = E.M/T is the mean response for the
sum of the single-factor response distributions. For model
(5-3) with rows in the TxI table treated as independent
multinomials, the efficient score vector for testing MH has
components n{Mt M) with [v = j}. To test MH, we use &
statistic that is a quadratic form describing variation among
these means, or equivalently variation from 0 among {d, =
iMg - M) - (M - M)] =M, - M, t = L,..,T-1}. Sucha
quadratic form must utilize the true dependence structure in
estimating covariances among {d,}.

Let pg(t) ny/n, and let py;(tu) denote the
proportion of subjects making response h at occasion t and
response i at occasion u. Let d = (dli-"-qu)'s and for all
(k) with j < T, k < T, let § denote the matrix having
elements

8k = ZnI; vy; [ GK) - PR T) - pri(kT) + py(T)y]

-(M; - MM, - Mt}

Then s*k/n is the unrestricted ML estimate of Cov(d,, dk),
and nd’Sld is a pseudo score statistic for testing MH using
mode! (5. 3) based on df = T-1. When we Iet the {¥;} be ridit

scores for margin {n+, j = 1,..I}, this is a pseudo score
statistic for the cumulative logit model {5.2).

The pseudo score statistic just described is alsa the

WLS  goodnessof-fit statistic for testing the null
mean response model

EM) = a, t = 1,...,T
assuming multinomial sampling for the I7 table. For T=2,

Bhapkar {1970) proposed tests of this form. One can use
CATMOD to compute this statistic, as well as to do standard
WLS fite of models (5.2) and (5.3) for this multinomial
eampling model, at least when the data are not too sparse.

6. Marginal Comparison of Carcinoma Ratings

Table 1 is highly sparse, with 118 observations in
78,125 cells. The first-order marginal counts are much less
sparse, varying between 1 and 69, with 23 of the 35 counts
exceeding 1. We first tested MH with Wald statistics for
model {5.1), using the jackknife to estimate the covariance
matrix of pseudo ML estimators. The Wald statistic equals
113.6 for the cumulative logit case and 57.5 for the adjacent-
categones logit case. Both statistics are based on df = 6, and
give very strong evidence against MH.
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Pscudo score statistics for model (5.1) also give strong
evidence of marginal heterogeneity. For instance, the version
with {v = j} gives a chi-squared statistic of 161.4, also based
on df = 6

Tahle 2 gives pseudo ML and jackknifed pseudo ML
model parameter estimates for the cumulative logit model, as
well as estimated standard errors. The standard errors we
report for the pseudo ML estimates are the ones that treat the
samples as independent, and are incorrect. The ones [or the
jackknife recognize the dependence, and hold for the pseudo
estimates as well. We included the incorrect ones to show
how one can drastically overestimate varishility in describing
within-subject effects by naively treating the samples as
independent.

In addition, we used WLS to fit the cumulative logit
model to margins of the tahle, directly incorporating
estimates of dependence from a multinomial structure for the
full 57 table {We added a count of .001 to cell {4,4,4,4,4,4,5}
to ohtain a nonsingular covariance matrix). The reliability of
these estimates is questionahle, since two of the marginal
counts equal 1 and two equal 2. The WLS Wald atatistic for
teating gy = ... =py equals 85.8, based on df = 6. The WLS
fit has residual chi-squared equal to 98.4, based on df = 18.
The model does not fit well, but it detects enough of the
departure from MH to also give a very amail P-value,

Tahle 2 also contains the WLS model parameter
estimates, as well as pseudo WLS estimates based on treating
the samples as independent. The pseudo WLS estimates are
similar to the pseudo ML estimates. The standard WLS
estimates differ from the others, and bave smallest estimated
standard errors. A sensilivily analysis revealed that these
WLS estimates are unreliahle, because of the very small
marginal counts. For instance, all raters made rating 4 more
often than rating 5 except for rater F, who made rating 4 only
once and rating 5 four times, If we change the observation
(4,3,3,3,3,5,3) to (4,3,3,3,3,43), thus increasing rater F's
marginal count for rating 4 from 1 to 2, the WLS Wald test
statistic for MH drops from 85.8 to 32.7, and the third column
of estimates in Tahle 2 changes dramatically from (0.37, 0.30,
0.02, -0.38, 0.34, -0.67, 0.02) to (0.28, -0.04, -0.02, -0.27, 0.12,
-0.05, -0.02). By contrest the pseudo WLS estimates hardly
change at all, the largest change being the first, which changes
from 0.520 to 0.528.

