Taylor & Francis
Taylor & Francis Group

Journal of the
AmeTican
Statistical

Asdsociabion

®

Journal of the American Statistical Association

ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: www.tandfonline.com/journals/uasa20

Comment

Alan Agresti

To cite this article: Alan Agresti (1998) Comment, Journal of the American Statistical
Association, 93:444, 1307-1310, DOI: 10.1080/01621459.1998.10473791

To link to this article: https://doi.org/10.1080/01621459.1998.10473791

@ Published online: 17 Feb 2012.

\]
C»/ Submit your article to this journal &

||I| Article views: 36

A
& View related articles &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uasa20


https://www.tandfonline.com/journals/uasa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.1998.10473791
https://doi.org/10.1080/01621459.1998.10473791
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.1998.10473791?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.1998.10473791?src=pdf
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Agresti: Comment

McCullagh, P, and Nelder, J. A. (1989), Generalized Linear Models (2nd
ed.), London: Chapman and Hall.

Mehta, C. R., and Patel, N. R. (1983), “A Network Algorithm for Perform-
ing Fisher’s Exact Test in R x C Contingency Tables,” Journal of the
American Statistical Association, 78, 427-434.

Mehta, C. R, Patel, N. R,, and Gray, R. (1985), “Computing an Exact
Confidence Interval for the Common Odds Ratio in Several 2 x 2 Con-
tingency Tables,” Journal of the American Statistical Association, 80,
969-973.

Mehta, C. R, Patel, N. R, and Senchaudhuri, P. (1988), “Importance Sam-
pling for Estimating Exact Probabilities in Permutational Inference,”
Journal of the American Statistical Association, 83, 999-1005.

(1992), “Exact Stratified Linear Rank Tests for Ordered Categori-
cal and Binary Data,” Journal of Computational and Graphical Statis-
tics, 1, 21-40.

Mehta, C. R, and Walsh, S. J. (1992), “Comparison of Exact, Mid-p,
and Mantel-Haenszel Confidence Intervals for the Common Odds Ratio
Across Several 2 x 2 Tables,” The American Statistician, 46, 146—151.

Mundz, A., and Rosner, B. (1984), “Power and Sample Size for a Collec-
tion of 2 x 2 Tables,” Biometrics, 40, 995-1004.

Olver, F. W. J. (1974), Asymptotics and Special Functions, New York:
Academic Press.

Pan, V. (1997), “Solving a Polynomial Equation: Some History and Recent
Progress,” SIAM Review, 39, 187-220. '

Parlett, B. (1980), The Symmetric Eigenvalue Problem, Englewood Cliffs,
NIJ: Prentice Hall.

Pierce, D., and Peters, D. (1992), “Practical Higher Order Asymptotics for
Multiparameter Exponential Families,” Journal of the Royal Statistical
Society, Ser. B, 54, 701-737.

Alan AGRESTI

1307

Pitman, J. (1997), “Probabilistic Bounds on the Coefficients of Polynomials
With Only Real Zeros,” Journal of Combinatorial Theory, Ser. A, 77,
279-303.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992),
Numerical Recipes (2nd ed.), Cambridge, U.K.: Cambridge University
Press. .

Robins, J., Breslow, N., and Greenland, S. (1986), “Estimators of the
Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-
Strata Limiting Models,” Biometrics, 42, 311-325.

Schoenberg, L. J. (1955), “On The Zeros of the Generating Functions of
Multiply Positive Sequences and Functions,” Annals of Mathematics, 62,
447-471.

Strawderman, R. L., Casella, G., and Wells, M. T. (1996), “Practical Small-
Sample Asymptotics for Regression Problems,” Journal of the American
Statistical Association, 91, 643-655.

Szego, G. (1975), Orthogonal Polynomials, Providence, RI: American
Mathematical Society.

Temme, N. (1982), “The Uniform Asymptotic Expansion of a Class of
Integrals Related to Cumulative Distribution Functions,” SIAM Journal
of Mathematical Analysis, 13, 239-253.

van Doorn, E. A. (1987), “Representations and Bounds for Zeros of Or-
thogonal Polynomials and Eigenvalues of Sign-Symmetric Tridiagonal
Matrices,” Journal of Approximation Theory, 51, 254-266.

