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Abstract This chapter discusses cautions, questions, challenges, and proposals re-
garding five issues that arise in generalized linear modeling. With primary emphasis
on categorical data, we summarize (1) bias that can occur in using ordinary linear
models with ordinal response variables, (2) a new proposal about simple ways to
interpret effects in generalized linear models that use nonlinear link functions, (3)
problems with using Wald significance tests and confidence intervals, (4) a ques-
tion about the behavior of residuals for generalized linearmodels, and (5) a new
approach in using generalized estimating equations (GEE) methods for marginal
multinomial models.
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1 Introduction

This chapter discusses several issues about generalized linear models that I believe
deserve more attention, either in terms of additional research or greater awareness
of already existing literature. I discuss these issues, with primary emphasis on cate-
gorical data, in the style of cautions, questions, challenges, and proposals. I became
aware of these issues in recent years while writing a book on linear and general-
ized linear models (Agresti 2015) and while revising two books on categorical data
analysis (Agresti 2010, 2013).

Section 2 explains the floor and ceiling bias that can occur with modeling ordinal
response variables by assigning scores to the outcome categories and using ordinary
linear models. Section 3 proposes a simple way to interpret effects in generalized
linear models that use nonlinear link functions, by comparing groups using a prob-
ability summary about the higher response. Section 4 summarizes problems with
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using Wald significance tests and confidence intervals in modeling binary response
variables and suggests related research for other types of response variables. Section
5 raises questions about the behavior of ordinary residualsfor generalized linear
models, and argues that a standardized residual is more relevant than the popular
Pearson residual. Section 6 summarizes some awkward aspects of standard gener-
alized estimating equations (GEE) methods for marginal multinomial models and
presents a recently proposed approach that is now availablewith R software.

Most of this chapter has the style of a tutorial or survey paper. But it is hoped
that the material is relevant for a conference that has general consideration of topics
related to linearity and modeling.

2 Bias in Ordinary Linear Modeling of Ordinal Responses

Ordinal categorical response variables are common in many disciplines, especially
the social sciences with sample survey data. An example is one’s report of politi-
cal ideology, selected from the categories (very liberal, slightly liberal, moderate,
slightly conservative, very conservative). Many ordinal variables have a rather sub-
jective outcome choice, such as in medical assessments of patient quality of life
(excellent, good, fair, poor) or amount of pain (none, little, considerable, severe).

With ordinal response variables, many methodologists assign monotone scores to
the ordered outcome categories and then apply ordinary regression methods. That is,
they use least squares to estimate parameters in a linear model for the mean response
for the chosen scores. This is sometimes problematic because of requiring the choice
of scores, which can be quite unclear when the categories arehighly subjective. Are
categories such as (excellent, good, fair, poor) equally distant, and if not, how does
one decide on relative distances? But here we discuss a less known but perhaps more
worrisome problem, thatfloor effectsor ceiling effectsdue to the boundedness of the
discrete ordinal scale can result in seriously biased estimates of effect magnitudes.

We illustrate this potential problem using an example with an assumed connec-
tion between an observed ordinal variable and an underlyingcontinuous latent vari-
able. For an ordinal response variabley, it is often realistic to assume the existence
of an underlying continuous latent variabley∗ that we would ideally observe if we
could measure the response in a more refined manner. For instance, for variables
such as political ideology or quality of life, there is nothing sacred about a particu-
lar choice of categories, and it’s easy to imagine increasing the number of categories
until the variable becomes essentially continuous. Our example uses the simple nor-
mal linear latent variable model for observationi,

y∗i = 20.0+0.6xi −40zi + εi

in which we takexi ∼ uniform(0, 100),P(zi = 0) = P(zi = 1) = 0.50 independent of
xi , andεi ∼ N(0,102). We randomly generaten= 100 observations from this model
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and focus on the issue of comparing the two groups represented by the values ofz
in terms of the effect of the covariatex.

Now, suppose that the variable we actually observe for subject i is directly related
to this latent variable by

yi = 1 if y∗i ≤ 20, yi = 2 if 20 < y∗i ≤ 40, yi = 3 if 40 < y∗i ≤ 60,

yi = 4 if 60 < y∗i ≤ 80, yi = 5 if y∗i > 80.