For only 8 of the 118 slides did any raters use rating
5, and all ten of the marginal counts that are less than 10
refer to rating 4 or 5. Thus, comhining these rating categories
should improve the reliahility of methods that are highly
susceptible to sparseness. When we combined categories 4 and
5, all marginal counts equal at least 5. The WLS model
estimates then changed to (0.43, 0.44, -0.19, -0.37, 0.41, -0.84,
-0.12), which are much closer to the pseudo WLS and ML
estimates in Table 2. In this ¢ase, the WLS estimated
standard errors also increased to levels close to thase reported
for the jackknife. Combining colurmns had trivial results on
the other approaches,  For instance, the pseudo WLS
estimates all changed by less than 0.02 (reflecting the property
of invariance to scale collapsings that McCullagh (1980) gave
a3 an important quality of this model), and their naive
estimated standard errors all changed by less than 0.001.

Tahle 3 shows the use of CATMOD for some of these
analyses. The first use of it fits the cumulative logit model
and conducts the WLS test of MH for it, using the
multinomial dependence structure; the second use gives the
pseudo score test of MH that is the goodness-of-fit test of the
null mean response model, using response scores {1,2,3,4,5]
The design matrix for the cumulative logit model corresponds



to ten parameters, the cutpoint parameters {a,, a,, a3, o4}
and the marginal effect parameters {p;,.... g}, with gy = -
{py +.-- + pg) determined by the constraint E 4; = 0.

7. Efliciency of Pseudo ML and WLS Estimates

It is important to consider whetber the pseudo
estimates are much less efficient than the ordinary estimates.
When responses are sirongly correlated across occasions, one
would expect that a pseudo ML estimator might have larger
mean squared error (MSE) than an ordinary ML estimator,
since the pseudo estimator ignores the dependence. However,
we performed a small-scale simulation study that gave
promising results for the relative efficiency of pseudo
estimators. For marginal comparisons using the adjacent-
categories logit model, there was no reduction in precision
using pseudo estimatom.

Because of the extremely time-consuming nature of
the ordinary ML estimation process, we limited our
investigation to T = 2 occasions and I = 3 categoriea. We
generated independent samples of size n from multinomial
distributions defined over the 3x3 tahle. The marginal
probabilities satisfied model (5.3) with {x;, = 1/3} and with
{x;} determined by the model, for a fixed value of py =pg -

The cell probahilities in the table were those of an
underlying bivariate normal distribution having the given
marginal probabilities. Eight combinations of n, correlation p,
and p4 were chosen: n = 20 and 50, p = 0.2 and 0.8, and gy
= 0.0 (marginal homogeneity) and 0.4.

The algorithm {or calculating coostrained ML
estimators used techniques developed by Aitchison and Silvey
(1958) and Haber (1985). For generated tables in which at
least one estimate did not exist, we added 0.00001 to each cell
count, which always resulted in existence. Tahle 4 reports the
square root of the MSE estimates for four estimators (ML,
WLS, pseudo ML, pseudo WLS), based on 1000 simulations at
each setting of (n, p, g, ). With probability .95, for the n =
20 cases, the root MSE estimates are good to within about
0.020 when p = .2 and 0.015 when p = .8; for the n = 50
cases, they are good to within about 0.012 and 0.009,
respectively.

Table 4 shows that, to the degree of accuracy
obtained in this simulation study, the four estimators
performed equally well. Surprisingly, the pseudo estimates
performed adequately even when p was large. The WLS
estimates performed as well as the ML estimates, though the
marginal counts were not small enough to cause the sorts of
prohlems WLS estimates can have with sparse data.

8. Marginal Comparisons of Nominal Classifications

The psewdo ML fitting procedure for models for
nominal classifications proceeds in a similar way. For
instance, suppose we want to fit a multinomial logit model
that has additive ocecasion and treatment effects as
explanatory variables. The pseudo ML estimates, which treat
the occasions as independent, are identical to the regular ML
estimates for the loglinear no three-factor interaction model
fitted to the treatment % occasion x response table.

