Some Issuesin Generalized Linear Modeling
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Abstract This chapter discusses cautions, questions, challengégraposals re-
garding five issues that arise in generalized linear mogeWith primary emphasis
on categorical data, we summarize (1) bias that can occuwsingordinary linear
models with ordinal response variables, (2) a new propdsaliassimple ways to
interpret effects in generalized linear models that usdimear link functions, (3)
problems with using Wald significance tests and confidentsvals, (4) a ques-
tion about the behavior of residuals for generalized limeadels, and (5) a new
approach in using generalized estimating equations (GE&hoads for marginal
multinomial models.
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1 Introduction

This chapter discusses several issues about generatieed fhodels that | believe
deserve more attention, either in terms of additional netear greater awareness
of already existing literature. | discuss these issues) pritmary emphasis on cate-
gorical data, in the style of cautions, questions, challsngnd proposals. | became
aware of these issues in recent years while writing a bookreat and general-
ized linear models (Agresti 2015) and while revising two k&on categorical data
analysis (Agresti 2010, 2013).

Section 2 explains the floor and ceiling bias that can occtir miodeling ordinal
response variables by assigning scores to the outcomeocigtegnd using ordinary
linear models. Section 3 proposes a simple way to intergfetts in generalized
linear models that use nonlinear link functions, by commpggroups using a prob-
ability summary about the higher response. Section 4 suimesaproblems with
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using Wald significance tests and confidence intervals inginogl binary response
variables and suggests related research for other typesmdmnse variables. Section
5 raises questions about the behavior of ordinary residoalgeneralized linear
models, and argues that a standardized residual is moran¢lhan the popular
Pearson residual. Section 6 summarizes some awkward aggdestandard gener-
alized estimating equations (GEE) methods for marginatimarhial models and
presents a recently proposed approach that is now availathidR software.

Most of this chapter has the style of a tutorial or survey papet it is hoped
that the material is relevant for a conference that has géoensideration of topics
related to linearity and modeling.

2 Biasin Ordinary Linear Modeling of Ordinal Responses

Ordinal categorical response variables are common in misajptines, especially
the social sciences with sample survey data. An examplea% oaport of politi-
cal ideology, selected from the categories (very libed&htly liberal, moderate,
slightly conservative, very conservative). Many ordinatiables have a rather sub-
jective outcome choice, such as in medical assessmentstiehpquality of life
(excellent, good, fair, poor) or amount of pain (none dittonsiderable, severe).

With ordinal response variables, many methodologistgiasaionotone scores to
the ordered outcome categories and then apply ordinargssign methods. That s,
they use least squares to estimate parameters in a linea foothe mean response
forthe chosen scores. This is sometimes problematic beadusquiring the choice
of scores, which can be quite unclear when the categoridgginy subjective. Are
categories such as (excellent, good, fair, poor) equaditadt, and if not, how does
one decide on relative distances? But here we discuss alesskut perhaps more
worrisome problem, thdtoor effectsor ceiling effectglue to the boundedness of the
discrete ordinal scale can result in seriously biased astisof effect magnitudes.

We illustrate this potential problem using an example withaasumed connec-
tion between an observed ordinal variable and an underbonginuous latent vari-
able. For an ordinal response variapjét is often realistic to assume the existence
of an underlying continuous latent varialffethat we would ideally observe if we
could measure the response in a more refined manner. Fonéestior variables
such as political ideology or quality of life, there is nathisacred about a particu-
lar choice of categories, and it's easy to imagine increpsia number of categories
until the variable becomes essentially continuous. Oumgta uses the simple nor-
mal linear latent variable model for observation

yi = 20.0+0.6x — 40z + &

in which we takeg ~ uniform(0, 100)P(z = 0) = P(z = 1) = 0.50 independent of
xi, andg ~ N(0,107). We randomly generate= 100 observations from this model
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and focus on the issue of comparing the two groups repraeségtthe values of
in terms of the effect of the covariaxe

Now, suppose that the variable we actually observe for stibigdirectly related
to this latent variable by

yi=1ify <20, yi=2if 20 <y <40, y; = 3if 40 < y < 60,

yi=4if60<y’ <80, yi=5ify > 80.

