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ABSTRACT

In many applications with a binary response and an ordinal or quantitative
predictor. it is natural to expect the response probability to change monotonically.
Two possible models are a linear model with some link. such as the linear logit model,
and a more general order-restricted model that assumes monotonicity alone. The
order-restricted approach is more complex to apply, and we investigate whether it
may be worth the extra effort. Specifically, suppose the order restriction truly holds
but a simpler linear model does not. For testing the hypothesis of independence,
is there the potential of a substantive power gain by performing an order-restricted
test? For estimating a set of binomial parameters, how large must the sample size
be before the consistency of the order-restricted estimates and inconsistency of the

model-based estimates makes a substantive difference to mean square errors?

We conducted a limited simulation study comparing estimators and likelihood-
ratio tests for the linear logit model and for the order-restricted model. Results
suggest that order-restricted inference is preferable for moderate to large sample
sizes when the true probabilities take only a couple of levels. such as in a dose-

response experiment when all doses provide a uniform improvement over placebo.
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148 AGRESTI AND COULL

If the true probabilities are strictly monotone but deviate somewhat from the linear
logit model, the logit-based inference is usually more powerful unless the sample
size is extremely large. When the true probabilities may have slight departures
from monotonicity. the order-restricted estimates often perform better. particularly

for moderate to large samples.

1. INTRODUCTION

In many applications, it is natural to predict that the relationship between two
variables satisfies a rather vague condition such as “Y" tends to increase as X in-
creases.” A common way for a statistician to handle this is to construct a generalized
linear model in which X has a linear effect, on some scale. For a binary response ¥’

with P(Y = 1| X = z) = =(z), for instance. one might use the linear logit model
logit[=(z)] = o + 8z (1)

with the expectation that 3 > 0.

An alternative and more general model assumes solely an order-restricted effect.
This model treats the explanatory variable as a factor but imposes a monotonicity
constraint on parameters. For instance, suppose the explanatory variable has r
levels, ; < T3 < ... < zr, and one expects a positive association. Then. the model
takes the more general form

7(z;) = a+ B, (2)

with constraint §; < 82 < ... < 53;.

A substantial literature exists on methods for order-restricted inference, particu-
larly for normal responses. Barlow, Bartholomew, Bremner, and Brunk (1972) and
Robertson, Wright, and Dykstra (1988) provided surveys. Despite this extensive
literature, order-restricted methods seem to be rarely used for practical application.
They do not typically appear in basic texts on applied statistics, in more specialized
texts on models for continuous or discrete data, or in the major software packages.
There are undoubtedly a variety of reasons for this. First, the methods are not sim-
ple to apply, requiring algorithms and/or nonstandard limiting distributions even
for simple problems such as the one-way layout with normal responses. This should
not be a major hurdle, however, in the modern computing age. Second. much of
the survey literature is not easily readable by nonstatisticians or by applied statis-
ticians wanting an introduction to the methods. The area would be well-served by

an applied version of the fine theoretical text by Robertson et al. (1988).
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A natural question to ask is whether it is worth the extra effort to conduct
order-restricted inference. For instance. if the order restriction (2) truly holds but
the simpler linear logit model (1) does not. is there the potential of a substantive
power gain by performing an order-restricted test instead of the linear logit test or
the simple chi-squared test of independence? Do the order-restricted estimates of
the true proportions tend to be better than the linear logit estimates and the sample
proportions?

This paper studies these questions about order-restricted inference in the con-
text of binary response data. If the linear logit model (1) holds or nearly holds. it
is natural to use inference based on it. In practice. though, one would often expect
the binomial parameters to increase monotonically without satisfying, even approx-
imately, the linear logit model. Yet, there may be no a priori reason to choose a
particular alternative link or structural form for the relationship. Is order-restricted
inference superior as one moves sufficiently far away from the linear logit model?
One would hope so, but the order-restricted test must counteract the parsimonious

benefit the logit-based test has of focusing inference on a single parameter.

Section 2 summarizes order-restricted methods for comparing binomial parame-
ters. Section 3 presents results of a limited simulation study comparing the likelihood-
ratio tests of independence applied to r x 2 contingency tables with monotone prob-
abilities for (1) the linear logit model, (2) the more general order restriction, and (3)
the most general model. Results suggest that the order-restricted test is preferable
to the linear logit test (or the ordinary chi-squared test for the most general model)
when the response probability takes a jump bur then stays essentially constant:

otherwise, the linear logit test performs well even when the model does not hold.