Suppose we want to construct a pseudo score statistic
to test MH for a nominal classification. When there are no
covariates, we consider the saturated loglinear model for the
TxI tahle {n;}. The components of the efficient score vector
for testing Mf‘l (1.e ., independence for the TxI tahle} are {U
= -ny/T,i=1,. T-l i=1. I-l} Note that E;U;;
EU = 0. Let d;; - U= ,i._l,..,T-IJ_

l* 1. Then, M‘il is eqmvalent to H)(d J=0alliand] Js and
a pseudo scoie statistic is given by a quadmtlc form in the
vector of (T-1)(I-1) {d;;} and their estimated covariances.
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One can conduct a WLS test of MH based on the
unrestricted ML estimators of marginal probabilities (i.e., the
sample marginal proport.ions) and the unrestricted ML
estimator of the covariance matrix of differences of those
estimators. See Bhapkar (1973) and Darroch (1981). But this

is precisely the same as the pscudo score test just described.
That is, the pseudo score test is the WLS goodness-of-fit test
of the model of MH for the 17 contingency table, baving df =
(T-1)(I-1). It can be implemented with CATMOD. The third
use of CATMOD in Table 4 implements this test for Table 1,
yielding a chi-squared statistic of 303.4 based on df = 24,

9. Missing Data Issues

Although a goal of longitudinal studies is normally to
collect data on every suhject in the sample at each time of
follow-up, it often happens that some subjects are not
ohserved at all occasions. In this case, ML estimates and ML
score teste are consistent when data are “missing at random”
(Ruhin 1976), meaning that the missing data process depends
on the observed responses. All other estimators and test
statistics discussed in this article require the data to be
missing completely at random (Ruhin, 1976), which is a
stronger assumption, meaning that the missing data process
cannot depend on the observed responses.

To be consistent under the appropriate miassing data
conditions, however, ML also requires the correct specification
of the IT’ joint multinomial distribution, whereas “pseudo
ML” requires only the correct specification of the T marginal
distrihutions. Thus, ML is consistent under weaker missing
data conditions and pseudo ML is consistent under weaker
conditions about the joint distribution of the responses over
time,

. Assuming the appropriate missing data conditions
hold, the estimates, standard errors, and test statistics
discussed change minimally with missing data. The ML
estimates can be obtained using either the EM algorithm
(Dempster, et. al. 1977) or the Newton-Raphson algorithm
(Hocking and Oxspring, 1971) and the asymptotic variance is
consistently estimated hy the inverse of the observed
information. When the data are missing at random, the
expected information can only be obtained if we are also
willing to specify the missing data process. Fortunately, one
need not specify the missing data process to estimate the
variance of the ML estimate when the data are missing at
random, since the observed information will converge in
probabilit ty to its expectation over this missing data process
and the T' multinomial distribution.

‘When wsing psendo ML estimates and score statistics
with missing data, the rows of the TxI contingency table are
still treated as independent, hut a row sum will not be
identically n, and instead will satisfy n,, < n. Then, when
performing the jackknife to estimate Tle variance of the
pseudo ML estimate, we delete each subject as before (i.e., for
subject i, we delete T; responses, where T; < T). In the
pseudo score tests, a modification that gives consistent results
when data are missing completely at random is

My = gl
and, when calenlating Sjxcs
Pr(t) = nep/ngy and ppi(tu) = oy pi/ng, 4

where n, . is the number of subject who have repouse h at
occasion t and response i at oceasion u.

In modifying WLS with missing data, two-step
methods have been proposed hy Koch et. al. (1972}, Woolson



and Clarke (1984), Landis et al. (1988), and Lipsitz et al.
(1990b). The first sieps of the approaches are different
methods of estimating the probabilities in the TxI table as
well as the covariance matrix of these estimates. The second
steps of the methods are identical: perform weighted least
squares on the estimates from step one to estimate the
parameters under the appropriate model. In particular, Koch
et. al. (1972) further stratified individuals by their pattern of
non-response, and then used weighted least squares to estimate
the TxI probabilities. Woolson and Clarke (1984) estimated
the marginal probability of response h at occasion t by the
proportion of individuals with response b among those who
respond at that occasion. To estimate the variance, they
proposed an (I+1)7 multinomial distribution, adding one
response category at each time point that corresponds to
missing. Lipsits et. al. (1990h) estimated the TxI
probahilities using the EM- algorithm with the underlying 17
joint multinomial distribution. The Lipsits et. al. method is
consistent when the data are misaing at random, whereas the
other two require data to be missing completely at random.