That is, cutpoints chop up the continuous scaleyfgryielding five ordered cate-
gories with corresponding values for the obseryegigure 1 shows the connection
between the observed variableand the latent variablg*. The first scatterplot in

the figure shows the 100 observationsydrandx, each data point labelled by the
category forz. The plot also shows the regression lines that generatedhtiae

Fig. 1 Ordered categorical data (in second panel) for which orgliregression suggests interac-
tion, because of a floor effect, but ordinal modeling does mbe data were generated (in first
panel) from a normal main-effects regression model withtiooous(x) and binary(z) explana-
tory variables. When the continuous respoyises categorized angis measured as (1, 2, 3, 4, 5),
the observations labelled "1’ for the categoryzdiave a lineax effect with only half the slope of
the observations labelled '0’ for the categoryzof
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Now, for the observed data, suppose we fit the linear model

Yi = a + Buxi + B2z + Ba(Xi - Z) + &
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using the scores (1,2,3,4,5), to study the effectfoi the two groups and to analyze
whether interaction occurs betwerandz in their effects ory. The right panel of
the figure shows the result, plotting the least squares fitttfobserved response,
the slope of the line is about twice as high whena 0 as wherz= 1. Why? When

X < 50 withz = 1, P(y¥ < 20) = P(y; = 1) is relatively high. Asx gets lower,
the underlying valug* can continue to tend to get lower, but the observed ordinal
response cannot fall below 1, resulting in a floor effect.sTihieraction effect is
caused by the observations whes 1 tending to fall in category = 1 whenevex
takes a relatively low value.

For the observed data, the interaction is statistically puadtically significant.
Analyzing the data with an ordinary linear model, we woulddade that an effect
exists that actually does not. Such spurious effects woatcnocur if we instead
fitted a proper ordinal model, such as themulative logit model

logit[P(yi < j)] = aj + BXi + Bez
or thecumulative probit model
O Py < )] = 0+ Brxi + Bz

with @ being the standard normal cdf, wifh= 1,2,3,4 for the four cumulative
probabilities. In fact, we’ll note in the next section thatk models are implied for
this latent variable model. The models account for the @litinby using cumula-
tive probabilities fory without needing to assign scores and assume linearity ¢n tha
scale.

We are not suggesting that it is always inappropriate to vdmary linear mod-
els with ordinal response variables. With several outcoategories and observa-
tions spread among them without high concentrations in Bagncategories, such
a model can be adequate. Using such a model can be helpfelétively unsophis-
ticated methodologists who may be comfortable with lineadeling but not with
models that imply more complex effect summaries, such as oatibs. However,
in using this strategy, one should be aware of the potentalthat can result.

3 Interpreting Effectsin GLMswith Nonlinear Link Function

For an x 1 vectory of response observations with= E(y), consider a generalized
linear model
g(M) =XB

for link functiong and model matrixX with a set of explanatory variables. For many
standard link functions, the interpretation@fis difficult for non-statisticians and
for methodologists who are mainly familiar with ordinargéiar models.

For instance, suppogsds ordinal as we considered in the previous sectionclLet
denote the number of outcome categoriesyfdfor observatiom, let xj denote the
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value of explanatory variable Consider theumulative link model

link[P(yi < j)] = aj + ZBkXika j=1...¢c-1,

for links such as the logit, probit, or complementary logsld-or the probitlink (i.e.,
the inverse of the standard normal cgf) represents the change @ X[P(y; < )]

for a 1-unit increase iy, adjusting for the other explanatory variables. This is a
rather obscure interpretation, as very few people can maksesof effects on the
scale of an inverse of a cdf.

One way used to interpret such effects relies more on usirmge®r underlying
latent variable models. For the observed ordinal respgrasel for an underlying
continuous responsg, suppose we assume thgit= BTxi + &, whereg; has some
parametric cdfs with mean 0. Suppose that there are thresholds (cutpeiets)
0p < Q1< ...< 0c= o such that

yi=]if aj_1<y <aj.
Then, at a fixed valug,
P(yi < }) =P(y; <aj) =P(y; —B'% < aj— B x)

= P(s < a; - B'x) = G(aj — B'x).

