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Teacher's Corner 
Simple and Effective Confidence Intervals for Proportions 

and Differences of Proportions Result from Adding Two 
Successes and Two Failures 

Alan AGRESTI and Brian CAFFO 

The standard confidence intervals for proportions and their 
differences used in introductory statistics courses have poor 
performance, the actual coverage probability often being 
much lower than intended. However, simple adjustments of 
these intervals based on adding four pseudo observations, 
half of each type, perform surprisingly well even for small 
samples. To illustrate, for a broad variety of parameter set- 
tings with 10 observations in each sample, a nominal 95% 
interval for the difference of proportions has actual cov- 
erage probability below .93 in 88% of the cases with the 
standard interval but in only 1% with the adjusted interval; 
the mean distance between the nominal and actual cover- 
age probabilities is .06 for the standard interval, but .01 for 
the adjusted one. In teaching with these adjusted intervals, 
one can bypass awkward sample size guidelines and use the 
same formulas with small and large samples. 

KEY WORDS: Binomial distribution; Score test; Small 
sample; Wald test. 

1. INTRODUCTION 

Let X denote a binomial variate for n trials with pa- 
rameter p, denoted bin(n, p), and let p = X/n denote the 
sample proportion. For two independent samples, let X1 
be bin(nl,pl), and let X2 be bin(n2,p2). Let Za denote the 
1- a quantile of the standard normal distribution. Nearly all 
elementary statistics textbooks present the following confi- 
dence intervals for p and P1 - P2: 

* An approximate 100(1 - c)% confidence interval for 
p is 

* An approximate 100(1 - cv)% confidence interval for 
P1 - P2 iS 

( -1-32) + Z/2 Pl(I 
P 

+) P2 (-P2) (2) 

These confidence intervals result from inverting large- 
sample Wald tests, which evaluate standard errors at 
the maximum likelihood estimates. For instance, the in- 
terval for p is the set of po values for which IP - 
Po I/ (l - p3)/n < Z./2; that is, the set of po having P 
value exceeding ae in testing Ho: p = po against Ha p :& PO 
using the approximately normal test statistic. The intervals 
are sometimes called Wald intervals. Although these inter- 
vals are simple and natural for students who have previ- 
ously seen analogous large-sample formulas for means, a 
considerable literature shows that they behave poorly (e.g., 
Ghosh 1979; Vollset 1993; Newcombe 1998a, 1998b). This 
can be true even when the sample size is very large (Brown, 
Cai, and DasGupta 1999). In this article, we describe sim- 
ple adjustments of these intervals that perform much better 
but can be easily taught in the typical non-calculus-based 
statistics course. 

These references showed that a much better confidence 
interval for a single proportion is based on inverting the 
test with standard error evaluated at the null hypothesis, 
which is the score test approach. This confidence interval, 
due to Wilson (1927), is the set of po values for which 
P - Po | Po(i - Po)b2 < Za/2, which is 

n_ _ Z /2 
_ 

n( ' 1 /2) 2 ( n+ z/ 2) 

a/+Zc,/2 [/2) ( 2?>/) + (2) G) (t22+ z/ )] 

The midpoint is a weighted average of p and 1/2, and it 
equals the sample proportion after adding Z /2 pseudo ob- 
servations, half of each type. The square of the coefficient 
.of Za/2 in this formula is a weighted average of the variance 
of a sample proportion when p = p and the variance of a 
sample proportion when p = 1/2, using n + z 2 in place 
of the usual sample size n. For the 95% case, Agresti and 
Coull (1998) used this representation to motivate approxi- 
mating the score interval by the ordinary Wald interval (1) 
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Figure 1. Coverage probabilities for the binomial parameter p with the nominal 95% and 99% Wald confidence interval and the adjusted interval 
based on adding four pseudo observations, for n = 5, 10, 20. 

after adding z.025= 1.962 4 pseudo observations, two of 
each type. That is, their adjusted "add two successes and 
two failures" interval has the simple form 

iZ. 025 V/P( - p/t (3) 

but with n = (n + 4) trials and p - (X + 2)/(n + 4). The 
midpoint equals that of the 95% score confidence interval 
(rounding Z.025 to 2.0 for that interval), but the coefficient of 
Z.025 uses the variance p(l - p)/ni at the weighted average 

Coverage Probability 

1.0 

.8 

.6 

.4 

.2 

0 2 4 6 8 

t Pseudo Observations 

Figure 2. Boxplots of coverage probabilities for nominal 95% ad- 
justed confidence intervals based on adding t pseudo observations; dis- 
tributions refer to 10,000 cases, with n 1 and n2 each chosen uniformly 
between 10 and 30 and p 1 and p2 chosen uniformly between 0 and 1. 

p of p and 1/2 rather than the weighted average of the 
variances; by Jensen's inequality, the adjusted interval is 
wider than the score interval. 