Section 4 studies the potential improvement in estimation from using order-
restricted methods. Similar results hold. The main advantage for order-restricted
estimation accrues for moderate to large samples when the true probabilities take
only a couple of values. Section 5 compares the methods when the probabilities have
an irregular monotone trend and may have occasional probabilities that are “out-
of-order.” Then. order-restricted estimates tend to perform better than the linear
logit estimates. and for small samples they also perform better than the sample

proportions.
The final section of the article comments about possible reasons for the limited
use in practice of order-restricted methods and suggests future research that may

be fruitful for increasing their scope and utility.




150 AGRESTI AND COULL

2. ORDER-RESTRICTED METHODS FOR CONTINGENCY
TABLES WITH BINARY RESPONSE

Consider a r x 2 contingency table comparing independent binomial samples at
r ordered levels of a predictor. Let n;; denote the number of “successes™ out of n;
trials at level z; of the predictor. and let n;» denote the number of “failures.” e
assume that {n;;,i = 1....r} are independent binomial variates with parameters

{m,i=1....r}. Let p, = n;1/n;, i = 1.....r. denote the sample proportions.

Bartholomew (1959) presented one of the first order-restricted tests for contin-
gency tables, in testing that =, = 7 = ... = 7, against the alternative 7} < m <
.. £ @r. Under the null. the maximum likelihood (ML) estimator of =; is the overall
sample proportion p = (3 ni1)/(X ni). If py < po € ... < pr, then the order-
restricted ML estimator of =; equals #; = p;. Otherwise. one pools “out-of-order”
categories until the sample proportions are monotone, and the order-restricted ML
estimates of proportions for the original categories are the sample proportions for
this partition of categories. Bartholomew's test statistic equals the usual Pearson
chi-squared statistic applied to the collapsed table that combines rows having sam-
ple proportions falling out of order. The collapsed table and the order-restricted
estimates can be calculated using the pool adjacent violators algorithm for isotonic

regression (e.g., Robertson et al. 1988, Sec. 1.2).

Alternative large-sample procedures (Barlow et al. 1972, p. 193) include ones
based on the approximate normality of the sample proportions, with an inverse sine
transformation possibly applied to stabilize the variance. Robertson et al. (1988, p.
167) presented the likelihood-ratio statistic for the order-restricted binomial prob-
lem as a special case of a test for parameters in an exponential family distribution
(Robertson and Wegman, 1978). The likelihood-ratio test statistic for testing inde-

pendence in the r x 2 table, assuming the order-restricted model, is
G(I10) = ) _ it log(#:/p) + Y nia log((1 — ) /(1 = p)].

The large-sample distribution of this test statistic, like those of most others in
order-restricted inference for categorical data, is chi-bar squared. This distribution
refers to random variables of form Y.}_, psx3_,, where X3 is a chi-squared variate
with d degrees of freedom and where the ‘weight’ py is the probability that the

order-restricted solution has d distinct sets on which the estimates are level.
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For the order-restricted binomial problem. the weights for the chi-bar-squared
statistic depend on the {n;}. Robertson et al. (1988) provided tables of the distri-
bution for r = 3 and 4 and provided critical values for larger r values for the equal
sample size case. The large-sample chi-bar-squared approximation for the distribu-
tion of the likelihood-ratio statistic may be inadequate if some null expected cell
counts are small. Agresti and Coull (1996) presented small-sample tests using the
likelihood-ratio statistic and provided extensions for stratified tables, and Eddy et
al. (1993) discussed a model having monotone partial effects for multiple predictors

in a model.

3. APOWER COMPARISON OF ORDER-RESTRICTED
AND LINEAR LOGIT TESTS

This section compares likelihood-ratio tests of #; = 7 = ... = 7. Suppose that
the rows are ordered and the binomial parameter increases in the row index. Are
we better off using the order-restricted test for the alternative of ordered binomial

parameters, or the test based on the linear trend model (1)?