This implies the model
G P < %) =aj—B"x

with G~ as the link function. In particular, one obtains the curiuwéaprobit model
when G is the standard normal cdp; then @1 is the probit link. (In practice,
whether we use- or — for the coefficient of the linear predictq&Txi merely af-
fects the sign of the estimates, and varies among the comaftwese packages.)
Thus, the cumulative probit model fits well when an ordinasymal linear model
holds for an underlying continuous response variable. liemhodel Bx has the in-
terpretation that a 1-unit increasexncorresponds to a changehify*) of S« stan-
dard deviations, adjusting for the other explanatory \@eis (Anderson and Philips
1981, McKelvey and Zavoina 1975). But this interpretatiam still be rather ob-
scure for non-methodologists who do not think of effectseimts of multiples of
standard deviations. Moreover, the latent variable modsl not be appropriate in
some applications.

We suggest next a simpler interpretation, proposed by Aigred Kateri (2016).
We formulate it in terms of a summary for comparing two grquaadjusting for
the other explanatory variables. Lebe an indicator variable for the two groups.
At any potential settingx, ..., Xp) of p explanatory variables, gt andy; denote
independent latent variables whea: 1 and wherz = 0, respectively. For the latent
variable model that generates the cumulative probit model
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cD‘l[P(yg )] =aj—Bz—Pxa— - — BpXp,

the difference between the conditional meang;aindys; is 3, and
P(y1>Y2) = Pl(y1 —¥2) > 0

vi-¥9)-B _ —B] _ _
5| 1 OBV = 2(B/V2).

That is, P(y; > y5) = ®@(B/+/2) at any setting of thep explanatory variables.
Differences between the normal conditional means for the gnoups of 38 =
(0,0.5,1,2,3) standard deviations correspondR¢y; > y5) values of (0.50, 0.64,
0.76, 0.92, 0.98).

In practice, the probit link is used much less than the Idgk,lespecially in
biostatistics. The cumulative logit model

=P

logit[P(y < j)] = aj — Bz— Buxa — -~ — BpXp

is implied when an underlying latent variable has a logidistribution. The deriva-
tion just shown for a normal latent variable does not havexatteanalog for a
logistic latent variable, as the difference between twepehdent standard logistic
random variables does not have a logistic distribution. e\, the distribution can
be very closely approximated by the logistic with mean O analode the variance.
This generates the approximation

exp(B/v'2)
[1+exp(B/V2)]

in terms of theB parameter from the cumulative logit model. This approxiorais
adequate for practical application. Because of the vergeckimilarity of logit and
probit models, another good approximation is to fit also tiraglative probit model
and use the exact expressefy; > ;) = ®(B/+/2) for the B parameter from that
model.

In practice, it is often sensible to assume a latent varidisteibution that, unlike
the normal and the logistic, is skewed and has a long tail.t®rordinal model
with log-log link, the underlying latent variable has therexme-value (Gumbel)
distribution. The difference between two independent camgtariables of this type
has the standard logistic distribution. So, in this case,

expB)
[1+expp)]

in terms of theB parameter for the cumulative link model with log-log link.

For any of these cumulative link models, ordinary confideintervals for the
B coefficient of the indicator variable induce confidencerivas for P(y; > y5).
The measures and the related inferences are presented éstifaard Kateri (2016).
They also proposed analogous measures for the observethbsdale that do not

P(y1>Y3) ~

P(y1>Y2) =
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require a latent variable connection, and they have aveiRidunctions for confi-
dence intervals for the measures.

Such probability-based measures may be especially hdtpfpfactitioners who
cannot easily interpret odds ratios and other measuregdhatt from nonlinear
link functions. For instance, for a medical researchedirgathat at fixed values for
the explanatory variables, the estimated probability #sponse to druggE 1) is
better than response to placelzo(0) is 0.72 probably has greater meaning than
reading that (1) the estimated cumulative odds for drug pg/@x= 2.7 times the
estimated cumulative odds for placebo (i.e., the integti@t for the cumulative
logit model), or (2) that the estimated cumulative probitiedby 3 = 0.8 or an un-
derlying mean for drug i = 0.8 standard deviations better than for placebo (i.e.,
the interpretation for the cumulative probit model), or &t the estimated proba-
bility that the response for drug is worse than a particuldcome category is the
power exg3) = 1.7 of the estimated probability that response for placeboise
than that category (i.e., interpretation of cumulativ& iimodel with complementary
log-log link).

