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Abstract: We describe two interesting and innovative strands of Murray Aitkin’s research publications,
dealing with mixture models and with Bayesian inference. Of his considerable publications on mixture
models, we focus on a nonparametric random effects approach in generalized linear mixed modelling,
which has proven useful in a wide variety of applications. As an early proponent of ways of
implementing the Bayesian paradigm, Aitkin proposed an alternative Bayes factor based on a posterior
mean likelihood. We discuss these innovative approaches and some research lines motivated by them
and also suggest future related methodological implementations.
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1 Introduction

We are delighted to be invited to contribute to this issue in honour of Professor
Murray Aitkin. In a journal devoted to issues of statistical modelling, relating to a
statistical society in which he was instrumental in the early days by helping to make
statisticians more fully aware of the capabilities of generalized linear models (e.g.,
through workshops and the influential text by Aitkin et al., 1989), the Editors have
an excellent idea to devote an issue to his creative contributions as well as those of
others whom he has influenced.

Murray Aitkin’s research interests have always been quite broad, with specialties
including Bayesian and likelihood theory, generalized linear models and some
particular cases such as item response models, mixture models including latent class
models and random effects models, statistical computing and neural network models.
Anyone who has ever attended a statistics conference at which Professor Aitkin has
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been present can attest to the insightful comments he invariably makes following a
presentation that deals with any aspect of statistical science.

In our contribution, we focus on some of Aitkin’s many research publications that
deal with mixture models and with Bayesian inference. Some of his contributions
relate to our own interests and have motivated our own research work. A considerable
number of his publications over the years, dating back to about 1980 and continuing
to the present, have focused on mixture models of various types. In particular, his
published output includes some of the first articles dealing with random effects
in generalized linear models (e.g., Aitkin et al., 1981a; Bock and Aitkin, 1981).
In Section 2 of this article, we discuss his proposal of a nonparametric random
effects approach in such models, illustrating with an example. Aitkin also has been
a frequent contributor to the literature on Bayesian inference, starting with an
influential discussion paper for the Royal Statistical Society (Aitkin, 1991). This
important early contribution dealt with Bayes factors (BFs), and he proposed an
alternative formulation based on the mean of the likelihood function with respect
to the posterior rather than the prior distribution. In Section 3, we discuss this
contribution as well as some literature that has dealt with it. In each section, we also
suggest possible future research work and methodological implementations that are
motivated by this discussion.

2 Contributions on nonparametric mixture modelling

Many of Murray Aitkin’s research publications have dealt with mixture models of
a wide variety of types. Such models include latent class models and other finite
mixture models and the generalized linear model that includes random effects, that
is, the generalized linear mixed model (GLMM). Here we focus on an innovative
idea of his for using nonparametric structure instead of assuming normality for the
random effects in GLMMs.

2.1 Nonparametric random effects in generalized linear mixed models

For clustered data such as with repeated measures or in a longitudinal study, let yit
denote observation t in cluster i and let xit denote a column vector of explanatory
variables associated with this observation. Here we consider a simple model with
univariate random effect ui, traditionally assumed to have a N(0, σ2) distribution.
For µit = E(Yit | ui), a GLMM of simple random-intercept form is

g(µit) = ui + xT
itβ, (2.1)

for link function g(·) and fixed-effect model parameters β. The Aitkin et al. (1981a)
discussion paper for the Royal Statistical Society and Bock and Aitkin (1981) are
highly cited and among the first articles about GLMMs and particular special cases
such as clustered data in educational research, latent class models and item response
models. Their influence was enhanced by paying practical attention to implementable
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computations using an EM algorithm. Also very heavily cited from these early days
is Anderson and Aitkin (1985), which dealt with interviewer variability and the use
of unbalanced ANOVA methods with binary data when the number of interviews
conducted varies by interviewer.

Since {ui} are unobserved in model (2.1), the normality assumption is not easily
checked. A natural concern is the impact on the bias and efficiency of estimating
β due to violating this assumption when the true random effects distribution
is very different from normality. Aitkin (1996, 1999a) promoted an interesting
nonparametric approach, using an unspecified finite mixture distribution for ui.
For this model, maximum likelihood fitting is computationally straightforward, not
requiring numerical integration. Estimation of the unspecified distribution usually has
relatively few mass points, even for very large samples, but this is not problematic
when the mixing distribution is a nuisance parameter rather than of direct interest.
Aitkin used this approach for a variety of applications, including dealing with
measurement error in explanatory variables in generalized linear models (Aitkin
and Rocci, 2002) and modelling longitudinal binary and count responses (Aitkin
and Alfó, 1998; Alfó and Aitkin, 2006).