10. Discussion

There are yet other ways of comparing marginal
distributions and estimating covariance matrices that we
have not discussed in this article. For insiance, an alternative
to the jackknife for estimating the covariance matrix is to
adapt an empirical estimator described by Liang and Zeger
{(1986). Results in Lipsitz et al. (1990a) suggest this is also
asymptotically equivalent to using the jackknife. Stram et al.
(1988) presented an alternative strategy of estimating a
separate sel of parameters at each occasion, and then
empitically estimating the joint covariance matrix of
estimated parameters from dilferent occasions. They then
used standard methods such as Wald tests to compare
parameters across occasions. This is a special case of the
Liang and Zeger approach using the nsive “independence”
estimates, il one fits 8 model in which the sets of parameters
for different occasions are completely separate.  Amnother
approach is to estimate parameters using some assumed
structure for the covariance matrix of the sample marginal
responses. When we use the covariance structure induced by
assuming a multinomial distribution over the full I7 table,

this simplifies to the ordinary WLS approach.

In future research, it would be useful to compare
various ways of obtaining pseudo estimates. We believe that
the simple estimates based on treating occasions as
independent will be adequate for most purposes. It is also
important in future work to compare ways of estimating the
covariance matrix of pseudo estimates.

Finally, we note that when the main focus is purely
testing of MH, another strategy uses generalizations of the
Cochran-Mantel-Hacnszel test. For details, see Agresti (1996,
Sections 7.4 and 8.4), Darroch (1981), White et al. (1982),
and Landis et al. (1988).
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APPENDIX: Asymptotic equivalence of Jjackknife estimator
and White's estimator of covariance matrix .

For & model having parameter vector g, the pseudo
ML estimate J is obtained hy setting T
u(B) =Eu(d) =0 (A1)

and solving for ,:B y Where gi(;ﬂ) denotes the contrihution to
the score vector (the derivative of the log Iikelihood with

" respect to J) from eubject i. Given § and deleting the jth

subject, the first step of the Newton-Raphson algorithm
produces

By=B+ [gzjli (B)]l [i;gj Y (E)]

where ¥ I (f) = -E &u($)/08 is the information matrix.
From (A.1), -

(A.2)

ROERTE)

so that (A.2) becomes

By-8=- [i;zéjli @]l[ y (8]

Oune form of the jackknife estimator of the covariance matrix
of g is

x By -8,;-8 (A.3)

= [iﬁjn AL ® % @] [i;ﬂejli @}

Under regularity conditions needed for @
this is asymptotically equivalent to -

[!j: I (é)}l [}j‘; Y (?)‘.1,(?)‘] [)E 5 (?)],1

which is the estimator proposed hy White. The asymptotic
equivalence refers to the sample size times each of these
estimators converging to the true asymptotic covariance
matrix of {n {8 - #). The usval estimator of the covariance
matrix, the inverse fnformation [ I; (3)]"), is asymptoticaliy
e;lluivalent to (A.3) and (A.4) under the additional assumption
that

to be consisient,

(A4)

{18 )] = Ely; (B)y; (8)'])

where the expectation is taken with respect to the true
distribution (i.e., not the naive “independence” distrihution)
of the data
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Table 3. SAS Code for WLS
Fitting of Cumulative Logit
Model and Adjusted Score
Test of MR for Table 1.