This type of probability measure for comparing groups i® atdevant for ordi-
nary normal linear models. With constant error variaagéeand potential response
outcomegys,y,) for two groups at some setting of explanatory variablesctire
responding measure is

B

P(y1>Y2) ‘D<\/§0>,
for coefficientf of the indicator variable for the two groups. This would setem
be a useful summary in many applications. For two groups withexplanatory
variables, a related popular effect size measuf'is = (41 — 2)/0 (Hedges and
Olkin 1985). One can derive a confidence intervalgo in linear models with ex-
planatory variables using the noncentrdistribution, and such an interval induces
one forP(y; > y»). For details and an example using R, see Agresti and Kateri
(2016).

4 Wald I nference when Effects for Binary Data are Large

To introduce this topic, we start with a toy example thatstlates an awkward
aspect that often occurs in using logistic regression, hathat at least one of the
maximum likelihood (ML) estimates of model parameters faite. This happens
whencomplete separatioar quasi-complete separatiarccurs in the space of the
explanatory variables (Albert and Anderson 1984).

For six observations, suppose tlyat 1 atx=1,2,3, andy =0 atx=4,5,6, a
simple example of complete separation. When we use R to fibrithi@ary logistic
regression model, logR(y = 1)] = a + 3%, we obtain:

> x <- ¢(1,2,345,6); y <- c¢(1,1,1,0,0,0)
> fit <- gim(y © x, family = binomial(link = logit))
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> summary(fit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 165.3 407521.4 0 1
X -47.2  115264.4 0 1

Number of Fisher Scoring iterations: 25

After 25 iterations, Fisher scoring converges, as the ikgjthood function is essen-
tially flat at that stage. The fit looks nearly identical togpstunction that takes value
1 belowx = 3.5 and takes value 0 abowe= 3.5. The maximized log-likelihood
value is essentially O, reflecting the basically perfec#ithough in factg = —oo,

R reportsB = —47.2. R also reports a huge standard error, reflecting that thes un
stricted ML estimate of the standard err&Hj is based on the Fisher information,
which summarizes the curvature of the log-likelihood fimeiat3. A perhaps sur-
prising consequence is that= 3/SE= 0, yielding aP-value of 1.0 when we use
this ratio as a test statistic for testihy: 8 = 0. By contrast, the model fit gives
evidence of a potentially very strong effect. By contrasg likelihood-ratio test
statistic equals 8.32 wittif = 1 and yieldsP-value = 0.004.

The statisticz= 3/(SE) is an example of &Vald test This approach uses the
fact that a ML estimator has an asymptotic normal distrdiuby testingHo: 3 =0
with z= B/(SE), or else treating® as an approximate chi-squared random variable
with, df = 1. The corresponding confidence interval has the f@rinz(SE) for
the appropriate standard normal percentjléor instance withz = 1.96 for 95%
confidence. A classic result shown by Hauck and Donner (18Rt agf| in a
logistic regression model increases (for fixed the Fisher information decreases
so quickly thatSE grows faster thar. The result is poor performance of Wald
methods when effects are large.

The poor performance of Wald methods shows up even in verglsioontexts,
such as a single binomial response variable without anyaegbbry variables. For
a binomial random variablg based om independent trials with parametar in
the context of logistic regression the model is légjt= . To testHo: B =0 (i.e.,
= 0.50), B = logit(71) with 7T=y/n has asymptotic variandar(1— )] ~1. The
Wald chi-squared statistic is

(B/SE)? = [logit(1)]?[nf(1 — 7).

Now, suppos@ = 25. For testinddo: m= 0.50, fT= % is stronger evidence against
Ho thanft= 2. Yet the Wald statistic equals 9.7 whén= 24/25 and equals 11.0
whenft= 23/25. By comparison, the likelihood-ratio statistic takekiea 26.3 and
20.7.