For small samples, the improvement in performance of 
the adjusted interval compared to the ordinary Wald interval 
is dramatic. To illustrate, Figure 1 shows the actual cover- 
age probabilities for the nominal 95% Wald and adjusted 
intervals plotted as a function of p, for n = 5, 10, and 20. 
For all n great improvement occurs for p near 0 or 1. For 
instance, Brown et al. (1999) stated that when p = .01, the 
size of n required such that the actual coverage probability 
of a nominal 95% Wald interval is uniformly at least .94 
for all n above that value is n = 7963, whereas for the ad- 
justed interval this is true for every n; when p .10 the 
values are n = 646 for the Wald interval and n 11 for 
the adjusted interval. The Wald interval behaves especially 
poorly with small n for p near the boundary, partly because 
of the nonnegligible probability of having p = 0 or 1 and 
thus the degenerate interval [0, 0] or [1, 1]. Agresti and 
Coull (1998) recommended the adjusted interval for use in 
elementary statistics courses, since the Wald interval be- 
haves poorly yet the score interval is too complex for most 
students. Many students in non-calculus-based courses are 
mystified by quadratic equations (which are needed to solve 
for the score interval) and would have difficulty using the 
weighted average formula above. In such courses, it is of- 
ten easier to show how to adapt a simple method so that it 
works well rather than to present a more complex method. 

Let It (n, x) denote the adjustment of the Wald interval 
that adds t/2 successes and t/2 failures. With confidence 
levels (1 - ca) other than .95, the Agresti and Coull approx- 
imation of the score interval uses It (n, x) with t = z2 
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Table 1. Summary of Performance of Nominal 95% Confidence Intervals for Pi - P2 Based on Adding t Pseudo Obser- 
vations, Averaging with Respect to a Uniform Distribution for (Pl,P2). 

Number of Pseudo Observations t Hybrid Approximate 
Characteristic n 0 2 4 6 8 Score Bayes 

Coverage 10 .891 .949 .960 .958 .945 .954 .952 

20 .924 .949 .956 .955 .948 .953 .951 

30 .933 .949 .954 .954 .949 .950 .951 

30, 10 .895 .948 .959 .959 .950 .950 .952 

Distance 10 .059 .014 .013 .020 .035 .014 .012 

20 .026 .008 .008 .012 .022 .009 .007 

30 .017 .006 .006 .008 .016 .008 .006 

30, 10 .055 .018 .012 .013 .023 .010 .011 

Length 1 0 .647 .670 .673 .668 .659 .654 .647 

20 .480 .487 .488 .487 .485 .481 .477 

30 .398 .401 .401 .401 .401 .398 .396 

30, 10 .537 .551 .553 .551 .545 .537 .536 

Cov. Prob. < .93 10 .880 .090 .010 .100 .235 .072 .046 

20' .404 .016 .002 .046 .175 .020 .008 

30 .180 .005 .000 .023 .131 .009 .002 

30, 10 .934 .112 .004 .028 .173 .029 .018 

NOTE: Table reports mean of coverage probabilities Ct(n,pl; n,p2), mean of distances Ct(n,pi; n,p2) - .951 from nominal level, mean of expected interval lengths, and proportion of cases 
with Ct(n,p1; n,p2) <.93. 

instead of t = 4, for instance adding 2.7 pseudo observa- 
tions for a 90% interval and 5.4 for a 99% interval. Many 
instructors in elementary courses will find it simpler to tell 
students to use the same constant for all cases. One will 
do reasonably well, especially at high nominal confidence 
levels, by the recipe of always using t = 4. The perfor- 
mance of the adjusted interval 14(n, xc) is much better than 
the Wald interval (1) for the usual confidence levels. To 
illustrate, Figure 1 also shows coverage probabilities for 
nominal 99% intervals, when in = 5, 10, 20. Since the .95 
confidence level is the most common in practice and since 
this "add two successes and two failures" adjustment pro- 
vides strong improvement over the Wald for other levels 
as well, it is simplest for elementary courses to recommend 
that adjustment uniformly. Of the elementary texts that rec- 
ommend adjustment of the Wald interval by adding pseudo 
observations, some (e.g., McClave and Sincich 2000) di- 
rect students to use 14(n, c) regardless of the confidence 
coefficient whereas others (e.g., Samuels and Witmer 1999) 
recommend t = z2 