3.1 Design of power study

Let G?(I) denote the ordinary likelihood-ratio statistic for testing independence
against the general alternative that the {m;} are not all equal. Then we have that

GH(I) =2y nijloglni;/ivij),
]
where f;; = n,.n.;/n. Let G*(I|L) denote the likelihood-ratio statistic for testing
Hy: 8 =0 against H,: 8 > 0 for the linear logit model. Because of the nesting of
the alternative parameter spaces, it follows that G2(I|L) < G*(I|0) < G*(I).

The null asymptotic distribution for G?(I) is chi-squared with df =7 — 1. The
null asymptotic distribution for the likelihood-ratio test of Hg: 3 = 0 against H, :
3 # 0 in model (1) is chi-squared with df = 1. For the one-sided alternative. Hg:
8 > 0, the null asymptotic distribution of G2(I|L) is (1/2)x3 + (1/2)x3}, where Y2
is degenerate at 0. By contrast, the null asymptotic distribution of G*(I|0) is a
weighting of chi-squared variates with df ranging from 0 to r — 1.

If the linear logit model truly holds with 3 > 0. then the logit statistic G2(I|L)

is approximately noncentral chi-squared with df = 1. In that case. P(G*(I|0) =
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G?(I)) converges to 1 as n increases; thus, G2(I|0) is approximately noncentral
chi-squared with df = (r - 1) and the same noncentrality parameter as the logit
statistic. From standard resuits (e.g., Das Gupta and Perlman, 1971), when the
linear logit model holds with 3 > 0. the logit test is asymptotically more powerful
than the order-restricted test. which s itself asymptotically more powerful than the

test for the general alternatjve.

To make power comparisons of the tests based on G*(I|L). G2(I|0), and G*(I).
we conducted a small simulation study. Using 100.000 simulations at each combi-
nation of study factors, we estimated the probability that the test statistic falls in
the rejection region for a test of fixed size. The simulation study used the following

factors in a factorial design, with the levels indicated.

1. Number of rows r: 3, 5,0r 7.

2. Total sample size n: 100 or 230, allocated equally or as equally as possible
among rows (For instance. 100 trials were allocated to three rows as 34, 33.
33).

3. True model:

a. logit(m;) = a + 4(; - Lj/(r-1)

b. logit(m) = a + B(i — 1)?/(r — 1)2

(e}

. logit(m;) = a + B(logi)/(log r)
d. logit(m;) = a + 8I(i > 2)

@

. logit(m;) = a + BI(i >r/2)
f. logit(m) = a + B/2)1G>2) + (B/2)I(i > 3)

The I functions in the last three Cases are indicator functions. For comparabil-

ity, we parameterized the six cases so that logit(m;) = o and logit(n;) = o+ 3.

4. Parameter values for true models: & =-0.7 and 3 = 0,.5, 1.0, 1.5. These give
success probabilities varying from .332 at i = 1 to -332, 4530, .574, .690 (for

the four beta choices) at i = r,

The six choices for the model form for the true probabilities all satisfy the order-

restricted model (2). They correspond respectively to (a) linear logit model with
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positive trend truly holding; (b) logit model with quadratic increase: (c) logit model
with log increase: (d) first level differs from others, which are identical: (e) shift in
probability at midpoint of levels, with constant value below and above it; (f) linear
increase for three levels, then plateau. The study used relatively large sample sizes
(n = 100 and 250) to ensure that the actual size of the large-sample chi-squared
and chi-bar-squared tests did not deviate greatly from the nominal size. This was

checked by the estimated power when § = 0.

3.2 Results of power study

Table I shows the estimated powers for the linear logit and order-restricted tests.
The standard error of the estimates equals .0007 when the true power is .05 (or
.95) and .0016 when the true power is .50. When the linear logit model truly holds,
the power for the order-restricted test was as much as .04 less than the power of
the model-based test, this difference occuring when both powers were in the middle
of the range. The quadratic and log increases exemplify cases in which the true
relationship is strictly monotone but not linear. The model-based test maintains
its superiority in these cases, but not as markedly. For the plateau cases, the two
tests are not much different except in case (d), in which a single step follows the first
level. This case exhibits some large differences in power, with the advantage going to
the order-restricted analysis. These latter results are qualitatively similar to those
obtained by Shi (1991, Table III) in comparing analogous score tests (e.g., Mantel's
trend test). The differences become more noticeable as r increases. When n = 100
with r = 5 or 7, however, this result is tempered by the fact that the order-restricted
test shows evidence of having true size somewhat larger than the nominal value. A
referee pointed out to us that similar behavior occurs for order-restricted methods
in other contexts: for instance, Silvapulle (1992) obtained better approximations for

the null distribution by replacing weighted chi-squared terms by weighted F terms.