input a b ¢ d e f g count Qe;

cards; 0010 0 0 0-1 0 0,
111111110 0001 0 0 0-1 0 o,
1111211 8 1000 0 0 0 0 -1 o0,
. 0100 0 0 0 0-1 o0,
e 6010 0 0 0 0-1 0,
55555855 1 0001 ¢ 0 0 0-1 o0,
4444445 .,001 1000 ¢ 0 0 0 0 -1,
H 0100 0 0 0 0 o -1,
proc catmod; weight count; 0010 0 0 0 0 0 -1,
response clogits; 0001 0 0 0 0 0 -1,
model asbxcxd+exfxg = 1600 1 1 1 1 1 1,
(1000-1 0 0 0 0 o, 0100 1 1 1 1 1 1,
0100-1 0 0 0 0 o, o010 1 1 1 1 1 i,
0010-1 0 0 0 0 o, 0001 1 1 1 1 1 1)
0001-1 0 0 0 0 o0, (1 2 34 = cutpoints?,
1000 0-1 0 0 o0 0, 56789 10 = homo’);
0100 0-1 0 0 0 o,
0010 0-1 0 0 0 0, proc catmod; weight count;
0001 0-1 0 0 0 o, response means; )
1000 0 0-1 g o0 0, model axbxcxdsxexfuxg = (1,1,1,1,1,1,1);
0100 0 0-1 0 0 o,
0010 0 0-1 0 0O 0, proc catmod; weight count;
0001 0 0-1 0 0 0, response marginals;
1000 0 0 0 -1 0O 0, model axbrckdrerfrg = _response_;
0100 ¢ 0 0-1 0 0, repeated raters 7;

Table 4. Estimated Root Mean Squared Error for L?git
Comparison of Margins Based on Underlying
Normal Distribution

n = 20 n = 50
Hy=10 By =4 pg=10 py = -4
Estimator p=.2 p=.8 p=.2 p=.8 =.2 p=.8 p=.2 p=.8
ML .384 .251 410 .275 .241 .143 .246 .159
WLS 372 .233 .400 272 .239  .140 .243 .157
P-ML .381 .233 413 .277 .238 .140 .242 157
P-WLS 371 .229 .395 .272 -237. 139 .240 .155

Note: P-ML denotes pseudo ML, P-WLS denotes pseudo WLS
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Table 5. Using SAS to Obtain Jackknife

Estimated Covariance Matrix

DATA PATHOL;

INFUT ABCDEF G COUNT;
cards;

11111111

1111211 8
5554555 1
5555555 1
run;

/* sample aize of data */
proc means noprint;
var count;
output out=total {drop=_type
sum = totalas;
ruan;
smacro cumlog;
DATA PATHOLZ{DROP=A P CDEF G );
set pathol;
Y=A; TIME=1;
Y=B; TIME=2;
Y=C; TIME=3;
¥=D; TIME=4];
Y=E; TIME=5;
¥Y=F; TIME=§;
Y=G; TIME=7;
RUN;
PROC SORT; BY TIME X;
/* pummary data (pach) with marg. counts *f
/* separate record for each time y count */
proc means ncprint; by time y;
var count;
cutput out=path2 (drop=_type
gum = counts;
run;
data two;
do time=1l to 7;
output ;
end; end;
run;
PROC BORT data=two;
run;
/* data ‘three’ like 'path2’ except 'path2/ */
/%" will not have sepsrate record when marg. */
/* count is 0, and '"three’ will */
data three;
merge two path2; by time y;
if counts= then countse=0;
if y=5 then delete;
run;
/* IML to calc. pseudo-MLEs for cum. logit &/
PROC IML WORKSIZE=300;
reset noprint nolog;
USE THREE;
READ ALL INTQ X;
USE TOTAL;
READ ALL INTO N;
TIME=X{,1]);
Y=X{ 2}
COUNTS=X[,3
xamdesignf {time) | |deaign{y);
nbeta=ncol (xa);

a=$1 0 0 0,

_freq_}

OUTPUT;
QUTPUT;
OQUTPUT;
QUTPUT;
QUTPUT;
OUTPUT;
OUTPUT;

freq )
do y=1 to 5;

BY TIME ¥;