The purpose of this article is to show that a simple ad- 
justment, adding two successes and two failures (total), 
also works quite well for two-sample comparisons of pro- 
portions. The simple Wald formula (2) improves substan- 

tially after adding a pseudo observation of each type to 
each sample, regarding sample i as (nm + 2) trials with 
Pi = (Xi + 1)/(mn + 2). There is no reason to expect an 
optimal interval to result from this method, or in particu- 
lar from adding the same number of pseudo observations 
to each sample or even the same number of cases of each 
type, but we restricted attention to this form because of the 
simplicity of explaining it in a classroom setting. 

2. COMPARING PERFORMANCE OF WALD 
INTERVALS AND ADJUSTED INTERVALS 

For the two-sample comparison of proportions, we now 
study the performance of the Wald confidence formula (2) 
after adding t pseudo observations, t/4 of each type to each 
sample, truncating when the interval for P1 -P2 contains val- 
ues < -1 or > 1. Denote this interval by It (n1, x1; n2, X2), 

or It for short, so 1o denotes the ordinary Wald interval. 
Our discussion refers mainly to the .95 confidence coef- 
ficient, but our evaluations also studied .90 and .99 coef- 
ficients. Let Ct(nm,pi; n2,P2), or Ct for short, denote the 
true coverage probability of a nominal 95% confidence in- 
terval It. We investigated whether there is a t value for 
which ICt((nl,pl; n2,P2) - .951 tends to be small for most 
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Figure 3. Proportion of (p1, p2) cases with p1 and p2 chosen uniformly between 0 and 1 for which nominal 95% adjusted confidence intervals 
based on adding t pseudo observations have actual coverage probabilities below ,93, for n 1 = n2 = 10 and n 1 = 30, n2 = 10. 

(P1, P2), even with small nr and n2, with Ct rarely very far 
(say .02) below .95. To explore the performance for a vari- 
ety of t with small nT, we randomly sampled 10,000 values 
of (ni, P1; n2, P2), taking P1 and P2 independently from a 
uniform distribution over [0,1] and taking n, and n2 inde- 
pendently from a uniform distribution over {10, 11, .. ., 30}. 
For each realization we evaluated Ct (ni, P1; n2, P2) for t be- 
tween 0 and 8. Figure 2 illustrates results, showing skeletal 
box plots of Ct for t = 0, 2, 4, 6, 8 (i.e., adding 0, .5, 1, 1.5, 
2 observations of each type to each sample). 

The ordinary 95% Wald interval behaves poorly. Its cov- 
erage probabilities tend to be too small, and they converge 
to 0 as each pi moves toward 1 or 0. The coverages for 
It improve greatly for the positive values of t. The case 
14 with four pseudo observations behaves especially well, 
having relatively few poor coverage probabilities. For in- 
stance, the proportion of cases for t = (0, 2, 4, 6, 8) that had 
Ct < .93 were (.572, .026, .002, .046, .171). Similarly, the 
proportion of nominal 99% intervals that had actual cover- 
age probability below .97 were (.310, .012, .000, .000, .000), 
and the proportion of nominal 90% intervals that had ac- 

Coverage Probability Coverage Probability Coverage Probability 
1.00- 1.00- 1.00- 

* tVV$ :h&~~~~~~.A~~ h~~I) hfv~~~~h wtAA?AAt:4 .95 - .95 - V I IV i :: ;.95t j~t %"-i .Y. ti~ ~X% 

.90 - .90 0 90 

.85 - .85 - .85 - 

------- Wald 
Adjusted 

.80 l_ l_ l_ l___ '. p1 .80 l_l _l _l __ p1 .80- p1 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 

P2 =.1 P2 =.3 P2 =.5 

Figure 4. Coverage probabilities for nominal 95% Wald and adjusted confidence intervals (adding t = 4 pseudo observations) as a function of 
p1 whenp2= .1,.3,.5, withn1 = n2= 20. 
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.75 -75 - .75 - 
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Figure 5. Coverage probabilities for nominal 95% Wald and adjusted confidence intervals (adding t = 4 pseudo observations) as a function of 
p1 when p2 = .3 when n1 = n2 = 10, n1 = 20, n2 = 10, and nl = 40, n2 = 10. 

tual coverage probability below .88 were (.623, .045, .016, 
.131, .255). The pattern exhibited here is illustrative of a 
variety of results from analyzing Ct more closely, as we 
now discuss. 

