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Comment
Alan Agresti and Brent A. Coull

In this very interesting article, Professors Brown,
Cai and DasGupta (BCD) have shown that discrete-
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ness can cause havoc for much larger sample sizes
that one would expect. The popular (Wald) confi-
dence interval for a binomial parameter p has been
known for some time to behave poorly, but readers
will surely be surprised that this can happen for
such large n values.

Interval estimation of a binomial parameter is
deceptively simple, as there are not even any nui-
sance parameters. The gold standard would seem
to be a method such as the Clopper-Pearson, based
on inverting an "exact" test using the binomial dis-

This content downloaded from 128.227.115.147 on Wed, 04 Dec 2024 21:20:26 UTC
All use subject to https://about.jstor.org/terms



118 L. D. BROWN, T. T. CAI AND A. DASGUPTA
Mean Expected Length Mean Expected Length

0.60 -.+ 0.60 +-+-+-+ M-JAC AC0.55 0.55
0.50 0.50
0.45 0.45n n5 6 7 8 9 5 6 7 8 9

FIG. 1. A Comparison of mean expected lengths for the nominal 95% Jeffreys (J), Wilson (W), Modified Jeffreys (M-J), Modified Wilson
(M-W), and Agresti-Coull (AC) intervals for n = 5, 6, 7, 8, 9.

tribution rather than an approximate test using
the normal. Because of discreteness, however, this
method is too conservative. A more practical, nearly
gold standard for this and other discrete problems
seems to be based on inverting a two-sided test
using the exact distribution but with the mid-P
value. Similarly, with large-sample methods it is
better not to use a continuity correction, as other-
wise it approximates exact inference based on an
ordinary P-value, resulting in conservative behav-
ior. Interestingly, BCD note that the Jeffreys inter-
val (CIJ) approximates the mid-P value correction
of the Clopper-Pearson interval. See Gart (1966)
for related remarks about the use of I additions

2

to numbers of successes and failures before using
frequentist methods.

1. METHODS FOR ELEMENTARY
STATISTICS COURSES

It's unfortunate that the Wald interval for p
is so seriously deficient, because in addition to
being the simplest interval it is the obvious one
to teach in elementary statistics courses. By con-
trast, the Wilson interval (CIW) performs surpris-
ingly well even for small n. Since it is too com-
plex for many such courses, however, our motiva-
tion for the "Agresti-Coull interval" (CIAC) was to
provide a simple approximation for CIW. Formula
(4) in BCD shows that the midpoint p3 for CIW is
a weighted average of - and 1/2 that equals the
sample proportion after adding z 2a/2 pseudo obser-
vations, half of each type; the square of the coef-
ficient of z a/2 is the same weighted average of the
variance of a sample proportion when p = p and
when p = 1/2, using n = n + Za/2 in place of n. The
CIAC uses the CIW midpoint, but its squared coef-
ficient of za/2 is the variance p5q/h at the weighted

average p3 rather than the weighted average of the
variances. The resulting interval p i z,/2(pq/l)1/2
is wider than CIW (by Jensen's inequality), in par-
ticular being conservative for p near 0 and 1 where
CIW can suffer poor coverage probabilities.

Regarding textbook qualifications on sample size
for using the Wald interval, skewness considera-
tions and the Edgeworth expansion suggest that
guidelines for n should depend on p through (1 -
2p)2/[p(l - p)]. See, for instance, Boos and Hughes-
Oliver (2000). But this does not account for the
effects of discreteness, and as BCD point out, guide-
lines in terms of p are not verifiable. For elemen-
tary course teaching there is no obvious alternative
(such as t methods) for smaller n, so we think it is
sensible to teach a single method that behaves rea-
sonably well for all n, as do the Wilson, Jeffreys and
Agresti-Coull intervals.

2. IMPROVED PERFORMANCE WITH
BOUNDARY MODIFICATIONS

BCD showed that one can improve the behavior
of the Wilson and Jeffreys intervals for p near 0
and 1 by modifying the endpoints for CIW when
x = 1,2,n - 2,n - 1 (and x = 3 and n - 3 for
n > 50) and for CIJ when x = 0, 1, n - 1, n. Once
one permits the modification of methods near the
sample space boundary, other methods may per-
form decently besides the three recommended in
this article.

For instance, Newcombe (1998) showed that when
0 < x < n the Wilson interval CIW and the Wald
logit interval have the same midpoint on the logit
scale. In fact, Newcombe has shown (personal com-
munication, 1999) that the logit interval necessarily
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FIG. 2. A comparison of expected lengths for the nominal 95% Jeffreys (J), Wilson (W), Modified Jeffreys (M-J), Modified Wilson (M-W),
and Agresti-Coull (AC) intervals for n = 5.

contains CIW. The logit interval is the uninforma-
tive one [0, 1] when x = 0 or x = n, but substitut-
ing the Clopper-Pearson limits in those cases yields
coverage probability functions that resemble those
for CIW and CIAC, although considerably more con-
servative for small n. Rubin and Schenker (1987)
recommended the logit interval after 1 additions to

2

numbers of successes and failures, motivating it as a
normal approximation to the posterior distribution
of the logit parameter after using the Jeffreys prior.
However, this modification has coverage probabili-
ties that are unacceptably small for p near 0 and 1
(See Vollset, 1993). Presumably some other bound-
ary modification will result in a happy medium. In
a letter to the editor about Agresti and Coull (1998),
Rindskopf (2000) argued in favor of the logit inter-
val partly because of its connection with logit mod-
eling. We have not used this method for teaching
in elementary courses, since logit intervals do not
extend to intervals for the difference of proportions
and (like CIW and CIJ) they are rather complex for
that level.