Vollset, S. E., Hirji, K. E,, and Elashoff, R. M. (1991), “Fast Computation
of Exact Confidence Limits for the Common Odds Ratio in a Series
of 2 x 2 Tables,” Journal of the American Statistical Association, 86,
404-409.

Wang, S. {1993), “Saddlepoint Expansions in Finite Population Problems,”
Biometrika, 80, 583-590.

Comment

1. INTRODUCTION

The development of computational algorithms for ex-
act inferential analyses has been a major advance of the
past decade in contingency table analysis. The release of
StatXact and the inclusion of many of its routines in SAS
and SPSS now makes exact methods easy to use. Although
certain exact analyses are still computationally infeasible,
methods exist for their accurate approximation, such as
Monte Carlo (e.g., Agresti, Wackerly, and Boyett 1979;
Booth and Butler 1998; Mehta, Patel, and Senchaudhuri
1988), Markov chain Monte Carlo (e.g., Forster, McDon-
ald, and Smith 1996), and the iterated bootstrap (Presnell
1996). The Strawderman and Wells article is a very help-
ful contribution in showing how to use saddlepoint methods
to approximate exact inference for several 2 x 2 tables. As
in many applications, such as ones for contingency tables
discussed by Davison (1988), Pierce and Peters (1992) and
Agresti, Lang, and Mehta (1993), saddlepoint approxima-
tions tend to work amazingly well.

Exact algorithms are usually much slower for interval
estimation than for testing a null parameter value, so sad-
dlepoint approximations for exact confidence intervals are

Alan Agresti is Professor, Department of Statistics, University of Florida,
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especially useful. I also appreciated the emphasis in the
Strawderman and Wells article on studying power. Al-
though power approximations are also relatively simple to
compute when using Monte Carlo generation of null and
non-null distributions, this topic has received surprisingly
little attention in the literature.

Strawderman and Wells focus primarily on inference for
a common odds ratio. As discussed in the following sec-
tions, two-sided large-sample inference for the odds ratio
often performs reasonably well for small samples. For sev-
eral degree of freedom problems, on the other hand, such as
testing fit of models using chi-squared statistics with sparse
data, large-sample methods can break down severely. For
many such problems, Monte Carlo methods are relatively
simple, and I wonder how much potential exists for ex-
tending the Strawderman and Wells work to more complex
problems of this type? Of course, meaningful power ques-
tions become more difficult to pose when the number of
parameters is large.

2. WHICH EXACT ANALYSIS TO APPROXIMATE?

With exact methods, one can guarantee that the size of
a test is no greater than some prespecified level and that
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the coverage probability for a confidence interval is at least
the nominal level. Nonetheless, in using exact methods or
in approximating them with discrete data, one must think
carefully about which exact method should be the “gold
standard.” A variety of options exist. These include (1) ex-
act conditional tests and confidence intervals based on in-
verting such tests for non-null parameter values, such as
discussed by Strawderman and Wells, and (2) exact un-
conditional inferences that condition only on margins of
the contingency table naturally fixed by the sampling de-
sign (e.g., Berger and Boos 1994). The latter approach has
been studied mainly for 2 x 2 tables, but Freidlin and Gast-
wirth (1999) propose unconditional versions of the Mantel-
Haenszel test for several 2 x 2 tables. The exact conditional
approach eliminates the nuisance parameters by condition-
ing on their sufficient statistics. The exact unconditional ap-
proach eliminates nuisance parameters using a “worst-case”
scenario. For instance, the p value is a tail probability max-
imized over all possible values for the nuisance parameters.
Exact conditional methods have the advantage of versatility,
applying to a wide variety of exponential family problems
under several sampling situations, including randomization-
based analyses when the samples are in no sense the result
of binomial or multinomial sampling. On the other hand,
when the sampling scheme is multinomial or independent
binomial rather than hypergeometric, the restriction of the
sample space to samples having exactly the same response
margins as the one observed may seem artificial.