We analyzed the performance of the It interval for 
various fixed (nl, n2) combinations. Table 1 summarizes 
some characteristics, in an average sense based on tak- 
ing (P1, P2) uniform from the unit square, for (n1, n2) = 

(10,10), (20, 20), (30,30), (30,10). Although the adjusted 
interval 14 tends to be conservative, it compares well to 
other cases in the mean of the distances ICt - .951 and es- 
pecially the proportion of cases for which Ct < .93. For n. 

10, for instance, the actual coverage probability is below 
.93 for 88% of such cases with the Wald interval, but for 
only 1% of them with 14. Figure 3 shows the proportions 
of coverage probabilities that are below .93 as a function 
of t, for (n1, n2) = (10, 10) and (30, 10). The improvement 
over the ordinary Wald interval from adding t = 4 pseudo 
observations is substantial. Remaining figures concentrate 
on this particular adjustment, which fared well in a variety 
of evaluations we conducted. 

Averaging performance over the unit square for (P1, P2) 
can mask poor behavior in certain regions, and in practice 
certain pairings (e.g., JP1 - P21 small) are often more com- 
mon or more important than others. Thus, besides studying 
these summary expectations, we plotted Ct as a function 
of P1 for various fixed values of P2, P1 - P2, and P1/P2. 
To illustrate, Figure 4 plots the Wald coverage Co and the 
coverage C4 for the adjusted interval, fixing P2 at .1, .3, 
and .5, for ni = n2 = 20. The poor coverage spikes for 
the Wald interval disappear with 14, but this adjustment 
is quite conservative when P1 and P2 are both close to 0 
or both close to 1. The adjustment 14 performs reasonably 
well, and much better than the Wald interval, even with very 
small or unbalanced sample sizes. Figure 5 illustrates, plot- 
ting Co and C4 as a function of P1 with P2 fixed at .3, for 

(nm, n2) = (10, 10), (20, 10), and (40, 10). Figure 6 shows C0o 
and C4 as a function of P1 when P1 -P2 = 0 or .2 and when 
the relative risk P1/P2 = 2.0 or 4.0, when ni = n2 = 10. 
In Figures 4-6, only rarely does the adjusted interval have 
coverage significantly below the nominal level. On the other 
hand, Figures 4 and 6 show that it can be very conservative 
when P1 and P2 are both close to 0 or 1, say with (P1 +P2)/2 
below about .2 or above about .8 for the small sample sizes 
studied here. This is preferred, however, to the very low 
coverages of the Wald interval in these cases. Figures 7 
and 8 illustrate their behavior, showing surface plots of C0o 
and C4 over the unit square when ni = n2 = 10. The spikes 
at values of pi in Figures 4 and 5 become ridges at values 
of P1 - P2 in these figures. 

The poor performance of the Wald interval does not oc- 
cur because it is too short. In fact, for moderate-sized pi 
it tends to be too long. For instance, when nr = 12 = 10, 
Io has greater expected length than 14 for P2 between .11 
and .89 when P1 = .5 and for P2 between .18 and .82 
when P1 = .3. When n, = n2 = n and when Pi = 

P2 = P, Io has greater length than It when p falls within 
/.25 - n(4n + t)/[24n2 + 12nt + 2t2] of .5. For all t > 0, 
this interval around .5 shrinks monotonically as n increases 
to .50 i .50/v3, or (.21,.79), which applies also to the 
Agresti and Coull (1998) adjusted interval in the single- 
sample case. As in the single-proportion case, the Wald in- 
terval suffers from having the maximum likelihood estimate 
exactly in the middle of the interval. 