That is, cutpoints chop up the continuous scale fory∗, yielding five ordered cate-
gories with corresponding values for the observedy. Figure 1 shows the connection
between the observed variabley and the latent variabley∗. The first scatterplot in
the figure shows the 100 observations ony∗ andx, each data point labelled by the
category forz. The plot also shows the regression lines that generated thedata.

Fig. 1 Ordered categorical data (in second panel) for which ordinary regression suggests interac-
tion, because of a floor effect, but ordinal modeling does not. The data were generated (in first
panel) from a normal main-effects regression model with continuous(x) and binary(z) explana-
tory variables. When the continuous responsey∗ is categorized andy is measured as (1, 2, 3, 4, 5),
the observations labelled ’1’ for the category ofz have a linearx effect with only half the slope of
the observations labelled ’0’ for the category ofz.
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Now, for the observed data, suppose we fit the linear model

yi = α + β1xi + β2zi + β3(xi ·zi)+ εi
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using the scores (1,2,3,4,5), to study the effect ofx for the two groups and to analyze
whether interaction occurs betweenx andz in their effects ony. The right panel of
the figure shows the result, plotting the least squares fit. For the observed response,
the slope of the line is about twice as high whenz= 0 as whenz= 1. Why? When
xi < 50 with zi = 1, P(y∗i ≤ 20) = P(yi = 1) is relatively high. Asx gets lower,
the underlying valuey∗ can continue to tend to get lower, but the observed ordinal
response cannot fall below 1, resulting in a floor effect. This interaction effect is
caused by the observations whenz= 1 tending to fall in categoryy = 1 wheneverx
takes a relatively low value.

For the observed data, the interaction is statistically andpractically significant.
Analyzing the data with an ordinary linear model, we would conclude that an effect
exists that actually does not. Such spurious effects would not occur if we instead
fitted a proper ordinal model, such as thecumulative logit model

logit[P(yi ≤ j)] = α j + β1xi + β2zi

or thecumulative probit model

Φ−1[P(yi ≤ j)] = α j + β1xi + β2zi

with Φ being the standard normal cdf, withj = 1,2,3,4 for the four cumulative
probabilities. In fact, we’ll note in the next section that such models are implied for
this latent variable model. The models account for the ordinality by using cumula-
tive probabilities fory without needing to assign scores and assume linearity on that
scale.

We are not suggesting that it is always inappropriate to use ordinary linear mod-
els with ordinal response variables. With several outcome categories and observa-
tions spread among them without high concentrations in boundary categories, such
a model can be adequate. Using such a model can be helpful for relatively unsophis-
ticated methodologists who may be comfortable with linear modeling but not with
models that imply more complex effect summaries, such as odds ratios. However,
in using this strategy, one should be aware of the potential bias that can result.

3 Interpreting Effects in GLMs with Nonlinear Link Function

For an×1 vectoryyy of response observations withµµµ = E(yyy), consider a generalized
linear model

g(µµµ) = XXXβββ

for link functiong and model matrixXXX with a set of explanatory variables. For many
standard link functions, the interpretation ofβββ is difficult for non-statisticians and
for methodologists who are mainly familiar with ordinary linear models.

For instance, supposey is ordinal as we considered in the previous section. Letc
denote the number of outcome categories fory. For observationi, let xik denote the
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value of explanatory variablek. Consider thecumulative link model

link[P(yi ≤ j)] = α j +∑
k

βkxik, j = 1, . . . ,c−1,

for links such as the logit, probit, or complementary log-log,. For the probit link (i.e.,
the inverse of the standard normal cdf),βk represents the change inΦ−1[P(yi ≤ j)]
for a 1-unit increase inxk, adjusting for the other explanatory variables. This is a
rather obscure interpretation, as very few people can make sense of effects on the
scale of an inverse of a cdf.

One way used to interpret such effects relies more on using means for underlying
latent variable models. For the observed ordinal responsey and for an underlying
continuous responsey∗, suppose we assume thaty∗i = βββ Txxxi + εi , whereεi has some
parametric cdfG with mean 0. Suppose that there are thresholds (cutpoints)−∞ =
α0 < α1 < .. . < αc = ∞ such that

yi = j if α j−1 < y∗i ≤ α j .