We refer to Table 1, from the 2018 General Social Survey (GSS) in the USA, for
a simple example in which such an approach may be natural. Subjects were asked
whether they supported legalized abortion in each of three situations. (We ignore
here seeming contradictions in people’s responses, such as some subjects supporting
legalization for any reason but being opposed in a particular situation.) A cluster
is a set of the three observations for a particular subject, with subjects classified
by gender. With such a controversial issue, the population might be polarized, with
some people likely to support legalization regardless of the context, and some likely
to oppose it regardless of the context. A third group of subjects may have response
dependent on the context. With yit the response for subject i in situation t, consider
the model

logit[P(Yit = 1 | ui)] = ui + βt + γxi, (2.2)

where xi = 1 for females and 0 for males, the situation effects {βt} satisfy a
constraint such as β1 = 0, and we could add additional categorical and/or quantitative
explanatory variables as well as interaction terms. Because of the likely polarization,
it would seem implausible to assume a N(µ, σ2) distribution for the random intercept
in this model, even conditional on values of other potential explanatory variables.

One of us (Agresti) used Aitkin’s nonparametric approach with GLMMs for a
variety of scenarios. For example, for a logit model for a vector of binary responses
observed under multiple conditions, Agresti (1997) showed that a nonparametric
treatment of the random effects vector implies marginally a multivariate loglinear
model having quasi-symmetric structure for the cross-classification of responses at
the various conditions. For binary responses in multi-centre data comparing two
treatments, such as clinical trials, Agresti and Hartzel (2000) used the nonparametric
GLMM approach with the logit and other link functions to describe the mean and
variability of centre-specific effects such as log odds ratios and risk ratios. Hartzel et
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Table 1 Support (1 = yes, 0 = no) for legalized abortion in three situations: (a) if the family has a very low
income and cannot afford any more children, (b) when the woman is not married and does not want to
marry the man, and (c) when the woman wants it for any reason

Sequence of responses

Gender (1,1,1) (1,1,0) (0,1,1) (0,1,0) (1,0,1) (1,0,0) (0,0,1) (0,0,0)

Male 283 27 12 7 14 26 29 262
Female 325 15 13 9 22 24 51 362

al. (2001b) employed this approach with ordinal responses, describing centre-specific
log odds ratios that result from models that apply the logit link to cumulative
response probabilities or to pairs of adjacent response probabilities. Hartzel et al.
(2001a) used it in a more general context for GLMMs with multinomial (nominal
and ordinal) responses and generalized Aitkin’s EM algorithm. In all such cases,
simulations suggested that the method performed well for estimating fixed effects
even when the standard model with a normal random effect truly holds. However,
the nonparametric approach did not estimate the mixture distribution or its variance
well. This is not surprising, because the maximum likelihood estimate of the mixture
distribution (with an unspecified number of mass points) is typically highly discrete,
with relatively few mass points, even though it often facilitates a good approximation
of the marginal likelihood.

Agresti et al. (2004) investigated the impact of misspecification of the random
effects distribution, using models with various actual random effects structures. For
instance, consider estimation of the mean log odds ratio for comparison of two
groups in several 2×2 contingency tables. Conditional on a random effect ui in table
i, suppose (yi1, yi2) are independent binomials with log odds ratio β + ui. That is, for
all i, conditional on ui, yij is bin(nij, µij) where

logit(µi1) = α + (β + ui)/2, logit(µi2) = α− (β + ui)/2, (2.3)

and where E(ui) = 0 and var(ui) = σ2. (In practice, α could also vary in i, but this
analysis focused on estimation of β.) One possibility for a severely non-normal true
random effects distribution is a two-point mixture, such as when we expect the
population to be polarized on a controversial issue. In this case, the nonparametric
approach was much more efficient in estimating β than the standard model assuming
normality for the random effects. The improvement was more substantial as σ
increases. At the same time, the nonparametric approach lost little efficiency when
the normality assumption truly held. Both the normal and nonparametric approaches
were adequate in terms of bias in estimating β. Similar results about efficiency
improvement held for other models. For example, for a frailty model for survival
that assumes a gamma distribution for a random effect, the nonparametric approach
was much more efficient when the actual distribution was binary, again more so as
the random-effects variability increases.
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Table 2 Fitting of GLMM in R to Table 1, with nonparametric and normal treatment of random effect term