It is not my intention here to discuss the issues in the
conditioning controversy, but I mention this to emphasize
that in approximating exact inference, one must first decide
which exact inference to approximate. The unconditional
approach is much more computationally intensive than the
conditional approach, and the development of approximate
exact inference of this form is an interesting challenge for
future work. Moreover, each type of exact inference has
different ways of performing it. For instance, to define p
values in different ways, one might use a likelihood-ratio,
Wald, or score-test statistic, and confidence intervals can be
constructed by inverting two separate one-tailed tests or a
single two-tailed test. Even within a certain type of exact
inference, results can vary considerably according to the
choices of p value and test. For instance, Strawderman and
Wells report an exact confidence interval of (1.08, 531.5) for
Example 1 in Table 3; an alternative exact interval based on
the same test statistic but inverting a single two-sided test
(Kim and Agresti 1995) yields the interval (1.29, 261.5).

The variability in results that can occur with different
methods mainly reflects the complications that result in ex-
act inference due to discreteness. With the use of supple-
mentary randomization to achieve a desired size, one-sided
exact conditional tests for an odds ratio in a 2 x 2 table
or a common odds ratio in several such tables are uni-
formly most powerful unbiased. In practice, data-unrelated
randomization is unacceptable, and it is rarely possible to
achieve an arbitrary size such as .05. This is not problem-
atic if one does not treat .05 as sacred and merely uses
a p value to summarize the evidence against the null hy-
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pothesis. However, this discreteness has more disturbing
implications for unconditional power calculations and for
confidence intervals. With exact methods for interval esti-
mation, the actual coverage probability can be much larger
than the nominal confidence level and is unknown (Neyman
1935). The implication is conservativeness; in other words,
as the relevant distribution becomes more highly discrete,
exact tests lose power and exact confidence intervals tend to
be overly wide. The degree of conservativeness is usually
more severe for conditional than for unconditional infer-
ence, because the extra conditioning increases the severity
of discreteness (Suissa and Shuster 1985).

3. APPROXIMATE ALTERNATIVES TO
EXACT ANALYSES

If one is willing to use a method having actual size close
to the nominal level but not necessarily bounded by it, then
one can consider approximate as well as “exact” methods.
Two-sided inference for single parameters based on large-
sample normal approximations often performs reasonably
well in this regard. 1 illustrate with confidence intervals
for the odds ratio in a 2 x 2 table, based on indepen-
dent binomial samples. For cell counts {a, b, ¢, d}, a large-
sample 95% confidence interval based on the delta method
is exp[log(ad/bc) £ 1.96(a' + b~ + ¢~ +d~1)1/?]. I ran-
domly sampled 10,000 pairs of binomial parameters (p1, p2)
from the uniform distribution over the unit square and eval-
uated coverage probabilities of nominal 95% intervals, for
binomial samples of size 10 each for each combination of
parameters. The mean coverage probability was .977 for the
large-sample method and .986 for the exact; the minimum
coverage probability was .941 for the large-sample method
and .970 for the exact. For each pair of parameters, I com-
puted expected lengths conditional on the event that all four
counts are positive, so that both intervals have finite length.
Because of tail behavior, such differences in coverage prob-
ability can translate to large differences in expected interval
length. With each of the 10,000 probability pairs oriented
so that p; > po, the median of the expected lengths was 59
for the large-sample method and 228 for the exact.

In similar evaluations with many other small sample
sizes, the large-sample confidence interval for the odds ra-
tio rarely has actual coverage probability much below the
nominal level, whereas the exact interval usually has cov-
erage probability considerably above the nominal level and
has length considerably longer than the large-sample inter-
val. An approximate method may be preferred to an exact
method if its actual coverage probability is never much less
than the nominal confidence level. Situations exist, however,
in which it is imperative to guarantee a bound on the actual
coverage probability and/or in which large-sample methods
are highly questionable (such as Example 2 of Strawderman
and Wells, in which each of 18 partial tables has only one
observation in one of the rows). In addition, the conserva-
tiveness problem disappears as the sample size and table
size increase. Thus there will always be an important niche
for exact methods. However, the complications due to dis-
creteness suggest that statisticians should perhaps recon-
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. sider how to evaluate statistical procedures. For instance,
the confidence coefficient is traditionally defined to be the
infimum of the coverage probabilities over the parameter
space. Is it better to use an approach that guarantees that
the coverage probabilities are >.95, yet may have actual
coverage probabilities of ~.97 or .98 (such as the usual ex-
act interval), or an approach giving narrower intervals for
which the actual coverage probability. could be <.95 but is
usually quite close to .95?