Then, at a fixed valuexxx,

P(yi ≤ j) = P(y∗i ≤ α j ) = P(y∗i −βββ Txxxi ≤ α j −βββ Txxxi)

= P(εi ≤ α j −βββ Txxxi) = G(α j −βββ Txxxi).

This implies the model

G−1[P(yi ≤ j | xxxi)] = α j −βββ Txxxi

with G−1 as the link function. In particular, one obtains the cumulative probit model
when G is the standard normal cdfΦ; then Φ−1 is the probit link. (In practice,
whether we use+ or − for the coefficient of the linear predictorβββTxxxi merely af-
fects the sign of the estimates, and varies among the common software packages.)
Thus, the cumulative probit model fits well when an ordinary normal linear model
holds for an underlying continuous response variable. For this model,βk has the in-
terpretation that a 1-unit increase inxk corresponds to a change inE(y∗) of βk stan-
dard deviations, adjusting for the other explanatory variables (Anderson and Philips
1981, McKelvey and Zavoina 1975). But this interpretation can still be rather ob-
scure for non-methodologists who do not think of effects in terms of multiples of
standard deviations. Moreover, the latent variable model may not be appropriate in
some applications.

We suggest next a simpler interpretation, proposed by Agresti and Kateri (2016).
We formulate it in terms of a summary for comparing two groups, adjusting for
the other explanatory variables. Letz be an indicator variable for the two groups.
At any potential setting(x1, . . . ,xp) of p explanatory variables, lety∗1 andy∗2 denote
independent latent variables whenz= 1 and whenz= 0, respectively. For the latent
variable model that generates the cumulative probit model
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Φ−1[P(y≤ j)] = α j −βz−β1x1−·· ·−βpxp,

the difference between the conditional means ofy∗1 andy∗2 is β , and

P(y∗1 > y∗2) = P[(y∗1−y∗2) > 0]

= P

[
(y∗1−y∗2)−β√

2
>

−β√
2

]
= 1−Φ(−β/

√
2) = Φ(β/

√
2).

That is, P(y∗1 > y∗2) = Φ(β/
√

2) at any setting of thep explanatory variables.
Differences between the normal conditional means for the two groups ofβ =
(0,0.5,1,2,3) standard deviations correspond toP(y∗1 > y∗2) values of (0.50, 0.64,
0.76, 0.92, 0.98).

In practice, the probit link is used much less than the logit link, especially in
biostatistics. The cumulative logit model

logit[P(y≤ j)] = α j −βz−β1x1−·· ·−βpxp

is implied when an underlying latent variable has a logisticdistribution. The deriva-
tion just shown for a normal latent variable does not have an exact analog for a
logistic latent variable, as the difference between two independent standard logistic
random variables does not have a logistic distribution. However, the distribution can
be very closely approximated by the logistic with mean 0 and double the variance.
This generates the approximation

P(y∗1 > y∗2) ≈
exp(β/

√
2)

[1+exp(β/
√

2)]

in terms of theβ parameter from the cumulative logit model. This approximation is
adequate for practical application. Because of the very close similarity of logit and
probit models, another good approximation is to fit also the cumulative probit model
and use the exact expressionP(y∗1 > y∗2) = Φ(β/

√
2) for theβ parameter from that

model.
In practice, it is often sensible to assume a latent variabledistribution that, unlike

the normal and the logistic, is skewed and has a long tail. Forthe ordinal model
with log-log link, the underlying latent variable has the extreme-value (Gumbel)
distribution. The difference between two independent random variables of this type
has the standard logistic distribution. So, in this case,

P(y∗1 > y∗2) =
exp(β )

[1+exp(β )]

in terms of theβ parameter for the cumulative link model with log-log link.
For any of these cumulative link models, ordinary confidenceintervals for the

β coefficient of the indicator variable induce confidence intervals for P(y∗1 > y∗2).
The measures and the related inferences are presented by Agresti and Kateri (2016).
They also proposed analogous measures for the observed ordinal scale that do not
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require a latent variable connection, and they have available R functions for confi-
dence intervals for the measures.