For contrast, the n = 230 part of the table also displays the power of the ordi-
nary chi-squared likelihood-ratio test, G*(I). Not surprisingly, this test fares poorly
compared to the others. particularly as r (and hence df) increases. The only excep-
tion is case (d), in which the test based on the linear logit model fails to uniformly
dominate it. Since this chi-squared test refers to a general alternative, it is weak for

directed alternatives such as monotone trends.
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TABLE I

Estimated Powers for Likelihood-Ratio Tests Based on Logit Model with Linear (first entry).
Order-Restricted (second entry). and Saturated (third entry, n = 250) Alternatives.

r=3 r=393 r=7
True Size of Effect (Beta)
Relation 0 5 1.0 1.5 0 3 1.0 1.5 0 .3 1.0 1.5
n=100

a 031 241 621  .905 052 216 543  .836 051 202 498 801
052 244 616 .893 .054 .205 .507 .801 054 .195 466 .757

b 051 249 624 .903 051 .221 541  .832 051 .203 493  .790
0531 243 .628 .909 055 .211 .519 .816 055 .194 476 .765

c 052 241 .622 .904 051 209 .525 817 052 .186 467 .761
051 .247 621 .900 .034 206 .501 .791 035 183 447  .T32

d 032 237 .623 914 052 .164 .402 .680 052 .126 .288 .503
053 269 .697 .949 055 .193 .503 .822 0356 .139 400 .704

e .051 .235 .623 913 052 272 676 934 052 273 680 .939
.051 .269 .700 .949 054 262 679 944 055 .256 671 941

f 052 242 623 .904 053 215 543  .833 050 .169 424 .706
.052 243 612 .893 054 .219 .533 .830 .035 .187 471 .769

n=250

a .053 477 .933  .999 .050 .393 .865 .993 051 .357 .829 933
031 448 922 .999 052 .336 .832 .939 053 .325 .784 973

052 274 .820 .993 .054 .168 .583 .929 035 .133 459 .846

b 052 483 934 .999 .050 .391 .868 .993 052 358 .823 .937
051 462 937 .999 0532 .365 .849 .992 052 .327 .800 .933

052 .297 851 .996 052 177 .626 .S30 035 .140 493 874

c 033 474 932 .999 051 376 848 .991 030 .328 .789 .979
052 448 927  .999 0531 352 .825 938 051 .309 .760 .972

032 277 .828 994 054 .164 .580 .930 054 .129 437 .823

d 033 464 932  .999 051 .276 .703  .938 052 .203 .504 .822

.050 .504 .967 1.000 .051 346 .858  .995 052 261 .727 971
050 .343 919 .999 033 .201 .703 .977 034 .140 502 .8389
e 052 462 932 .999 051 .492 .951 1.000 .050 .499 .956 1.000
.052 .502 .967 1.000 .051 .486 .963 1.000 054 474+ 959 1.000
052 .352 918 .999 052 .291 .831 .999 035 250 .842 .997

f .052 .476 .931 .999 .030 .385 .865 .993 051 .290 .721 .938

049 448 .923 999 .050 .387 .881 .996 032 317 .800 .986

.051 .276 .819 .993 .054¢ .201 .704 .976 035 .151 541 9135

NOTE: True relation (a) = linear logit, (b) = quadratic, (c) = log, (d) = step at level 2, (e) =
change in level midway, (f) = linear then plateau

In summary, the good news for the order-restricted approach is that it has weaker
assumptions than the linear logit model but never fares much worse than the logit
test. The bad news is that it often has weaker power even if reality departs quite

strongly from the linear logit model. However, these results do suggest an applica-