If statisticians are willing to relax requirements about
the bounding of coverage probabilities, then besides large-
sample methods the possible methods include adaptations
of exact methods based on the mid-p value. This seems to
be a reasonable compromise for discrete data between the
conservativeness of exact methods and the uncertain ad-
equacy of a large-sample method. It is already available
in StatXact, and it has some appealing properties. For in-
stance, its null expected value is 0.5, as is true for the p
value for test statistics having a continuous distribution. It
takes the p value for a test with supplementary random-
ization, which is the probability of a test statistic more
extreme than observed plus a uniform(0, 1) random vari-
able multiplied by the probability of the observed value of
the statistic, and replaces the uniform multiple by its ex-
pected value. A recent unpublished work by Hwang and
Yang (1998) shows that it is an optimal p value in terms of
estimating a truth indicator of the null hypothesis. Numer-
ical evaluations (Mehta and Walsh 1992; Vollset 1993) for
interval estimation of proportions and odds ratios based on
inverting tests using the mid-p value show that it tends to
have coverage probabilities slightly exceeding the nominal
value, but it tends to be less conservative than exact meth-
ods using the ordinary p value. It has the advantage, com-
pared to large-sample methods, that it is guaranteed to work
well (being “nearly exact”) as the degree of discreteness
diminishes. :

For cases in which exact mid-p value calculation is infea-
sible, the saddlepoint approximation to the mid-p value is
likely to perform very well (e.g., Agresti et al. 1993). The
Strawderman and Wells alternative p value of Py {W(8) >
Wobs + %} is intriguing, since for most distributions it would
be less conservative than the mid-p value. Can the authors
provide further justification for it? Methods using ordinary

p values obtained with “approximate conditioning” tech-
" niques may yield similar performance.

Although much discussion has occurred about the appro-
priateness of conditioning in analyzing contingency tables,
in terms of practical performance of methods, the degree
of discreteness is the determinant more than whether one
uses conditioning (Mehta and Hilton 1993). Problems due
to discreteness can arise even when no conditioning is in-
volved, such as in interval estimation for a single binomial
parameter (Agresti and Coull 1998). So that I do not seem
too alarmist regarding ordinary exact conditional methods, 1
would like to temper my remarks and point out that the ap-
proximations of Strawderman and Wells are of greatest use
for cases in which exact methods are themselves computa-
tionally infeasible. Such infeasible cases have a huge num-
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ber of tables in the reference set and usually display little
discreteness. Cautions in using exact conditional methods
then lose their relevance, and mid-p approaches are essen-
tially identical to the ordinary exact approaches.

4. MORE FLEXIBLE MODELS FOR
SEVERAL 2 x 2 TABLES

The common odds ratio model is a natural first step for
modeling several 2 x 2 tables. More complex models that
permit heterogeneity among the odds ratios are now also
being used. For instance, for a multi-center study for com-
paring two treatments on a binary response, the simple logit
model having treatment and center main effects assumes
a common odds ratio between treatment and response for
each center. An extension treats center effects as random
and adds random effects for center-by-treatment interac-
tion, resulting in conditional log odds ratios between treat-
ment and response that form an independent sample from
a normal distribution. Fitting the model provides an esti-
mated average log odds ratio and an estimate of variability
about the average. For related analyses, see Givens, Smith,
and Tweedie (1997), Liu and Pierce (1993), and Skene and
Wakefield (1990). For random effects models it is difficult
to construct even good approximate analyses (Breslow and
Clayton 1993), and solutions that are exact in any sense
provide a strong challenge for the future.
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Comment

1. INTRODUCTION

Exact conditional inference for contingency tables is an
important statistical issue with the added benefit of being
somewhat controversial. We congratulate Strawderman and
Wells for a very interesting and timely article on exact
conditional inference concerning a common odds ratio. We
agree with the authors that saddlepoint approximations are
often so accurate and computationally efficient that they es-
sentially eliminate the need for exact computation, even if
such computations are possible.