With large or infinite effects, likelihood-ratio (LR) testnd test-based confi-
dence intervals remain valid and behave well because ofdheavity of the log-
likelihood function. For example, whe = —oo, a confidence interval consists of
a range of plausible values fromeo to some finite upper bound. With infinite ML
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estimates, one can alternatively smooth the data and pedithite estimates and
finite endpoints of intervals using a Bayesian approacho@#,can use a penalized
likelihood approach with the aim of reducing bias (Firth93% which corresponds
to using a Bayesian posterior mode with Jeffreys prior toegate a point estimate.
The poor performance of the Wald test implies poor perforreaiso of corre-
sponding confidence intervals. This has been shown for atyasf measures for
categorical data, such as proportions, differences ofgutams, odds ratio, and rel-
ative risk, particularly when probabilities are near O oFtr a summary of these
and various other cases involving categorical data, seeshg011). For example,
again for a single binomial parameterthe 95% Wald confidence interval faris

fi41.96\/7(1— 1)/n.

In terms of achieving close to the nominal coverage prolighihis interval per-
forms much worse than the interval based on inverting ailibeld-ratio test or
inverting the score test d¢iy: 7= 1, which has test statistic

T— 1o
VTo(1— o) /n’

It also behaves much more poorly than a simple approximatidhe score con-
fidence interval that (in the 95% case) adds 2 “successes?2 dfallures” before
forming the Wald confidence interval (Agresti and Coull 1298

An important question that could be addressed in futurearebds whether the
poor Wald performance for binary data holds also for varmiher generalized lin-
ear models for other types of data, with nonlinear link fumts. For some theoreti-
cal work in this direction, see Brown, Cai, and DasGupta 800

5 Behavior of Residualsfor GLM Fits

For an x 1 vectory of response observations with= E(y), V = var(y), consider
an arbitrary generalized linear model

n=9(m)=XB

with link function g and model matrixX. Denote the maximum likelihood fitted
values byjl.

The ordinary linear model uses identity lipk= X 8, and assume¢ = o?l. For
that model, standard results exploit the orthogonal de@witipn

y=f+(y—f1) (i.e. data=fit+ residugl

With generalized linear model§ and (y — f1) are not orthogonal when we de-
part from identity link and constant variance. Then, Pytrag's Theorem does
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not apply, because maximizing the likelihood does not gmoed to minimizing
|ly — f1]|. With a nonlinear link function, although the space of linpeedictor val-
uesn that satisfy a particular model is a linear vector spacectreesponding set
of g =g~1(n) values is not.

Despite the lack of orthogonality, conventional wisdomnssdo be that as
increases(y — f1) is asymptotically uncorrelated witfa. If this truly holds, then
one can obtain an asymptotic covariance matrix for the vedsgl because then

V =var(y) ~ var(fl) + varly — 1).

It then follows from standard results using the delta mefteogl., see Agresti 2015,
p. 136) that
var(y — fI) = V2]l —H]VY/2,

whereH is a generalized hat matrix

H =WY2X(XTWX) " 1XTw/?
incorporating a diagonal weight matrix

W = diag{(dpi/ani)?/var(yi)}.

But why, and under what conditions,(— f1) asymptotically uncorrelated with
{17 And for small-to-moderats, is corry — f1, 1) close enough to O that we can
safely ignore it? When | was recently writing a book on gelized linear models
(Agresti 2015), | was surprised not to find literature abdus.tlt seems that we
should consider two types of asymptotics: Traditional gstatics withn — o, and
the alternative wittn fixed and asymptotics applying to individual componentshsu
as binomial indices and Poisson expected counts in a camtaygtable. For the
alternative (calle@mall-dispersion asymptotiby Jargensen 1987), with individual
yi asymptotically normal(y — 4) and(ft — p) jointly have an asymptotic normal
distribution, as does their difference.

When | asked several statisticians if they knew of the ertsteof a general re-
sult about residuals and fitted values being asymptoticailyorrelated, G. Lovi-
son gave me a heuristic solution. In Lovison (2014), he dised this point in an
article that dealt with analogs of linear model results fengralized linear mod-
els. He argued that ify — 1) and i were not asymptotically uncorrelated, one
could construct an asymptotically unbiased and more effi@stimator ofu us-
ing fi* = [f1 + L(y— f1)] for a matrixL. But this would then contradict the ML
estimatorfl being asymptotically efficient. This argument is sort of agraptotic
version for ML estimators of one in the Gauss—Markov Theatteshunbiased esti-
mators other than least squares estimator have differeoicethat estimator that is
uncorrelated with it. The Lovison argument is heuristid, distinguishing between
the two possible types of asymptotics, and there still s¢erhs scope for a formal
proof of the general result.
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Interestingly, in his article, Lovison shows that a weightersion of adjusted
responses that has approximately constant variance lnegjortality of fitted values
and residuals. On the original scale, such a residual isRlearson residual =
(yi — ) /~/Vv(fx) for variance functiorv evaluated at the model fit. For contingency
tables, the Pearson residual is popular, because it résaritsthe decomposition of
the Pearson chi-squared statistic. For example, with Boissuntsy; }, the Pearson
statistic satisfies