ORDER-RESTRICTED AND LINEAR LOGIT MODELS 155
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FIG. 1: Estimated Powers for Likelihood-Ratio Tests Based on Linear Logit Model
(L) and Order-Restricted Model (O), When the Data are Generated from Model
(d) with r=5 (Based on 100,000 Simulations)

tion in which the order-restricted test is preferable to the logit test or the ordinary
chi-squared test. Consider a dose-response experiment comparing zero dosage (e.g..
placebo) to several doses of a drug. Suppose one expects the drug to have an ef-
fect, but such that successively increasing dose levels may not provide much if any
improvement over the lowest dose administered. Then. based on the power results
shown for case (d). the order-restricted test would be much preferred. Figure 1 il-
lustrates this case, plotting the powers for the order-restricted and linear logit tests

for each n when r = 5.

4. A COMPARISION OF ORDER-RESTRICTED, LINEAR LOGIT,.
AND SAMPLE PROPORTION ESTIMATORS

An order-restricted approach mayv be more useful for estimation than testing.
When one expects an increasing trend in binomial probabilities. the order-restricted
fit smooths the sample data toward that expectation, though the smoothing is less
severe than with a parametric model. Suppose the true probabilities satisfy the
order restriction, but not the linear logit model. Then, one would expect the order-
restricted damping of the sampling error for small samples to result in estimated cell

probabilities with considerably smaller mean squared errors than the sample pro-
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portions have; yet, for large samples, those estimates would maintain consistency.
like the sample proportions but unlike the linear logit estimates. If an order restric-
tion truly holds but the linear logit model does not, how large must the sample size
be before the consistency of the order-restricted estimates and inconsistency of the

model-based estimates makes a substantive difference to mean square errors?

To describe the extent of potential improved estimation provided by order-
restricted approaches. we compared the sample proportions. order-restricted esti-
mates. and linear logit model-based estimates of the proportions, when the true
relationships are the ones mentioned in the previous section. For any estimator
7; of 7, we evaluated the average mean square error of the estimators of the r
probabilities,

[Z E(# - m)?)/r.

For the sample proportions {pi} with sample size n allocated equally among the r
rows. this equals 3", [m;(1 — 7i)}/n. For the other cases, we estimated the average
mean squared errors by simulating 100,000 sample tables. When the true proba-
bilities are strictly monotone increasing, the probability that the order-restricted
estimates are identical to the sample proportions converges to 1 as n — oc, since
asymptotically the sample proportions satisfy the ordering by the Law of Large
Numbers. Thus, asymptotically their average mean squared errors are identical in

this case.

We performed the comparison for sample sizes of n = 25, 100, 250, 500 and
1000. Table II shows the sample-size normalized MSE values (ie., multiplied by n,
to make results comparable for differing n) for 8 = 1.5. For contrast, the bottom
panel contains results for 3 = 0. in which case all the models hold and all estimators
are consistent. The estimated mean squared errors have standard error values no

greater than .006.

When there is no effect (8 = 0), both the linear logit and order-restricted esti-
mators perform much better than the sample proportion. The relative performance
of the three estimators is the same at each sample size, for given 7. As r increases,
the relative performance of the linear logit model improves. In fact. Table II shows
that for every case considered. the sample proportions deteriorate as r increases,
since there are additional parameters to estimate with the same total amount of
data; by contrast, when the linear logit model holds, the average mean square error

for that model is relatively stable in r.
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When 3 = 1.5 and the linear logit model holds. that model performs best for all
n and r. For small n the order-restricted estimator performs well, but as 7 increases
it shares the same poor behavior as the sample proportion, since the probability

that it is identical to that estimator converges toward 1.0.

In cases (b) and (c), the true probabilities are strictly monotone but do not satisfv
the linear logit model. In this case the linear logit estimates behave well when n is
less than 100. Although they deteriorate as n increases and the inconsistency starts
to take effect. thev maintain their superiority over the order-restricted estimates
until the sample size is several hundred. unless r is small. When r is large, they
maintain superiority over the sample proportions unless n is very large (e.g., over a

thousand for r = 7).

