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SUMMARY

This article summarizes recent advances in the modelling of ordered categorical (ordinal) response variables.
We begin by reviewing some models for ordinal data introduced in the literature in the past 25 years. We
then survey recent extensions of these models and related methodology for special types of applications, such
as for repeated measurement and other forms of clustering. We also survey other aspects of ordinal
modelling, such as small-sample analyses, power and sample size considerations, and availability of
software. Throughout, we suggest problem areas for future research and we highlight challenges for
statisticians who deal with ordinal data. Copyright © 1999 John Wiley & Sons, Ltd.

1. INTRODUCTION

This article surveys recent advances in the modelling of ordered categorical (ordinal) response
variables. Of the ordinal models introduced in the past 25 years, logit models for cumulative
probabilities have been the most popular for applications in medical statistics. Other models that
have received attention in the statistics literature include other forms of logit models for
multinomial responses and log-linear models. We survey recent extensions of these models. The
area of most intense attention has been the modelling of repeated measurement data.

We review recent literature on models for repeated measurement as well as a variety of other
topics, such as exact methods for small samples, power and sample size considerations, and the
availability of software. With the continuing development of more complex models, an increas-
ingly important but difficult task is communicating to non-statisticians (and to applied statisti-
cians who are not specialists in categorical data analysis) the interpretation of the models and
their parameters.

2. MODELS FOR ORDERED CATEGORICAL RESPONSES

Logistic regression models occupy a central place in medical statistics. Not surprisingly, the most
popular models for ordinal responses are multi-category generalizations of logistic regression.
Here we provide only a brief summary of models described in greater detail in other places.'™
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2192 A. AGRESTI

2.1. Logit Models for Ordinal Responses

Currently, the most popular model for ordinal responses uses logits of cumulative probabilit-
ies,> ¢ often called cumulative logits. For a c-category response variable Y and a set of predictors
x with corresponding effect parameters f5, the model has form

logit[P(Y <j)]=o;— Bx, j=1,....,c— 1. (1)

(The minus sign in the predictor term makes the sign of each component of g have the usual
interpretation in terms of whether the effect is positive or negative.) This model applies simulta-
neously to all ¢ — 1 cumulative probabilities, and it assumes an identical effect of the predictors
for each cumulative probability. It is often referred to as a proportional odds model.”

This model and related models with alternative link functions such as the probit’”® and
complementary log-log” have several appealing properties. For instance, it is unnecessary to
assign scores to the response categories, and if the model holds for a particular set of response
categories, it holds with the same effects when the response scale is collapsed in any way.” One
can motivate the model with identical effect f§ for each j using a regression model for an assumed
underlying continuous response.!® Suppose a continuous response Y* has mean linearly related
to x, and with logistic conditional distribution with constant variance. Then for the categorical
variable Y obtained by chopping Y* into categories, the proportional odds model holds for
predictor x, with effects proportional to those in the continuous model; similarly, the probit link
applies when the conditional distribution is normal.

The usual sorts of inferences, based on likelihood-ratio, score and Wald statistics, apply to
maximum likelihood (ML) estimators of the model parameters. For binary logistic regression, the
Wald test (the square of the ratio of the ML estimator to its standard error) can exhibit
anomolous behaviour,'! losing power relative to the likelihood-ratio test when the effect is large.
It would be of interest to analyse whether similar results hold for model (1). Software exists for
fitting this model, such as PROC LOGISTIC in SAS?? for the logit and other links, but there are
still some surprising gaps (for example, no procedure in SPSS) that may have limited its
application is some areas.

Other ordinal logit models utilize single-category probabilities rather than cumulative prob-
abilities. Most important is the adjacent-categories logit model,>'* which uses logits
log[P(Y =j)/P(Y =j+ 1)],j=1,...,c — 1. The cumulative logit and adjacent-categories logit
model both imply stochastic orderings of the response distributions for different predictor values.
Effects in adjacent-category logit models refer to the effect of a one-unit increase of a predictor on
the log odds of response in the lower instead of the higher of any two adjacent categories, whereas
the effect in (1) refers to the entire response scale.