2 o .
X2 — (yi —AM) _ elz with g = Yi —fll _ Vi —AM .
Z Hi Z V() [
As an editorial comment, however, | believe it is stronglgfprable to usstan-
dardized residualsather than Pearson residuals. The standardized resgdual i
Vi — [ Vi — [ e

= std. errofy; —ﬁli) N \/V(fli)(l—ﬁii) - \/l—hii

fi

for “leverage” hi from the estimated hat matrid. For small-dispersion asymp-
totics, ri is asymptotically standard normal when the model holdss T$not true
of the Pearson residual, because the denominator ignores the fact fhas ran-
dom. The standardized residual appropriately recognemisndancies in data. For
example, for the independence model assuming Poisson dinoralal sampling
for a 2x 2 table of countgy;; }, the fitted values are

{fij =nppyj} for pip = (5 vi)/n, pej = (3 yij)/n,
] [

and so these two forms of residual then have expressions
_Yij — B _— Yij — Hij
- = ) ] — = .
v/ Hij Vi (T=pi)(T=py))
For 2x2 tablesd f = 1, reflecting that all foufy;j — [i;j| are identical, so it seems

sensible to have a single value for lack of fit. Yet, all fouaP®n residuals can take
different values. By contrast; = —r12 = —rz1 = rz; and each = X2,

8j

6 Improved Marginal Modeling of Multinomial Data

The final topic we consider deals with analyzing correlatedepvations using
marginal models. Suppose that each subject has a cluster@iated observa-
tionsy, = (yi1,Vi2,-..,¥iT)", such as in a longitudinal study or an experiment with
repeated measures. (The dimensibrcould vary by cluster, but for simplicity
our notation uses a common value.) For egghmarginally, we assume a model

(ki) = x{ B.
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For discrete data, ML for such a model is awkward because eofabk of a
simple multivariate distribution that is characterizedfdairwise correlations. For
E(y;) = Y; and vaty,) = V;, it is common in practice to use estimates that are
solutions ofgeneralized estimating equatio(tSEE),

n

ZlDiTVrl(yi — 1) =0.

with D; = du; /0 B. The GEE provide a multivariate generalization of quasslhood
methods, generalizing likelihood equations for univarissponse without specify-
ing a full multivariate distribution. Such an approach igfus when one’s primary
interest is modeling the marginal distribution of eaghin terms of explanatory
variabless, rather than modeling dependence amgngif, . . ., Vit)-

In the estimating equations, M; GEE methods assume a “working” correla-
tion structure (e.g., exchangeable, autoregressivey; fdrhe resulting estimate of
B is consistent even if the correlation structure is misdjEtiwhen the marginal
model is correct. However, standard errors are not apmtgrThe method uses
empirical robust estimates of the standard errors thatali@ @ven when the corre-
lation structure is misspecified, based on a “sandwich” camae matrix. The GEE
method was originally specified by Liang and Zeger (1986 ufurariatey; (e.g.,
binomial, Poisson), but extensions exist for multinomialdels withc > 2 response
categories. This has mainly been for ordinal responses, lapsitz et al. (1994).

In the multinomial context, leyjj; = 1 if subjecti makes responsgfor obser-
vationt. Then, for each pairs(t) of times, one chooses a working Coff{, Vi),
such as exchangeable s for all s,t). However, Touloumis et al. (2013) showed
that certain correlation patterns do not correspond to iifegte joint multinomial
distribution, especially with large. They argued that it is more sensible to model
the covariance based on structure for local odds ratiok,foobrdinal and nominal
responses. In the binary case, this was suggested by Lgisilz 1991. Structure
specified in terms of local odds ratios using adjacent rovasaaijacent columns is
compatible with all possible multinomial joint distribatis and their margins, and
it can be used both with ordinal and nominal response vagabl