There is nothing unique about t = 4 pseudo observations 
in providing good performance of adjusted intervals in the 
one- and two-sample problems. For instance, Figure 3 and 
Table 1 show that other adjustments often work well. A re- 
gion of t values provide substantial improvement over the 
Wald interval, with values near t = 2 being less conserva- 
tive than t = 4. We emphasized the case t = 4 earlier for 
the two-sample case because it rarely has poor coverage. 
We believe it is worth permitting some conservativeness to 

284 Teacher's Corner 



Coverage Probability P1 -P2=0 Coverage Probability P1 -P2=.2 

1.0 l 1.0 

.9g- .9 - ."- - - 

.8 - ..8 

Wald 
Adjusted .7 

.6 p1 .6 p1 

0 .2 .4 .6 .8 1 .2 .4 .6 .8 

Coverage Probability Coverage Probability 
P 1 /P2=2 P 1 /P2=4 

1.0 1.0 

.9 -| , ' ,- - ,'K j1/~Ai 

.8 .8 .' 

.7 -.7 - 

l~~~~~~~~p ,' 
.6 - I l p1 .6 - I l p1 

0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1 

Figure 6. Coverage probabilities for nominal 95% Wald and adjusted confidence intervals (adding t = 4 pseudo observations) as a function of 
p1 when p1-p2 = 0 or .2 and when p1/p2 = 2 or 4, for n1 = n2 = 10. 

ensure that the coverage probability rarely falls much below 
the nominal level. In the one-sample case the adjusted in- 
terval '2(n, x) is better than 14(n, x) in approximating the 
score interval with small confidence levels, such as 90%. 
An advantage of the interval 12(n, x) for p is consistency 
between the single-sample case and our recommended ad- 
justment 14(n1, x1; n2, x2) for two samples. For instance, 
as ri2 ~+ oc and the second sample yields a perfect esti- 
mate, the resulting "add two successes and two failures" 
two-sample interval uses the first sample in the same way 
as does the "add one success and one failure" single-sample 
interval. However, for the single-sample problem we prefer 
the 14(n, x) interval, since .95 -is by far the most common 
confidence level in practice and this interval works some- 
what better than '2 (n, x) in that case. 

3. COMPARING THE ADJUSTED INTERVAL 
WITH OTHER GOOD INTERVALS 

Many methods have been proposed for improving on the 
ordinary Wald confidence interval for P1 - P2. Since this 
article dicusses methods appropriate in elementary statistics 

courses, it focuses on the simple It adjustment rather than 
methods that may be suggested by statistical principles. To 
find a good method more generally, one approach is to invert 
a test of Ho: P1 - P2 = A that has good properties, such 
as using the large-sample score test (Mee 1984) or profile 
likelihood methods (Newcombe 1998b). The score test of 
P1 - P2 = 0 is the familiar Pearson chi-squared test, so 
this approach has the advantage that the confidence interval 
is consistent with the most commonly taught test of the 
same nominal level. The method of obtaining the confidence 
interval is too complex for elementary courses, however, 
partly because the test of P1 - P2 = A requires finding the 
maximum likelihood estimates of (P1, P2) for the standard 
error subject to the constraint P1 - P2 - A. 

Newcombe (1998b) evaluated various confidence interval 
methods for P1 - P2. He proposed a method that performs 
substantially better than the Wald interval and similar to 
the score interval, while being computationally simpler (al- 
though too complex for most elementary statistics courses). 
His method is a hybrid of results from the single-sample 
score intervals for P1 and P2 Specifically, let (ej, ui) be the 
roots for pi in Z, /2 = I-Pil/ pi (l - pi) ni. Newcombe's 
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hybrid score interval is 

(il - P2) - Z /2 
1 

) + U2(1-U2) 

(Pl -_p2 +Zo2 Ul(1-Ul) +? 2(l1-2)1 
ni n2 1 

Compared to the adjusted interval I4, the hybrid score in- 
terval also is conservative when P1 and P2 are both close to 
0 or 1; overall, it is less conservative, however, with mean 
coverage probability closer to the nominal level (see Table 
1). Likewise, it tends to be a bit shorter. It has a some- 
what higher proportion of cases with coverage probability 
being too small, mainly for values of JP1 - P21 near 1; for 
the 10,000 randomly selected cases with ni also random 
between 10 and 30, the minimum coverage probability was 

Coverage Probability 

1 

.9 

.7 

Figure 7. Coverage probabilities for 95% nominal Wald confidence 
interval as a function of p1 and p2, when n1 = n2 = 10. 

.92 for the 95% adjusted interval and .86 for the 95% hybrid 
score interval. 