Abortion <- read.table("agresti_bartolucci_mira.dat",header=TRUE)
> head(Abortion, 3)
person gender situation response

1 1 0 1 1
2 1 0 2 1
3 1 0 3 1
> library(npmlreg)

> fit.npml <- allvc(response ˜ gender + factor(situation), random=˜1|person,
+ random.distribution="np", family=binomial(link=logit), data=Abortion, k=3)
> summary(fit.npml) # nonparametric fitting of GLMM with 3 mass points

Estimate Std. Error t value
gender -0.62866964 0.1296554 -4.8487716
factor(situation)2 -0.56856051 0.1603709 -3.5452841
factor(situation)3 0.15467540 0.1543484 1.0021189
MASS1 -4.33740718 0.2793745 -15.5254219
MASS2 0.05946193 0.1320789 0.4501999
MASS3 5.27859211 0.2837316 18.6041766
Mixture proportions: MASS1 MASS2 MASS3

0.3852812 0.2072261 0.4074927
Random effect distribution - standard deviation: 4.284974
-2 log L: 3906.6 Convergence at iteration 140

> fit.normal <- allvc(response ˜ gender + factor(situation), random=˜1|person,
+ random.distribution="gq", family=binomial(link=logit), data=Abortion, k=100)
> summary(fit.normal) # GLMM with normal random effect and 100 quadrature points

Estimate Std. Error t value
(Intercept) 0.4230881 0.1321061 3.202639
gender -0.7362493 0.1308990 -5.624561
factor(situation)2 -0.5549031 0.1582741 -3.505961
factor(situation)3 0.1591908 0.1565966 1.016566
z 6.9636465 0.2565615 27.142214 # standard deviation estimate
-2 log L: 3916.5 Convergence at iteration 23

For years, one could fit many GLMMs with nonparametric random effects using
a GLIM macro, and recently Einbeck et al. (2018) provided the R package npmlreg
for fitting of such models. Table 2 shows edited output for nonparametric fitting
of the simple GLMM (2.2) to Table 1, specifying three mass points to represent
polarization with a middle group having opinion depending on the situation. At the
estimated locations for the polarized mass points, which are quite extreme and about
equally likely, for each gender the probabilities of supporting legalization are close to
0 for each situation or close to 1 for each. In this output, we regard standard errors
and log-likelihood values informally, as the GSS uses sampling more complex than
a simple random sample. It is informative to note, however, that when we instead
assume a normal random effect, Gaussian quadrature with 100 quadrature points
has −2(log L) value 9.9 higher and a large estimated standard deviation (7.0) for the
random intercept.

Although simple, the nonparametric approach has disadvantages. These include
often poor estimates of the variance component, standard asymptotic theory for
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model comparison not being appropriate (when we regard the number of mixture
mass points as unknown), identifiability issues, and less adaptability to multivariate
random effects modelling and multilevel modelling than using a multivariate normal
random effect.

2.2 Further research and implementation of GLMMs with non-normal
random effects

Aitkin (1999b) used the nonparametric random effects approach for meta-analysis
of multi-centre trials. He used the logit model, focusing on variability in log odds
ratios such as described above. In practice, it would often be desirable to use a
log or an identity link function, in which case summary effects relate to ratios
or differences of proportions, which are simpler to interpret and sometimes more
relevant. Agresti and Hartzel (2000) used these links for multiple 2×2 tables but noted
the structural problem in using a continuous random effects distribution in modelling
a probability or its log. Estimates exist that deal with heterogeneity in meta-analyses
outside the context of a logit model. For instance, DerSimonian and Laird (1986)
weighted sample estimates inversely proportional to estimated variances. However,
Wald-type methods for categorical data that use estimated variances often behave
poorly, especially for applications in which the probability of the outcome of interest
is close to zero for each group, in which case sometimes all members of a group make
the same response. How successful might a nonparametric random effects approach
be for obtaining estimates for those non-standard link models?