For the plateau cases (d)-(f), the order-restricted estimates are not asymptoti-
cally normal, but a mean squared error comparison still seems reasonable as a way
of summarizing the quality of estimation. In these cases, the linear logit model
estimates deteriorate considerably more seriously. For small samples they behave
comparably to the order-restricted estimates, but by n = 100 they are much poorer,
and for sample sizes in the hundreds they are even much poorer than the sample
proportions. For these cases, the order-restricted methods behave well for all n and

their superiority over the sample proportions increases as r increases.

Similar patterns occur for other values of 3. For cases where the linear logit
model does not hold, the deterioration of the logit-based estimates requires larger
sample sizes as |5] decreases. To illustrate, Table III shows results for the same six
true relationships, when 8 = .5 and r = 5. Figure 2 illustrates the superiority of
the order-restricted estimates for case (d) of a jump after the first level. That figure
plots the average MSE values for the three estimators as a function of the sample

size, when r = 3, both for B =15 and .5.

5. COMPARISIONS FOR DEPARTURES FROM MONOTONICITY

The comparisons of the past two sections assumed that the order-restricted
model truly holds, but the simpler linear logit model may not hold. This encom-
passes a broad class of situations encountered in practice. Another broad class
of practical situations are ones having overall monotone trends but with occa-
sional small departures from monotonicity or with less regular trends than linear.

quadratic, or log. We next studied how adversely the order-restricted and linear

logit analyses are affected by slight nonmonotonicity or irregularity in the trend.
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TABLE III

Estimated Average Mean Squared Errors for Estimating Binomial Probabilities
Using Linear Logit Model (first entry), Order-Restricted Estimates (second entry),
and Sample Proportions (third entry), for Models with 7 = 5 and 3 = 0.5.

159

True Sample Size
Relation 25 100 250 500 1000
Linear 0.48 047 047 048 047
logit 0.55 0.59 064 0.71 0.79
1.18 1.18 1.18 1.18 1.18
Quadratic 047 048 0530 0.54 0.61
0.54 0.59 0.64 0.70 0.78
1.16 1.16 1.16 1.16 1.16
Log 0.48 048 0.30 0.52 0.57
0.55 0.59 0.65 0.71 0.79
1.19 119 119 119 1.19
Step, 0.51 0.60 0.77 1.05 1.62
level 2 0.57 0.62 0.67 0.72 0.73
1.21 1.21 121 121 1.21
Linear. 0.50 0.56 0.69 0.91 1.34
then plateau 0.57 0.64 0.71 0.76 0.78
1.19 1.19 1.19 1.19 1.19
Step, 049 0.53 0.61 0.73 0.99
midway 0.56 0.61 0.68 0.74 0.81
1.20 1.20 1.20 1.20 1.20
10 . 20
‘N ° Mse . N Mse
8 2 ' 15 A ot <"
6 L SSSS!!SSSS:EK&:!SSSS
K 10 4 ot ¢
4 LLL Enb("o.,gooocucpoconoc
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FIG. 2: N-Normalized MSE as a Function of N for Estimators Based on the Linear
Logit Model (L), the Order-Restricted Model (O). and the Sample Proportions
(S). When the Data are Generated from Model (d) with r=5 (Linear Logit and

Order-Restricted MSE Values Based on 100,000 Simulations)
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To study this situation, we used the following mixed-model extension of the

linear logit model. Suppose that
logit(m;) = a+ 8(i —1)/(r — 1) + 0z, (3)

where 21, ..., z; are independent N(0,1) variates. The expected value of the linear
predictor is the linear logit model from the previous simulations, but adding the
random effect to the model produces binomial probabilities that have an irregular
increasing trend, with the potential of some departures from monotonicity. As o
increases, it is more likely that at least two of the binomial parameters are “out of

order,” and the degree of irregularity in the trend also increases.

We compared order-restricted, linear logit, and sample proportion inference as-
suming this model. To compare estimates. for each combination o = 0, -125, .25,
.50, .75, n = 25, 100, 250, 500, 1000, and r = 3, 5, 7, we generated data for 100,000
versions of the random effects model (i.e., for a random sample of 100,000 sets of
standard normal variates {z;}). We report results for the parameter values a = -.7
and § = 1.0 for the model. Note that the true probabilities differ for each of the
100,000 samples for each combination of o, n, and r. For each sample, we compared
the sample proportions, order-restricted estimates, and linear logit estimates to the
true probabilities for the {2;} for that sample. We summarized the simulations for
cach combination of o, n, and T by the sample-size-weighted mean squared error
of each estimator around the true parameter values, averaged across the r response

categories.