The adjusted interval I4 and the hybrid score interval 
both have a greater tendency for distal non-coverage then 
mesial non-coverage. For instance, for the 10,000 randomly 
selected cases, the mean probability for which the lower 
limit exceeds P1 - P2 when P1 - P2 > 0 or the upper limit 
is less than P1 - P2 when P1 - P2 < 0 was .030 for 14 and 
.033 for the 95% hybrid score interval, whereas the mean 
probability for which the upper limit is less than P1 - P2 

when P1 - P2 > 0 or the lower limit exceeds P1 - P2 when 
P1 - P2 < 0 was .013 for I4 and .014 for the 95% hybrid 
score. As t increases for It, the ratio of incidence of distal 
non-coverage to mesial non-coverage increases; for these 
randomly selected cases, for t = (0, 2, 4, 6, 8) it equals (.7, 
1.2, 2.2, 4.3, 8.1). Unlike the adjusted interval and the Wald 
interval, the hybrid score interval cannot produce overshoot, 

Coverage Probability 

9 5 

.7 

p2 

Figure 8. Coverage probabilities for 95% nominal adjusted confi- 
dence interval (adding t = 4 pseudo observations) as a function of p1 
and p2, when ni1 = n2 = 10. 
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with the interval for P1 - P2 extending below -1 or above 
+ 1 and thus requiring truncation. Overshoot for It is less 
common as t increases. For instance, for these randomly 
selected cases, the mean probability of overshoot for t 
(0, 2, 4, 6, 8) was (.048, .033, .016, .006, .000). 

Since standard intervals for p and P1 -P2 improve greatly 
with adjustment corresponding to shrinkage of point esti- 
mates, one would expect intervals resulting from a Bayesian 
approach with comparable shrinkage also to perform well 
in a frequentist sense. Carlin and Louis (1996, pp. 117- 
123) provided evidence of this type for estimating p. For 
P1 - P2, consider independent uniform prior distributions 
for P1 and P2. The posterior distribution of pi is beta with 
mean Pi = (Xi + 1) j (ni + 2) and variance Pi (I -Pi)/ (ni + 3). 
Using a crude normal approximation for the distribution of 
the difference of the posterior beta variates leads to the in- 
terval 

(P1-P2)?Za/2 i1(l-i3) + P2(l-P2) (4) 

This has the same center as the adjusted interval 14 but 
uses ni + 3 instead of ni + 2 in the denominators of the 
standard error. For elementary courses, this interval was 
suggested by Berry (1996, p. 291). Like Newcombe's hy- 
brid score interval, it tends to perform quite well, being 
slightly shorter and less conservative than 14 but suffering 
occasional poorer coverages (see Table 1). For sample size 
combinations we considered, its minimum coverage proba- 
bility was only slightly below that for the adjusted interval. 
If conservativeness is a concern (e.g., if both pi are likely 
to be close to 0), the approximate Bayes and hybrid score 
intervals are slightly preferable to 14. 

The adjusted interval 14 (and the similar approximate 
Bayes interval (4)) is simpler than other methods that im- 
prove greatly over the Wald interval. Thus, we believe it 
is appropriate for elementary statistics courses. We do not 
claim optimality in any sense or that other methods may 
not be better for some purposes. Some applications, for in- 
stance, may require that the true confidence level be no 
lower than the nominal level, mandating a method that is 
necessarily conservative (e.g., Chan and Zhang 1999). Also, 
we recommend 14 for interval estimation and not for an im- 
plicit test of Ho: P1 - P2 = 0, although such a test would 
be more reliable than one based on the Wald interval. For 
a significance test, we would continue to teach the Pearson 
chi-squared test in elementary courses. The test based on 
14 is too conservative when the common value of pi un- 
der the null is close to 0 or close to 1, for most sample 
sizes more conservative than the Pearson test for such pi. 
Although the adjusted interval is not guaranteed to be con- 
sistent with the result of the Pearson test, it usually does 
agree. For instance, for common values (.1, .2, .3, .4, .5) of 
Pi, the 95% version of 14 and the Peareson test with nominal 
significance level of .05 agree with probability (.972, .996, 
.9996, 1.000, 1.000) when nl = 2=30 and (1.0, 1.0, 1.0, 
1.0, 1.0) when nl = 2=10. 

Finally, an alternative way to improve the Wald method 
is with a continuity correction (Fleiss 1981, p. 29). As with 
other continuity corrections, this generally results in con- 
servative performance, usually more so than the adjusted 
interval. However, the coverage probabilities, like those of 
the Wald interval, can dip substantially below the nominal 
level when both pi are near 0 or 1. 