For GLMMs, some authors have suggested replacing a normal random effects
distribution by a finite mixture of normals. For instance, Agresti et al. (2004) used
the ρN(µ1, σ

2) + (1− ρ)N(µ2, σ
2) distribution for a mixture parameter ρ in a GLMM

with logit link, and Caffo et al. (2007) did this with the probit link. Komàrek and
Lesaffre (2008) considered this more generally, estimating the parameters with a
Bayesian approach and using a penalized approach to estimate the weights of the
mixture components. Pan et al. (2020) used a penalized EM algorithm to fit the
model and proposed a type of likelihood-ratio test to determine the number of
components in the mixture. The normal mixture approach can accommodate a wide
variety of shapes and includes the binary mixture distribution as the special case with
σ = 0. However, simulations for a model such as the logistic for binary multi-centre
clinical trials, suggested that this approach had results much like those of a single
normal random effect. Future research could consider a variety of models to evaluate
whether such a random effects distribution might often provide a useful compromise
between the ordinary normal random effects distribution and the nonparametric
approach while enabling greater flexibility, less potential for serious misspecification,
and better characterization and estimation of random-effects variability. It would
also be useful to have an R function that can employ a mixture normal random
effect for any GLMM. The package glmmAK has some capability in this direction,
following the Komàrek and Lesaffre (2008) approach.
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A particularly important case to consider is when the variance of the random
effects depends strongly on values of covariates, as this can result in substantial bias
in estimating fixed effects in ordinary GLMMs (Heagerty and Zeger, 2000). Also, for
a GLMM, how can one estimate an unspecified but continuous mixture distribution
with more precision than the nonparametric random effects approach does with
its relatively few mass points, and does this make any difference for the resulting
inference? Can the nonparametric approach be used effectively with multiple random
effects and possibly multilevel structure, especially when good estimates are needed
of variance components are highly heterogeneous? A referee pointed out that the
nonparametric random effects approach would be useful for classification purposes,
because it implicitly produces posterior probabilities of class memberships.

The research results quoted above dealt with modest numbers of parameters, such
as multi-centre trials for about 30 centres. In these days of big data, it would be of
interest to study the effect of misspecification of the random effects distribution for
a sparse asymptotic framework in which the number of parameters grows with the
sample size or even exceeds it. For instance, under what conditions does one obtain
consistency of estimation of an average treatment effect and of variance components?
Can regularization methods, such as the lasso, apply directly to GLMMs with
nonparametric random effect? Finally, for all types of applications, further attention
could be paid to the disadvantages mentioned at the end of Section 2.1.

3 Contributions on Bayes factors

Murray Aitkin has a long record of developing ways to implement Bayesian inference.
Early work focused on an alternative to the BF introduced in a highly cited discussion
paper for the Royal Statistical Society (Aitkin, 1991). A more recent work focuses on
fundamental issues such as ways of assessing the credibility of confidence intervals
and prediction intervals (Aitkin and Liu, 2018). His publications include a book
(Aitkin, 2010) that presents a unified Bayesian treatment of inference and model
comparisons using simple diffuse prior specifications and that re-visits long-term
interests of his, such as finite mixture models and variance component models. Here
we focus on his innovative idea of an alternative type of BF and some related research
results.

3.1 Bayes factor using posterior mean likelihood

One of Professor Aitkin’s most relevant contributions related to Bayesian inference
is the proposal of the posterior BF, initially formulated in Aitkin (1991). Suppose
that, with reference to a set of data represented by the vector y, we need to compare
two models, say M1 and M2, characterized by the vectors of parameters denoted by
θ1 and θ2, respectively. Let us denote the likelihood functions under these models
by Lj(θj) and the prior distributions by πj(θj), with j = 1,2. The posterior BF for M1

versus M2 is defined as the ratio between the posterior means L̄A
1 and L̄A

2 , which are
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defined as

L̄A
j =

∫
Lj(θj)πj(θj|y)dθj, j = 1,2, (3.1)

where πj(θj|y) denotes the posterior distribution of the parameters of model Mj.
Clearly, the main difference between this definition of the BF and the conventional
one (see, for instance, Kass and Raftery, 1995) is that in the latter the marginal
likelihood L̄B

j =
∫

Lj(θj)πj(θj)dθj is used in place of L̄A
j . A critical review of the use of

these marginal likelihoods based on the prior distribution and their ratio is provided
in Aitkin (2010); see in particular Section 2.8. It is objected that the prior mean
of the likelihood says nothing about the variability of the likelihood and that it
does not correspond to the distribution of the observed data, because it refers to
a two-stage sampling process in which parameter values and observable variables
are sequentially drawn. Other difficulties arise with the use of improper priors and
in connection with specific model choice and hypothesis testing problems. Among
others, it is shown that with nested hypotheses of a certain type, the BF based on
the prior marginal likelihoods corresponds to the posterior mean of the likelihood
ratio, and as a consequence of this equivalent formulation it is clear that data are
used twice, violating in this way the principle of ‘temporal coherence’.