With categorical predictors, one can display the data as counts in a contingency table. When
the table is not overly sparse, one can test the goodness-of-fit of these models with Pearson or
likelihood-ratio statistics. These two models usually fit well in similar situations and provide
similar substantive results. When they both fit well, one’s choice of model may partly depend on
whether one prefers parameter interpretation to refer to particular response categories (in which
case the adjacent-categories logit model is natural) or instead to groupings of categories or an
underlying continuous variable. When either model with the common effect f for each j fits
poorly, possible strategies include: (i) trying a link function, such as the log-log, for which the
response curve is non-symmetric; (ii) adding additional terms, such as interactions, to the linear
predictor; (iii) generalizing the model by adding dispersion parameters’'# or permitting separate
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MODELLING ORDERED CATEGORICAL DATA 2193

effects B; for each logit.'> The models describe location effects, and many applications also
have dispersion effects. Although the proportional odds model has been generalized to
include dispersion parameters,’ this generalization has not yet been applied much. In some cases,
such as when an ordinal response is measured at several dose levels using litters of mice, lack
of fit may reflect overdispersion. This topic has not received much attention for multinomial
responses, although recently developed random effects models would be one approach for dealing
with it.

When there is lack of fit, another strategy is to try an alternative logit model, such as
the continuation-ratio logit model, which uses logits {log[P(Y;=j)/P(Y;>j+ 1)]} or
{log[P(Y; =j + 1)/P(Y; <)]}. When used with separate effects { §;}, the multinomial likelihood
factors into a product of the binomial likelihoods for the separate logits, which makes such
analyses simple with standard software.'® This model form is also useful when a sequential
mechanism determines the response outcome.!”18

Another common approach to analyse ordinal response variables assigns scores to categories
and uses ordinary regression or ANOVA methods.’® ?° This approach has the advantage of
simplicity of interpretation, particularly when it is sufficient to summarize effects in terms of
location rather than separate cell probabilities. This is often the case when c is large. One should
keep in mind, though, limitations due to a non-normal, bounded response and a tendency for the
variance to depend on the mean; for instance, less variability tends to occur when the mean is near
the high end or low end of the scale. Preferably, one fits such models assuming a multinomial
rather than normal distribution for the response.!®2!

2.2. Models for association with ordinal responses

Logit models for ordinal responses are like ordinary regression models in the sense that they
distinguish between response and explanatory variables. Association models, on the other hand,
are designed to describe association between variables, and they treat those variables symmetric-
ally.>*2* For cell counts {n;;} with expected values {y;;} in a r x ¢ contingency table, the models
have form??

M
log,uij = ;L + AIEX + ;LJ), + Z ﬁkuikvjk (2)
k=1

where M < min(r — 1, ¢ — 1). The saturated model results from M = min(r — 1, ¢ — 1). The most
useful models are those with M = 1; the linear-by-linear association model?>* treats the row scores
{u;;} and the column scores {vj;} as fixed monotone constants. The row effects model fixes the
column scores but treats row scores as parameters, and is also valid when the row variable is
nominal. The column effects model fixes the row scores but treats column scores as parameters.
The row and column effects (RC) model treats both sets of parameters, in which case the model is
not log-linear and ML estimation is more difficult.?>-2°

The goodness-of-fit of association models can be checked with ordinary chi-squared statistics.
The models with M = 1 fit well when there is an underlying bivariate normal distribution.?” The
model with equally-spaced scores for Y relates to logit models for adjacent-category logits,'* and
the models generalize to include covariates.?8:2° Association models naturally describe associ-
ation in terms of odds ratios for individual cells. For example, the linear-by-linear association
model with equally-spaced scores implies a uniform association in terms of ‘local’ odds ratios for
sub-tables constructed using adjacent rows and adjacent columns.?? Alternative association

Copyright © 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2191-2207 (1999)

UONIPUOD PLB SWLB L 241 385 *[202/2T/T0] U0 ARiqIT2UIIUO AB1IM BPLOIS JO AISBAIIN AQ W-Z:0D'0'E<6VZINIS-QIV:T6TZ>BT/LT:8T(08/STE0666T)8520-260T(IDIS)/Z00T OT/10P/w00" A3 W ARR1q1ou U0/ SAIY W01 popeojumoq ‘8T-LT ‘6661 ‘85202601

fomARIqIRL

85UB0 17 SUOWILIOD BAIERID 3|qedl|dde auy Aq peusenob ke sopiLe O 8N Jo SajNnJ Joj Aiq1T auljuO AS|IAA UO (SuonIpuco-pt