Table IV shows results. Specifically, if 7,; is the true binomial parameter for row
i of the r x 2 table in simulation 7 and if 7;; is an estimate (sample proportion or
order-restricted estimate or linear logit estimate), then Table IV reports
(n/100,000) > "[>" (7i; — mij)?/r].
i
The estimated mean squared errors have standard error values ranging from .004
when nx MSE = 0.50 to 005 when n.x \SE = 1.00 to .099 when nx \[SE = 16.37.

Note that the case o = 0 is the ordinary linear logit model. Table IV shows that
when ¢ > 0, unless o is large, the linear logit or order-restricted estimates are better
than the sample proportions when the sample size is small. Naturally, the model-
based estimates deteriorate as n or ¢ increase. The deterioration is worse for the
linear logit model than the order-restricted model. For a nonsevere potential degree

of nonmonotonicity or irregularity (e.g., o < .25), the order-restricted estimates
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have the advantage of performance like the linear logit estimates for small n and

like the sample proportions for large n.

For comparing performance of the tests, Table V shows results for the cases r
=3,57n= 100, 250, 8 = 0, -5, 1.0, 1.5, for the same o values for the random
effect. Again, for small o and n the model-based approaches have the advantage,
as long as somewhat of a positive trend remains (ie, 3>0). As o increases and
the frequency and extent of nonmonotonicity increase, the model-based methods
lose their advantage. Again, the linear-logit inference deteriorates somewhat more

quickly.

6. CONCLUSION

The comparisons of the previous two sections may be summarized as follows, for
the moderate-sized values of r commonly encountered in practice (say, around 4 or
5): If the linear logit mode] appears to fit well, use inference based on it for any
n. If the true probabilities are likely to be strictly monotone but deviate somewhat
from the linear logit model, it is st best to use the logit-based inference unless
the sample size is very large. For this large sample-size case, the order-restricted
estimates perform slightly better than the sample proportions (unless the sample
size is extremely large, in which case they are equivalent for estimation), though

using the latter provides a protection against nonmonotonicity.

Suppose the true probabilities are likely to assume only a couple of levels, rather
than be strictly increasing. Then inference based on the linear logit-model is fine for
small sample sizes (e.g., 25 or 50), but with moderate to large samples it is better
to use order-restricted methods. Finally, if the true probabilities tend to increase
but need not be monotone, then the logit-based and order-restricted methods are
better than inference based on sample proportions if the sample size is small, but as
the sample size or the departure from monotonicity increases, the linear-logit based
estimates deteriorate more quickly then the order-restricted estimates. In fact, for
purposes of estimation, if the degree of potential nonmonotonicity is very small, then
the order-restricted estimates have the advantage of performance like the linear logit

estimates when n is smal] and like the sample proportions when 7 is large.

In summary, we found one situation in which order-restricted methods showed
substantial Improvement over linear logit and sample proportion estimates and thus
would seem to be worth serious consideration. This is when the true relationship is

close to a plateay following some initial jump, such as when all doses of a drug are




ORDER-RESTRICTED AND LINEAR LOGIT MODELS

Estimated Powers for Likelihood-Ratio Tests Based on Logit Model with Linear (first entry),
Order-Restricted (second entry), and Saturated (third entry) Alternatives for Model (3) with

TABLE V

Random-Effect.