The posterior BF proposed by Aitkin (1991) is used in the usual way, so that model
M1 is preferred to M2 when its value is larger than 1 and, in general, the larger is this
value, the stronger is the evidence in favour of M1. Examples are given of inferential
tasks in which the posterior BF has certain advantages compared to the conventional
BF and, in particular, it represents a reasonable solution to the Lindley paradox when
diffuse priors are used to compare two hypotheses (Lindley, 1957). Aitkin (1991)
illustrated the application of the posterior BF to more sophisticated problems, as
when, in a normal regression model, the best set of covariates has to be selected. In this
case the comparison is among an arbitrary number k of statistical models, denoted
by M1, . . . ,Mk, each one characterized by a different set of covariates and which are
not necessarily nested. Another interesting application illustrated in Aitkin (1991)
concerns the binomial sample size problem, where the aim is to draw conclusions
on the size of a binomial distribution on the basis of a sample drawn from this
distribution, considering the probability of success as a nuisance parameter.

Aitkin has also discussed the idea of relying on the posterior mean of the likelihood
function for selecting a statistical model in other papers, among which it is worth
recalling Aitkin (1997), Aitkin et al. (2014) and Aitkin et al. (2015). The latter, in
particular, is focused on two very interesting applications, namely the use of the
posterior BF for selecting the number of components in a finite mixture model of
normal distributions and the number of classes in a latent class model. Aitkin et al.
(2014) focuses on models for using networks to investigate social group structure.
In it, groups are identified via latent classes, the number of which is selected using
Bayesian methodology. These applications inspired methodological extensions, and
this is a characteristic of Prof. Aitkin’s research attitude. He proposed to rely on a
more sophisticated criterion than merely taking the posterior mean of the likelihood
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under each model. In particular, for each model Mj, the likelihood function is
transformed into the deviance Dj(θj) = −2 log Lj(θj). Then, M1 is preferred to M2
if the posterior distribution of the deviance under the first model is stochastically
smaller than under the second model. Details on how to compute the deviance from
the MCMC output are given, and Aitkin et al. (2014) observes that the deviance
is unaffected by label-switching (an issue occurring in mixture as well as in latent
class models), since it is a symmetric function of the class labels, and also invariant
under their permutation. As a result, the comparison of the class models is shown
to be equivalent to the comparison of the distributions of the class deviances. What
is interesting in this article is that the Bayesian approach through comparison of
posterior deviance distributions leaves us uncertain whether there are two or three
classes. However additional information helps to identify the model with two classes
as the best one, since the third class is unstable and effectively empty. The article
concludes by observing that the proposed approach is computationally intensive for
large networks and suggesting that, in this setting, variational Bayesian methods
that approximate the full posterior distribution with simpler structure are more
computationally effective, though the degree of agreement with the full analysis has
not been clearly established, a statement which is still largely true.

In Aitkin et al. (2015) a certain advantage emerges of this selection criterion
in comparison to popular alternatives, such as the Deviance Information Criterion
(Spiegelhalter et al., 2002). This result relates to an observation, formulated by Aitkin
(2001), about Bayesian inference for finite mixture models. In particular, evidence is
shown of the sensitivity of the selected number of components to the assumed prior
structure. This criticism also occurs in an interesting overview of different Bayesian
analyses of the popular Galaxy data (Roeder, 1990), showing that very different
conclusions have been reached about the number of mixture components suitable to
properly model these data.

3.2 Further research and implementation of Bayesian inference

A standard technique to perform Bayesian inference is based on the use of Monte
Carlo algorithms, in particular in the Markov chain version (MCMC); see Robert
and Casella (2013). As is well known, for a certain model Mj, an algorithm of
this type produces a sequence of realizations, θ