1100,
1110,
1111;
- ainv=invi{a);
i7=i(7);
ainv=i7@ainv;
Ji4=J(4,4, 1) ;
beta = j(s 1,0)//%.0%,.075,.1,.125;
CRIT=$1;
DO IT=1 TO 12 WHILE (CRIT > .0000001);
U= J{NBETA, $1, $0);
DVD= J(NBETA, NBETA, $0) ;
PHAT{Q= EXP (XA*BETA)/ (1+ EXP (XAXBETA) );
V0=diag{ DIAG(PHATO)-PHATO*PHATO);
PHAT=ATNUAPHATO;
V= DIAG(PHAT}-PHAT*PHAT*;
v={178J34) #V;
DT=XA ‘*VO*AINYV;
U=DT*INV (V) * (COUNTS-N#PHAT) ;
DVD=N§DT*INV{V) *DT;
DELTA= SOLVE(DVD,U);
BETA=BETA+DELTA;
CRIT= MAX( ABS(DELTA));
END;
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$mend;
$cumlog;
vb=inv(dvd); *var. matrix under indep.;
sabeta—aqrt (vecdiag(vb)); *vector of
estimated standard erroras of beta;
z=beta/sebeta; #z-statiatics;
zagq=z§z;
p=1-probchi (zaq,1);
variable= §
"timel™ "time2" "timeld" "timed” "timeS"
"reapl” "resp2™ "resp3" “respd" ;
variable = variable‘;
print, § ‘cumulative logit’;
print, § fSTANDARD ERRORS UNDER INDEPENDENCE' ;
print, variable bata sebeta =z p;
contrast= (i{6))}](3{(6,4,0));
gaq—(contrast*beta)‘*1nv(contraat*vb*contraat‘)
* {contrast*beta) ;
df=nrow{contrasat});
pwl-probchx(gsq,df),
print, § ‘WALD STAT FOR MH UNDER INDEPENDBNCB"
print, gsq df p;
out=bata*‘;
coln = variable’;
create qml from out [colname=coln];
append from out;

*two-gided p-value;

"times”

cloase gml;
quit;
data jac,oba;
input
timel time2 time3 timed time5 time6
respl reap2 resp3 resp4;
carda;
run;
/* use macro ord to calc. est. of pseudo-MLE */

/* dropping each non-empty cell of TxI table L
/* Used to compute jacknife estimates */
&macro ord{astart,stop};

%do i=&atart %to &stop;

DATAR FATHOLM;

set pathol;
IF _N_ = &I THEN COUNT=COUNT-1;
run;
pProc means noprint;
var count;
output out=total (drop=_type
sum = totals;
run;
%cumlog;
out=beta‘;
coln= §
"timel"” "time2" "time3"™ "time4" "times5"
"time6" "respl” "respl" "respi” "reapd” ;
create bet from out [colname=coln];
append from out;
cleose bet;

_freq_ }

proc append base=jac.obs data=bet;

Smend ;
/* now obtain summary stat’s from macro ord */

/* Used to compute jacknife estimates */
%ord{1,77);
runjy
data jac.obs
{keep=timel time2 time3l timed timeS5 timeb

respl resp2 resp3 respd count);
merge pathol jac.oba;
run;
PIOC COLr nocorr csacp outw=var {type=cssecp)
noprint;
freq count;
run;
data var {drop= type name_ };
set var;
if {_type_ ne ‘C33CP’} then delste;
BUNW;

Proc means noprint data=pathol;
var count;
output outstotal (drop=_type_
sum = totals;

run;

_freq_ )



Table 5 {continued)

proc iml;
reget nolog noprint;
USE TOTAL;
READ ALL INTO N;
USE QML;
READ ALL INTO BETA;
beta=beta®;
use var;
read all iatc jackvar;
vh={{N-10/7} /N} $ jackvar;
aebetafaqrt(vecdiag(vb)); *vactor of
estimated standard errors of beta;
z=beta/sebeta; *z-gtatistics;
zsq=zfz;
. p=l-probchi(zaq,1);
variable= §
“"timel” “"time2" "time3" “time4" "timeS"
"time6" "raespl” "resp2" "resp3” "respa" ;
variable = variable‘;
pr@nt, 5 ‘cumulative logit’;
print, $ ! STANDARD ERRORS FROM JACKENIFE'
print, wvariable beta sebeta z P
contrast= (i(6})])(j{6,4,0));

gaq={contrast*beta)®

*inv (contrast*vb*contrast ‘) * (contrast*beta);
df=nrow (contrast} ;-
p=l-probchi (gsq, d£) ;
print, $§ 'WALD STAT FOR MH FROM JACKKNIFE' ;
print, gsq 4df p;
quit;

*two-gided p-value;

-
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