4. TEACHING THE ADJUSTED INTERVALS 

Agresti and Coull (1998) motivated their adjusted interval 
(3) for a single proportion as a simple approximation for the 
score 95% confidence interval. We know of no such sim- 
ple motivation for the adjusted interval for the two-sample 
comparison, other than the similarity with the Bayesian in- 
terval (4). A problem for future research is to study whether 
theoretical support exists for this simple yet effective ad- 
justment, such as Edgeworth or saddlepoint expansions that 
might provide improved approximations for the tail behav- 
ior of Pl - P2- 

The motivation needed for teaching in the elementary 
statistics course is quite different. How can one motivate 
adding pseudo observations? In the single-sample case we 
remind students that the binomial distribution is highly 
skewed as p approaches 0 and 1, and because of this perhaps 
p should not be the midpoint of the interval. As support for 
this, we have students use the software ExplorStat (available 
at http://www.stat.ufl.edu/-dwack/). Through simulation 
it shows how operating characteristics of statistical methods 
change as students vary sample sizes and population distri- 
butions. For instance, when p takes values such as .10 or 
.90, students observe a relatively high proportion of Wald 
intervals failing to contain p when n is 30, the sample size 
their text suggests is adequate for large-sample inference 
for a mean. 

Most students, however, seem more convinced by spe- 
cific examples where the Wald method seems nonsensical, 
such as when p = 0 or 1. We often use data from a ques- 
tionnaire administered to the students at the beginning of 
term. For instance, one of us (Agresti) taught a class to 24 
honors students in fall 1999. In response to the question, 
"Are you a vegetarian?", 0 of the 24 students responded 
"yes," yet they realized that the Wald interval of [0, 0] was 
not plausible for a corresponding population proportion. We 
have also used homework exercises such as estimating the 
probability of success for a new medical treatment when all 
10 subjects in a sample experience success, or estimating 
the probability of death due to suicide when a sample of 30 
death records has no occurrences. (Again, the Wald interval 
is [0, 0], but the National Center for Health Statistics re- 
ports that in the United States the probability of death due 
to suicide is about .01.) Although one can amend the Wald 
method to improve its behavior when p 0 or 1, such as 
by reeplacing the endpoints by ones based on the exact bi- 
nomial test, making such exceptions from a general recipe 
distracts students freom the main idea of taking the estimate 
plus and minus a normal-score multiple of a standard error. 
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[Received Septemnber 1999. Revised Febru-cary 2000.] Why foutr pseudo observations? In the single-sample case 
we explain that this approximates the results of a more 
complex method that does not require estimating the un- 
known standard error; here, we explain the concept of in- 
verting the test with null standard error, or finding solutions 
of (p - p) = 2 /p(l -p)/n that do not require estimating 
/p(l - p)/n. In the two-sample case one could explain that 
this approximates a statistical analysis that represents prior 
beliefs about each pi by a uniform distribution. (Some in- 
structors, of course, will prefer a more fully Bayesian ap- 
proach, as in Berry 1996.) 

The poor performance of the ordinary Wald intervals 
for p and for P1 - P2 is unfortunate, since they are the 
simplest and most obvious ones to present in elementary 
courses. Also unfortunate for these intervals is the difficulty 
of providing adequate sample size guidelines. Introductory 
textbooks provide a variety of recommendations, but these 
have inadequacies (Leemis and Trivedi 1996; Brown et al. 
1999). And, needless to say, most texts do not indicate 
what to do when the guidelines are violated, other than 
perhaps to consult a statistician. The results in this arti- 
cle suggest that for the "add two successes and two fail- 
ures" adjusted confidence intervals, one might simply by- 
pass sample size rules. The adjusted intervals have safe 
operating characteristics for practical application with al- 
most all sample sizes. In fact, we note in closing (and with 
tongue in cheek) that the adjusted intervals 14(n, x) and 
14(n1, x1; n2, X2) have the advantage that, as with Bayesian 
methods, one can do an analysis without having any data. 
In the single-sample case the adjusted sample then has p = 
2/4, and the 95% confidence interval is .5 i 2A/(.5)(.5)/4, 
or [0, 1]. In the two-sample case the adjusted samples have 
P, = 1/2 and P2 = 1/2, and the 95% confidence interval is 
(.5 - .5) i 2\ [(.5) (.5)/2] + [(.5) (.5)/2], or [-1, +1]. Both 
analyses are uninformative, as one would hope from a fre- 
quentist approach with no data. No one will get into too 
much trouble using them! 
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