We have four points that we would like to discuss. The
first is a relatively minor one concerning the authors’ use
of “sequential” rather than “single” saddlepoint approxima-
tion. We argue that the latter terminology more correctly
describes their approximations. Our second point concerns
the view expressed by the authors, and many others in the
literature, that distributions must be sums of independent
random variables to justify the use of saddlepoint methods.
Numerical accuracy in a wide range of examples suggests
that the sum need involve only a single random variable.
Third, we compare the authors’ approximation with Skov-
gaard’s (1987) double-saddlepoint approximation and show
that the latter is considerably simpler and virtually as accu-
rate. We make some further comments on the more general
comparison of single- versus double-saddlepoint approxi-
mations. Our last comment addresses our concern that the
results of this article are limited to a rather narrow class of
problems. In contrast, Monte Carlo methods are now avail-
able that can be applied much more generally and with in-
creasing speed. We describe how one method based on im-
portance sampling, which we have successfully applied in
a wide variety of log-linear models to obtain exact condi-
tional p values, can be easily extended to conditional power
calculations.

2. SINGLE VERSUS SEQUENTIAL

For purposes of discussion, it is convenient to simplify
matters to a single table of data. The noncentral hypergeo-
metric distribution from this table has moment-generating
function (MGF) v(0e®)/1(6), where 6 is the odds ratio and
% is a special case of the , F; hypergeometric function given
in (1). The main contribution of the article is in recogniz-

James G. Booth is Associate Professor, Department of Statistics, Uni-
versity of Florida, Gainesville, FL. 32611 (E-mail: jbooth@stat.ufl.edu).
Ronald W. Butler is Professor, Department of Statistics, Colorado State
University, Fort Collins, CO 80525.

ing that the polynomial function % is characterized by its
negative roots, allowing simple repeated computations of
hypergeometric probabilities using a single-saddlepoint ap-
proximations based on cumulant-generating function (CGF)
In(fe®) —In(#). The sequential-saddlepoint method was
popularized by Fraser, Reid, and Wong (1991) and suc-
cessfully used by Butler et al. (1992), but was originated
by Bartlett (1938). The essential idea is to use one single-
saddlepoint approximation to approximate the conditional
MGEF from its associated joint MGF; this approximate con-
ditional MGF is subsequently used as a surrogate for the
true MGF in a second single-saddlepoint approximation for
conditional probability computation,

3. n=1ASYMPTOTICS

Saddlepoint methods are often referred to as “small”
sample size asymptotics, but we point out that n = 1 gener-
ally suffices, as originally pointed out by Skovgaard (1987).
The authors seem to use this.as a reason for not addressing
the applicability of double-saddlepoint procedures applied
by Davison (1988) and Pierce and Peters (1992) for infer-
ence about a common odds ratio.

To illustrate this point, we computed both single- and
double-saddlepoint approximations for central hypergeo-
metric probabilities (§ = 1) in Table 1, taking the first
example from Skovgaard. This is admittedly not entirely
a sample size 1 context, as the distribution theory follows
from four independent Poisson variables that are infinitely
divisible; however, it suffices for making our point.

All three approximations are extremely accurate and
sufficiently so for most applications. The last single-
saddlepoint approximation, which is given in (10), is
slightly better. Its computation for the last example, how-
ever, as suggested by the authors, requires finding the
20 roots that characterize 1. In contrast, the double-
saddlepoint approximations given by Skovgaard are simple
explicit computations requiring no root finding.

An enormous range of examples reflects the same accu-
racy seen in this example, with accuracy defying what might
be explained through the asymptotics. The relevant question
seems to be whether such approximations should be trusted
in situations where exact computation cannot verify their
accuracy. This is where several different approximations be-
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