r=3 r= r=7
Size of Effect (Beta)
g 0 .5 1.0 1.5 0 5 1.0 1.5 0 ) 1.0 1.5
n=100
0.00 .051 .241 .621 .905 052 .216 .543 .836 .0531 .202 .498 .80l
.052 244 616 .893 034 .205 .507 .801 054 195 466 .757
053 134 421 771 057 101 258 .533 .068 .093 .207 .426
125 061 253 614 .891 .038 .223 .339 .826 .057 .206 .499 .793
.065 261 .613 .884 .063 .220 .518 .796 062 204 47T 754
073 157 435 .764 074 120 .280 .543 079 111 228 444
0.25 .087 .281 .596 .85T7 074 245 331 .800 .067 220 .496 .771
.100 .307 614 .861 088 262 .536 .792 081 239 499 753
JA32 222 473 751 125 179 340 581 127 1162 .288 493
0.50 .159 .338 .364 .769 125 .286 .513 .73l 105 235 479 .T10
206 400 .620 .808 185 365 .584 7T 1539 331 554 .756
344 418 573 745 341 401 528 632 333 378 491 635
0.75 224 370 .541 .702 177 320 .493 .668 152 284 470 651
301 460 .626 .769 238 450 620 .765 261 421 598 .756
548 587 670 .766 500 631 .700 .735 593 632 .700 .776
1.00 .267 391 323 653 220 343 483 622 100 307 157 603
37 498 626 .740 375 510 645 .76l 351 492 632 .759
680 .706 .751 .802 738 .784 .820 .861 .782 .809 .840 .876
n=250
0.00 .033 477 933 .999 030  .393 .865 .993 0531 357 .829 .938
051 448 .922 .999 .032 .356 .832 .989 033 325 784 978
052 274 .820 .993 054 .168 .583 .929 035 133 459 846
125 076 479 903 .997 065 .398 .842 .939 .060 .364 .812 .982
.081 471 .901 .996 075 .386 .824 .984 069 352 .784 974
.099 326 .802 .986 092 .218 .611 .922 .088 .181 .499 .851
0.25 .131 482 .839 .980 101 409 793 .963 .088 .378 .773 .963
160 513 854 .983 133 452 812 970 Jd21 421 783 .962
250 437 778 961 234 369 .677 912 213 325 604 865
0.50 .238 483 .723 .894 193 430 .699 .887 164 403 683 889
317 566 786 .923 316 565 .796  .930 287 348 790 933
581  .638 .794 .909 635 .702 .818 .919 .638 .707 819 918
0.75 .307 482 657 .806 238 441 635 .799 226 416 633 .806
412 592 .T48 .865 442 .628  .T85  .894 430 626 .796 .90%
759 792 842 902 849 876 912 .947 .878 .903 .934 .962
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uniformly equal but better than a zero dose, and when the sample size is moderate

to large. Figures 1 and 2 illustrated this case.

7. SUGGESTIONS FOR FUTURE RESEARCH

At the beginning of the paper, we noted that although the order-restricted liter-
ature is substantial, the methods do not seem to be used much in practice. Besides
the reasons cited there, the lack of application may reflect the fact that the devel-
opment of order-restricted methods has, for the most part, been limited to fairly
elementary problems. For multinomial data, for instance, the major emphasis has
been on comparing two groups or inference about probabilities for a single multino-
mial distribution (e.g., Chap. 5 in Robertson et al. (1988)). Moreover, most of this
work has focused on hypothesis testing, for which there may indeed be little benefit
to using order-restricted methods, Table I suggests, for instance, that a test based
on a simple model may perform adequately and even have greater power than the

order-restricted test unless reality departs quite markedly from the model.

There seems to be considerable scope, on the other hand, for the further devel-
opment of order-restricted methods for estimating parameters in generalized linear
models. For instance, does the good performance of order-restricted estimates when
the trend is monotone but irregular or with potential slight departures from mono-
tonicity (shown in Table IV} extend to other generalized linear models? How can
one reduce the bias in the ML order-restricted estimates? How can one construct
confidence intervals using the order-restricted estimates? (Robertson et al. (1988)
noted the difficulty of this problem and devoted only two pages.) How can one
incorporate order restrictions in a Bayesian framework? What are the effects of
including additional variables as stratification factors? For examples of some re-
cent uses of order-restricted methods in estimation and modeling, see Disch (1981).
Schmoyer (1984), Agresti, Chuang, and Kezouh (1987), Morris (1988), McDonald
and Diamond (1990), Wax and Gilula (1990), Bacchetti (1991), Gelfand and Kuo
(1991), Geyer (1991), Ritov and Gilula (1991). Silvapulle (1994), and Eddy et al.
(1995).

Furthermore, order-restricted methods could be extended to additional types
of applied problems. For instance, there seems to have been little work on order-
restricted methods for repeated measurement data, as opposed to independent sam-
ples. A variety of applications may benefit from order-restricted analyses in a gen-

eralized linear mixed model format.
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