Specifically, for anys < t, one supposes that the margiRdlias = 1,yin: = 1)
has expected frequencies

log ™) = A 4 AL 42 + Buaup,

for some set of scorgsy; }. This is a special case of thiaear-by-linear association
loglinear model, in which row and column scores are idehtfear this model, the
local log odds ratios satisfy
(st), (st)
Hap Hai1pi1
log {ﬁ = B(St) (Uat+1— Ua)(Upt1 — Up).
“a,b+l a+1,b
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For an ordinal response variable, one takes} to be fixed, monotone scores. For
example, scoreSu, = a} imply a uniform local log odds ratio that is mereBys!
(the so-calleduniform association modgl Exchangeable structure for the re-
sponses then uses the sapi&) for eachs, t. For a nominal response variable,
one treatdu,} as parameters. This pairwise association structure isatspecial
case of Goodman’s (1978®C modeland relates to Anderson’s (1984ereotype
model

With this multinomial GEE approach, Touloumis et al. notéarsg efficiency
gains over an independence working structure for studi#is stiong correlation
and time-varying covariates. Touloumis has implementeéhat and nominal local
odds ratio structures with his recently developaaltgeeR package. See

http://cran.r-project.org/web/packages/multgee/mult gee.pdf .
This package seems to have convergence problems and impespés much less
often than existing R multinomial GEE routines. Also, otbristing GEE multino-
mial packages in R do not handle nominal responses.

References

Agresti, A. (2010)Analysis of Ordinal Categorical Dai&nd ed. Wiley.

Agresti, A. (2011) Score and pseudo score confidence irtefimacategorical data
analysis Statistics in Biopharmaceutical Resear8h163-172.

Agresti, A. (2013)Categorical Data Analysis3rd ed. Wiley.
Agresti, A. (2015)oundations of Linear and Generalized Linear Mod#&l4ley.

Agresti, A., and Coull, B. A. 1998. Approximate is better rihexact for interval
estimation of binomial parametesmerican Statisticia®2: 119-126.

Agresti, A., and Kateri, M. (2016) Ordinal probability eftemeasures for group
comparisons in multinomial cumulative link moddBometrics 73: 214—-219.
Albert, A., and Anderson, J. A. 1984. On the existence of maxn likelihood
estimates in logistic modelBiometrika71: 1-10.

Anderson, J. A. 1984. Regression and ordered categoridables.Journal of the
Royal Statistical Society, SeriesAB: 1-30.

Anderson, J. A., and Philips, P. R. (1981) Regression, ididcation, and measure-
ment models for ordered categorical variabkgplied Statistics30, 22—-31.

Brown, L., Cai, T., and DasGupta, A. (2003) Interval estimatn exponential fam-
ilies. Statistica Sinicd.3: 19—49.

Firth, D. 1993. Bias reduction of maximum likelihood estiem Biometrika 80:
27-38.

Hedges, L. V., and OlIkin, I. (1985tatistical Methods for Meta-Analysi®rlando,
FL: Academic Press.

Hauck, W. W., and Donner, A. 1977. Wald’s test as applied tpodtlyeses in logit
analysisJournal of the American Statistical Associatio?2 851-853.



14 Alan Agresti

Jargensen, B. 1987. Exponential dispersion modelsnal of the Royal Statistical
Society, Series B9: 127-162.

Liang, K. Y., and Zeger, S. L. 1986. Longitudinal data anslyssing generalized
linear modelsBiometrika73: 13-22.

Lipsitz, S. R., Kim, K., and Zhao, L. 1994. Analysis of repshtategorical data
using generalized estimating equatiogatistics in Medicind3: 1149-1163.

Lipsitz, S., Laird, N., and Harrington, D. 1991. Generaliastimating equations for
correlated binary data: Using the odds ratio as a measussotetionBiometrika
78: 153-160.

Lovison, G. 2014. A note on adjusted responses, fitted valndsesiduals in gen-
eralized linear modelsStatistical Modellingl4: 337-359.

McKelvey, R. D., and Zavoina, W. 1975. A statistical model the analysis of
ordinal level dependent variablelurnal of Mathematical Sociologly 103—-120.

Touloumis, A., Agresti, A., and Kateri, M. 2013. GEE for mntimial responses
using a local odds ratios parameterizatiBrometrics69:633—640.