[s]
j , s = 1, . . . , S, from the posterior

distribution of the parameters given the observed data y, where S denotes the number
of simulation steps performed in the algorithm. It is then natural to obtain a simulated
posterior mean of the likelihood, when this is analytically available in a closed-form
expression, from the corresponding realizations L[s]

j = Lj(θ
[s]
j ), s = 1, . . . , S, while the

posterior mean defined in (3.1) may be reliably estimated as ˆ̄LA
j = 1

S

∑S
s=1 L[s]

j .
The possibility of obtaining the posterior mean of the likelihood function by a

simple average along the path of the Markov chain is an interesting aspect that,
in our opinion, has not been sufficiently stressed and exploited. In particular, once
an MCMC algorithm is available, obtaining the posterior BF requires one merely to
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write and run a small amount of extra code; compare this with the ordinary BF based
on the ratio of marginal likelihoods, in which case more sophisticated methods are
required (see, for instance, Chib, 1995). Moreover, a simple parallelization is possible,
when computing the posterior BF, in the setting in which the same model is estimated
on the basis of parallel chains run on the entire dataset.

As outlined in Section 3.1, Aitkin has also proposed a more sophisticated criterion
than that simply based on computing the posterior mean of the likelihood, which
relies on stochastic ordering. More precisely, on the basis of parallel MCMC chains
run separately for each model, Aitkin et al. (2015) proposed a consensus criterion to
compare the models based on computing

W+
j =

S∑
s=1

W[s]
j , j = 1, . . . ,k, (3.2)

where W[s]
j is a indicator variable equal to 1 if D[s]

j is the smallest among the deviances

D[s]
1 , . . . ,D

[s]
k obtained at the s-step, which are defined as D[s]

j = −2 log L[s]
j . The

favourite model is the one with the largest value of W+
j , which is the ‘most often

best’ model across the draws. Even in this case, a parallelization may be simply
implemented when different chains are used to estimate the same model on the
overall set of data. The computation of D[s]

j , s = 1, · · · , S, is performed on each
one of the j = 1, . . . ,k parallel chains separately and does not require the chains to
communicate among each other. The values W[s]

j and, consequently, W+
j , are then

computed all at once, at the end, upon post-processing the obtained values of D[s]
j .

Moreover, when the same model is estimated by separate chains run on different
scores using non-overlapping subsets of the observed data, we propose to use an
extension of this criterion. In particular, if we use C cores to estimate each of the
k models—and on each one of the core a subset of the data is considered—we can
obtain C consensus values W+[c]

j , c = 1, . . . ,C, defined as in (3.2), by comparing, in
a suitable way, the simulation results. Then these quantities are simply aggregated to
obtain the overall consensus of a single model that directly compares with the original
W+

j , using suitable weights if the subsets of data have different size or importance.
A final point of interest concerns the computation of the posterior BF on the

basis of the output of the Reversible Jump (RJ) algorithm (Green, 1995; Richardson
and Green, 1997) that is used when (quoting Professor Peter Green), ‘the number
of things you do not know is one of the things you do not know’. In fact, while
the conventional BF is obtained from this output on the basis of the number of
times each single model has been visited by the Markov chain that moves between
subspaces of different dimensions, the posterior BF is obtained by elaborating the
subchains referred to each single model treated as if these chains were produced from
separate MCMC algorithms. In other words, the computation is performed within
each subspace. Moreover, Bartolucci et al. (2006) showed that the RJ output may
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be elaborated in a more efficient way in order to obtain the conventional BF on the
basis of the acceptance probabilities between models, a quantity that is computed at
each step. An open research question is then whether, also in a RJ framework, the
number of visits to each model may be somehow exploited to estimate the posterior
BF and, subsequently, if the technique of Bartolucci et al. (2006) may be exploited
also in this case to improve this estimate. Indeed, a similar question concerns the use
of a parallel MCMC algorithm to obtain the posterior BF, where techniques such as
the one proposed in Meng and Wong (1996) could be profitably used to improve the
precision of the estimate of the posterior BF; see also Mira and Nicholls (2004) and
Bartolucci et al. (2018).

We conclude by noting, again, how versatile Aitkin’s contributions are, ranging
from likelihood to Bayesian approaches to statistical inference; from methodological
to application driven papers, from computational to theoretical. This is not the right
venue to discuss them, but his topics of application have been highly diverse, as
illustrated by article titles such as ‘Stillbirths among offspring of male radiation
workers at Sellafield nuclear reprocessing plant’ (a co-authored Lancet article in
1999) and ‘Teaching styles and pupil progress’ (Aitkin et al., 1981b). In these difficult
days for our planet, we would very much value a modelling expert like Professor
Aitkin wrangling ‘coronavirus data’ and making reliable predictions on where we
are heading.
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