Such probability-based measures may be especially helpfulfor practitioners who
cannot easily interpret odds ratios and other measures thatresult from nonlinear
link functions. For instance, for a medical researcher, reading that at fixed values for
the explanatory variables, the estimated probability the response to drug (z= 1) is
better than response to placebo (z= 0) is 0.72 probably has greater meaning than
reading that (1) the estimated cumulative odds for drug is exp(β̂ ) = 2.7 times the
estimated cumulative odds for placebo (i.e., the interpretation for the cumulative
logit model), or (2) that the estimated cumulative probits differ by β̂ = 0.8 or an un-
derlying mean for drug iŝβ = 0.8 standard deviations better than for placebo (i.e.,
the interpretation for the cumulative probit model), or (3)that the estimated proba-
bility that the response for drug is worse than a particular outcome category is the
power exp(β̂ ) = 1.7 of the estimated probability that response for placebo is worse
than that category (i.e., interpretation of cumulative link model with complementary
log-log link).

This type of probability measure for comparing groups is also relevant for ordi-
nary normal linear models. With constant error varianceσ2 and potential response
outcomes(y1,y2) for two groups at some setting of explanatory variables, thecor-
responding measure is

P(y1 > y2) = Φ
(

β√
2σ

)
,

for coefficientβ of the indicator variable for the two groups. This would seemto
be a useful summary in many applications. For two groups withno explanatory
variables, a related popular effect size measure isβ/σ = (µ1−µ2)/σ (Hedges and
Olkin 1985). One can derive a confidence interval forβ/σ in linear models with ex-
planatory variables using the noncentralt distribution, and such an interval induces
one for P(y1 > y2). For details and an example using R, see Agresti and Kateri
(2016).

4 Wald Inference when Effects for Binary Data are Large

To introduce this topic, we start with a toy example that illustrates an awkward
aspect that often occurs in using logistic regression, namely that at least one of the
maximum likelihood (ML) estimates of model parameters is infinite. This happens
whencomplete separationor quasi-complete separationoccurs in the space of the
explanatory variables (Albert and Anderson 1984).

For six observations, suppose thaty = 1 atx = 1,2,3, andy = 0 atx = 4,5,6, a
simple example of complete separation. When we use R to fit theordinary logistic
regression model, logit[P(y= 1)] = α + βx, we obtain:

--------------------------------------------------- --------
> x <- c(1,2,3,4,5,6); y <- c(1,1,1,0,0,0)
> fit <- glm(y ˜ x, family = binomial(link = logit))
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> summary(fit)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 165.3 407521.4 0 1
x -47.2 115264.4 0 1

Number of Fisher Scoring iterations: 25
--------------------------------------------------- --------

After 25 iterations, Fisher scoring converges, as the log-likelihood function is essen-
tially flat at that stage. The fit looks nearly identical to a step function that takes value
1 belowx = 3.5 and takes value 0 abovex = 3.5. The maximized log-likelihood
value is essentially 0, reflecting the basically perfect fit.Although in factβ̂ = −∞,
R reportsβ̂ = −47.2. R also reports a huge standard error, reflecting that the unre-
stricted ML estimate of the standard error (SE) is based on the Fisher information,
which summarizes the curvature of the log-likelihood function at β̂ . A perhaps sur-
prising consequence is thatz= β̂/SE= 0, yielding aP-value of 1.0 when we use
this ratio as a test statistic for testingH0: β = 0. By contrast, the model fit gives
evidence of a potentially very strong effect. By contrast, the likelihood-ratio test
statistic equals 8.32 withd f = 1 and yieldsP-value = 0.004.

The statisticz= β̂/(SE) is an example of aWald test. This approach uses the
fact that a ML estimator has an asymptotic normal distribution by testingH0: β = 0
with z= β̂/(SE), or else treatingz2 as an approximate chi-squared random variable
with, d f = 1. The corresponding confidence interval has the formβ̂ ± z(SE) for
the appropriate standard normal percentilez, for instance withz = 1.96 for 95%
confidence. A classic result shown by Hauck and Donner (1977)is that as|β | in a
logistic regression model increases (for fixedn), the Fisher information decreases
so quickly thatSE grows faster thanβ . The result is poor performance of Wald
methods when effects are large.