For practical use and for teaching in more
advanced courses, some statisticians may prefer the
likelihood ratio interval, since conceptually it is sim-
ple and the method also applies in a general model-
building framework. An advantage compared to the
Wald approach is its invariance to the choice of
scale, resulting, for instance, both from the origi-
nal scale and the logit. BCD do not say much about
this interval, since it is harder to compute. However,
it is easy to obtain with standard statistical soft-
ware (e.g., in SAS, using the LRCI option in PROC
GENMOD for a model containing only an intercept
term and assuming a binomial response with logit
or identity link function). Graphs in Vollset (1993)

suggest that the boundary-modified likelihood ratio
interval also behaves reasonably well, although con-
servative for p near 0 and 1.

For elementary course teaching, a disadvantage
of all such intervals using boundary modifications
is that making exceptions from a general, simple
recipe distracts students from the simple concept
of taking the estimate plus and minus a normal
score multiple of a standard error. (Of course, this
concept is not sufficient for serious statistical work,
but some over simplification and compromise is nec-
essary at that level.) Even with CIAC, instructors
may find it preferable to give a recipe with the
same number of added pseudo observations for all
a, instead of z 2 Reasonably good performance
seems to result, especially for small a, from the
value 4 ,;Z2025 used in the 95% CIAC interval (i.e.,
the "add two successes and two failures" interval).
Agresti and Caffo (2000) discussed this and showed
that adding four pseudo observations also dramat-
ically improves the Wald two-sample interval for
comparing proportions, although again at the cost of
rather severe conservativeness when both parame-
ters are near 0 or near 1.

3. ALTERNATIVE WIDTH COMPARISON

In comparing the expected lengths of the
three recommended intervals, BCD note that the
comparison is clear and consistent as n changes,
with the average expected length being noticeably
larger for CIAC than CIJ and CIW. Thus, in their
concluding remarks, they recommend CIJ and CIW
for small n. However, since BCD recommend mod-
ifying CIJ and CIW to eliminate severe downward
spikes of coverage probabilities, we believe that a
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more fair comparison of expected lengths uses the
modified versions CIM-J and CIM-W. We checked
this but must admit that figures analogous to
the BCD Figures 8 and 9 show that CIM-J and
CIM-W maintain their expected length advantage
over CIAC, although it is reduced somewhat.

However, when n decreases below 10, the results
change, with CIM-J having greater expected width
than CIAC and CIM-W. Our Figure 1 extends the
BCD Figure 9 to values of n < 10, showing how the
comparison differs between the ordinary intervals
and the modified ones. Our Figure 2 has the format
of the BCD Figure 8, but for n = 5 instead of 25.
Admittedly, n = 5 is a rather extreme case, one for
which the Jeffreys interval is modified unless x = 2
or 3 and the Wilson interval is modified unless x = 0
or 5, and for it CIAC has coverage probabilities that
can dip below 0.90. Thus, overall, the BCD recom-
mendations about choice of method seem reasonable
to us. Our own preference is to use the Wilson inter-
val for statistical practice and CIAC for teaching in
elementary statistics courses.

4. EXTENSIONS

Other than near-boundary modifications, another
type of fine-tuning that may help is to invert a test
permitting unequal tail probabilities. This occurs
naturally in exact inference that inverts a sin-
gle two-tailed test, which can perform better than
inverting two separate one-tailed tests (e.g., Sterne,
1954; Blyth and Still, 1983).

Finally, we are curious about the implications of
the BCD results in a more general setting. How
much does their message about the effects of dis-
creteness and basing interval estimation on the
Jeffreys prior or the score test rather than the Wald
test extend to parameters in other discrete distri-
butions and to two-sample comparisons? We have
seen that interval estimation of the Poisson param-
eter benefits from inverting the score test rather
than the Wald test on the count scale (Agresti and
Coull, 1998).

One would not think there could be anything
new to say about the Wald confidence interval
for a proportion, an inferential method that must
be one of the most frequently used since Laplace
(1812, page 283). Likewise, the confidence inter-
val for a proportion based on the Jeffreys prior
has received attention in various forms for some
time. For instance, R. A. Fisher (1956, pages 63-
70) showed the similarity of a Bayesian analysis
with Jeffreys prior to his fiducial approach, in a dis-
cussion that was generally critical of the confidence
interval method but grudgingly admitted of limits
obtained by a test inversion such as the Clopper-
Pearson method, "though they fall short in logical
content of the limits found by the fiducial argument,
and with which they have often been confused, they
do fulfil some of the desiderata of statistical infer-
ences." Congratulations to the authors for brilliantly
casting new light on the performance of these old
and established methods.

Comment
George Casella

1. INTRODUCTION

Professors Brown, Cai and DasGupta (BCD) are
to be congratulated for their clear and imaginative
look at a seemingly timeless problem. The chaotic
behavior of coverage probabilities of discrete confi-
dence sets has always been an annoyance, result-
ing in intervals whose coverage probability can be

George Casella is- Arun Varma Commemorative
Term Professor and Chair, Department of Statis-
tics, University of Florida, Gainesville, Florida
32611-8545 (e-mail: casella@stat.ufl.edu).

vastly different from their nominal confidence level.
What we now see is that for the Wald interval, an
approximate interval, the chaotic behavior is relent-
less, as this interval will not maintain 1 - a cover-
age for any value of n. Although fixes relying on
ad hoc rules abound, they do not solve this funda-
mental defect of the Wald interval and, surprisingly,
the usual safety net of asymptotics is also shown
not to exist. So, as the song goes, "Bye-bye, so long,
farewell" to the Wald interval.

Now that the Wald interval is out, what is in?
There are probably two answers here, depending
on whether one is in the classroom or the consult-
ing room.
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