The poor performance of Wald methods shows up even in very simple contexts,
such as a single binomial response variable without any explanatory variables. For
a binomial random variabley based onn independent trials with parameterπ , in
the context of logistic regression the model is logit(π) = β . To testH0: β = 0 (i.e.,
π = 0.50), β̂ = logit(π̂) with π̂ = y/n has asymptotic variance[nπ(1−π)]−1. The
Wald chi-squared statistic is

(β̂/SE)2 = [logit(π̂)]2[nπ̂(1− π̂)].

Now, supposen = 25. For testingH0: π = 0.50,π̂ = 24
25 is stronger evidence against

H0 thanπ̂ = 23
25. Yet the Wald statistic equals 9.7 whenπ̂ = 24/25 and equals 11.0

whenπ̂ = 23/25. By comparison, the likelihood-ratio statistic takes values 26.3 and
20.7.

With large or infinite effects, likelihood-ratio (LR) testsand test-based confi-
dence intervals remain valid and behave well because of the concavity of the log-
likelihood function. For example, when̂β = −∞, a confidence interval consists of
a range of plausible values from−∞ to some finite upper bound. With infinite ML
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estimates, one can alternatively smooth the data and produce finite estimates and
finite endpoints of intervals using a Bayesian approach. Or,one can use a penalized
likelihood approach with the aim of reducing bias (Firth, 1993), which corresponds
to using a Bayesian posterior mode with Jeffreys prior to generate a point estimate.

The poor performance of the Wald test implies poor performance also of corre-
sponding confidence intervals. This has been shown for a variety of measures for
categorical data, such as proportions, differences of proportions, odds ratio, and rel-
ative risk, particularly when probabilities are near 0 or 1.For a summary of these
and various other cases involving categorical data, see Agresti (2011). For example,
again for a single binomial parameterπ , the 95% Wald confidence interval forπ is

π̂ ±1.96
√

π̂(1− π̂)/n.

In terms of achieving close to the nominal coverage probability, this interval per-
forms much worse than the interval based on inverting a likelihood-ratio test or
inverting the score test ofH0: π = π0, which has test statistic

z=
π̂ −π0√

π0(1−π0)/n
.

It also behaves much more poorly than a simple approximationto the score con-
fidence interval that (in the 95% case) adds 2 “successes” and2 “failures” before
forming the Wald confidence interval (Agresti and Coull 1998).

An important question that could be addressed in future research is whether the
poor Wald performance for binary data holds also for variousother generalized lin-
ear models for other types of data, with nonlinear link functions. For some theoreti-
cal work in this direction, see Brown, Cai, and DasGupta (2003).

5 Behavior of Residuals for GLM Fits

For an×1 vectoryyy of response observations withµµµ = E(yyy), VVV = var(yyy), consider
an arbitrary generalized linear model

ηηη = g(µµµ) = XXXβββ

with link function g and model matrixXXX. Denote the maximum likelihood fitted
values byµ̂µµ .

The ordinary linear model uses identity linkµµµ = Xβββ , and assumesVVV = σ2III . For
that model, standard results exploit the orthogonal decomposition

yyy = µ̂µµ +(yyy− µ̂µµ) (i.e., data = fit + residual).

With generalized linear models,̂µµµ and (yyy− µ̂µµ) are not orthogonal when we de-
part from identity link and constant variance. Then, Pythagoras’s Theorem does
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not apply, because maximizing the likelihood does not correspond to minimizing
‖yyy− µ̂µµ‖. With a nonlinear link function, although the space of linear predictor val-
uesηηη that satisfy a particular model is a linear vector space, thecorresponding set
of µµµ = g−1(ηηη) values is not.

Despite the lack of orthogonality, conventional wisdom seems to be that asn
increases,(yyy− µ̂µµ) is asymptotically uncorrelated witĥµµµ . If this truly holds, then
one can obtain an asymptotic covariance matrix for the residuals, because then

VVV = var(yyy) ≈ var(µ̂µµ)+var(yyy− µ̂µµ).

It then follows from standard results using the delta method(e.g., see Agresti 2015,
p. 136) that

var(yyy− µ̂µµ) ≈VVV1/2[III −HHH]VVV1/2,

whereHHH is a generalized hat matrix

HHH = WWW1/2XXX(XXXTWWWXXX)−1XXXTWWW1/2

incorporating a diagonal weight matrix

WWW = diag{(∂ µi/∂ηi)
2/var(yi)}.

But why, and under what conditions, is(yyy− µ̂µµ) asymptotically uncorrelated with
µ̂µµ? And for small-to-moderaten, is corr(yyy− µ̂µµ, µ̂µµ) close enough to 0 that we can
safely ignore it? When I was recently writing a book on generalized linear models
(Agresti 2015), I was surprised not to find literature about this. It seems that we
should consider two types of asymptotics: Traditional asymptotics withn→ ∞, and
the alternative withnfixed and asymptotics applying to individual components, such
as binomial indices and Poisson expected counts in a contingency table. For the
alternative (calledsmall-dispersion asymptoticsby Jørgensen 1987), with individual
yi asymptotically normal,(yyy− µµµ) and(µ̂µµ − µµµ) jointly have an asymptotic normal
distribution, as does their difference.

When I asked several statisticians if they knew of the existence of a general re-
sult about residuals and fitted values being asymptoticallyuncorrelated, G. Lovi-
son gave me a heuristic solution. In Lovison (2014), he discussed this point in an
article that dealt with analogs of linear model results for generalized linear mod-
els. He argued that if(yyy− µ̂µµ) and µ̂µµ were not asymptotically uncorrelated, one
could construct an asymptotically unbiased and more efficient estimator ofµµµ us-
ing µ̂µµ∗ = [µ̂µµ + LLL(yyy− µ̂µµ)] for a matrixLLL. But this would then contradict the ML
estimatorµ̂µµ being asymptotically efficient. This argument is sort of an asymptotic
version for ML estimators of one in the Gauss–Markov Theoremthat unbiased esti-
mators other than least squares estimator have difference from that estimator that is
uncorrelated with it. The Lovison argument is heuristic, not distinguishing between
the two possible types of asymptotics, and there still seemsto be scope for a formal
proof of the general result.
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Interestingly, in his article, Lovison shows that a weighted version of adjusted
responses that has approximately constant variance has orthogonality of fitted values
and residuals. On the original scale, such a residual is the “Pearson residual”ei =
(yi − µ̂i)/

√
v(µ̂i) for variance functionv evaluated at the model fit. For contingency

tables, the Pearson residual is popular, because it resultsfrom the decomposition of
the Pearson chi-squared statistic. For example, with Poisson counts{yi}, the Pearson
statistic satisfies

X2 = ∑
i

(yi − µ̂i)
2

µ̂i
= ∑

i
e2

i with ei =
yi − µ̂i√

v(µ̂i)
=

yi − µ̂i√
µ̂i

.

As an editorial comment, however, I believe it is strongly preferable to usestan-
dardized residualsrather than Pearson residuals. The standardized residual is

r i =
yi − µ̂i

std. error(yi − µ̂i)
=

yi − µ̂i√
v(µ̂i)(1− ĥii)

=
ei√

1− ĥii

for “leverage” ĥii from the estimated hat matrix̂HHH. For small-dispersion asymp-
totics,r i is asymptotically standard normal when the model holds. This is not true
of the Pearson residualei , because the denominator ignores the fact thatµ̂i is ran-
dom. The standardized residual appropriately recognizes redundancies in data. For
example, for the independence model assuming Poisson or multinomial sampling
for a 2×2 table of counts{yi j }, the fitted values are

{µ̂i j = npi+p+ j} for pi+ = (∑
j

yi j )/n, p+ j = (∑
i

yi j )/n,

and so these two forms of residual then have expressions

ei j =
yi j − µ̂i j√

µ̂i j
, r i j =

yi j − µ̂i j√
µ̂i j (1− pi+)(1− p+ j)

.

For 2×2 tables,d f = 1, reflecting that all four|yi j − µ̂i j | are identical, so it seems
sensible to have a single value for lack of fit. Yet, all four Pearson residuals can take
different values. By contrast,r11 = −r12 = −r21 = r22 and eachr2

i j = X2.

6 Improved Marginal Modeling of Multinomial Data

The final topic we consider deals with analyzing correlated observations using
marginal models. Suppose that each subject has a cluster of correlated observa-
tionsyyyi = (yi1,yi2, . . . ,yiT )T , such as in a longitudinal study or an experiment with
repeated measures. (The dimensionT could vary by cluster, but for simplicity
our notation uses a common value.) For eachyit marginally, we assume a model
g(µit ) = xxxT

it βββ .
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For discrete data, ML for such a model is awkward because of the lack of a
simple multivariate distribution that is characterized bypairwise correlations. For
E(yyyi) = µµµ i and var(yyyi) = VVV i , it is common in practice to use estimates that are
solutions ofgeneralized estimating equations(GEE),

n

∑
i=1

DDDT
i VVV−1

i (yyyi − µµµ i) = 000.

with DDDi = ∂ µµµ i/∂βββ . The GEE provide a multivariate generalization of quasi-likelihood
methods, generalizing likelihood equations for univariate response without specify-
ing a full multivariate distribution. Such an approach is useful when one’s primary
interest is modeling the marginal distribution of eachyit in terms of explanatory
variabless, rather than modeling dependence among (yi1,yi2, . . . ,yiT ).

In the estimating equations, inVVV i GEE methods assume a “working” correla-
tion structure (e.g., exchangeable, autoregressive) foryyyi . The resulting estimate of
βββ is consistent even if the correlation structure is misspecified, when the marginal
model is correct. However, standard errors are not appropriate. The method uses
empirical robust estimates of the standard errors that are valid even when the corre-
lation structure is misspecified, based on a “sandwich” covariance matrix. The GEE
method was originally specified by Liang and Zeger (1986) forunivariateyit (e.g.,
binomial, Poisson), but extensions exist for multinomial models withc> 2 response
categories. This has mainly been for ordinal responses, as in Lipsitz et al. (1994).

In the multinomial context, letyi jt = 1 if subjecti makes responsej for obser-
vation t. Then, for each pair (s,t) of times, one chooses a working corr(yi js,yikt ),
such as exchangeable (=ρ jk for all s,t). However, Touloumis et al. (2013) showed
that certain correlation patterns do not correspond to a legitimate joint multinomial
distribution, especially with largec. They argued that it is more sensible to model
the covariance based on structure for local odds ratios, both for ordinal and nominal
responses. In the binary case, this was suggested by Lipsitzet al. 1991. Structure
specified in terms of local odds ratios using adjacent rows and adjacent columns is
compatible with all possible multinomial joint distributions and their margins, and
it can be used both with ordinal and nominal response variables.

Specifically, for anys< t, one supposes that the marginalP(yias = 1,yibt = 1)
has expected frequencies

logµ (st)
ab = λ (st) + λ (s)

a + λ (t)
b + β (st)uaub,

for some set of scores{u j}. This is a special case of thelinear-by-linear association
loglinear model, in which row and column scores are identical. For this model, the
local log odds ratios satisfy

log

[ µ (st)
ab µ (st)

a+1,b+1

µ (st)
a,b+1µ (st)

a+1,b

]
= β (st)(ua+1−ua)(ub+1−ub).
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For an ordinal response variable, one takes{ua} to be fixed, monotone scores. For
example, scores{ua = a} imply a uniform local log odds ratio that is merelyβ (st)

(the so-calleduniform association model). Exchangeable structure for theT re-
sponses then uses the sameβ (st) for eachs, t. For a nominal response variable,
one treats{ua} as parameters. This pairwise association structure is thena special
case of Goodman’s (1979)RC modeland relates to Anderson’s (1984)stereotype
model.

With this multinomial GEE approach, Touloumis et al. noted strong efficiency
gains over an independence working structure for studies with strong correlation
and time-varying covariates. Touloumis has implemented ordinal and nominal local
odds ratio structures with his recently developedmultgeeR package. See

http://cran.r-project.org/web/packages/multgee/mult gee.pdf .

This package seems to have convergence problems and improper results much less
often than existing R multinomial GEE routines. Also, otherexisting GEE multino-
mial packages in R do not handle nominal responses.
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