2194 A. AGRESTI

models consider groupings of cells.*?*! A substantial literature has evolved on applications of
these various types of models and on extensions of them.32~ 41

A related literature has developed for correspondence analysis models and equivalent
canonical correlation models. They have similar structure but use an association term of the form
in (2) to model the difference between y;; and its independence value rather than the difference
between logy;; and its independence value. When the association is weak, an approximate
relation holds between parameter estimates in association models and canonical correlation
models,?? but otherwise the models refer to different types of ordinal association.*> Because these
models and association models focus primarily on association, they are probably of less use than
ordinal logit models in biomedical applications, which usually distinguish between response and
explanatory variables.

42-44

3. ADVANCES IN MODELLING REPEATED ORDINAL MEASUREMENT DATA

We next review research published within the past ten years on extending these ordinal models.
The most active area has been modelling clustered data, such as occur in longitudinal studies and
other forms of repeated measurement. Two major types of model for categorical responses differ
in terms of whether they have subject-specific or population-averaged effects. The former refer to
conditional distributions at the subject level, whereas the latter refer to marginal distributions,
averaged over subjects in the population. The choice of model depends on whether one prefers
interpretations to apply at the subject or the population level, the latter being more relevant in
epidemiological studies that focus on overall levels of occurrence in a population. Approximate
relationships exist between population-averaged and subject-specific parameters under the cumu-
lative logit link,*¢ but any particular marginal model need not have any simple and meaningful
conditional model that implies it.

Regardless of the choice of model, it is awkward to use ML because of the lack of a natural
multivariate family of distributions of categorical responses. For ordinal data, it is often sensible
to assume an underlying multivariate normal distribution, which implies a cumulative probit
model.*” A complication for marginal models is that they apply to the marginal distributions of
the multivariate response rather than the joint distribution to which the likelihood refers.
A weighted least squares approach is simpler to use but limited to categorical predictors with
non-sparse data.*8:4°

Most subject-specific models represent subject effects by a random effects term in the model
and then assume that repeated responses given that effect are independent. One must integrate
out the random effect to obtain the likelihood function. Except in rare cases, this integral does not
have closed form and it is necessary to use some approximation, such as numerical integration or
some variation of Monte Carlo and EM algorithms.

3.1. Generalized Estimating Equation (GEE) methodology

Rather than attempt to specify fully the joint distribution, one can apply methodology based
on generalized estimating equations (GEE). One then specifies models only for marginal
distributions and uses a working guess for the correlation structure.’® This multivariate
generalization of quasi-likelihood poses a model for the mean and a variance function. Estimates
of model parameters are consistent even if the correlation structure is misspecified. The GEE
approach is appealing for categorical data because of not requiring a multivariate distribution,
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MODELLING ORDERED CATEGORICAL DATA 2195

but it has limitations resulting from the lack of a likelihood®' and its subsequent reliance on
Wald methods.

The GEE methodology, originally specified for univariate distributions such as the binomial
and Poisson, extends to cumulative logit models®*>~>7 and cumulative probit models®® for
repeated ordinal responses. An SAS macro is available for the Lipsitz et al. approach.®? For it, let
Y, = 1 if subject i makes response j for tth response. Then for each pair of categories (j, k) one
selects a working correlation matrix for the pairs of responses (s, t); for instance, one might choose
the exchangeable structure, corr(Yjjs, Yi) = pj for all s and t. Related literature includes
applying GEE to the repeated ordinal case with independence estimating equations,>>>% un-
structured correlations,>® and using a model for global odds ratios.>*37 More general models
allow for dispersion parameters that also depend on covariates.”®

When marginal models are adopted, the association structure is usually not the primary focus
and is regarded as a nuisance. In such cases with ordinal responses, it seems reasonable to use
a simple structure for the associations, such as a common local or global odds ratio, rather than
to extend much effort modelling it. This has the potential for slight efficiency gain over the
independence equations and the more general structures that can have large numbers of
parameters to characterize associations, as well as less chance of numerical singularities com-
pared to the latter case. An earlier method related in spirit to GEE methods forms a weighted
combination of estimates from separate models fitted to margins of a repeated ordinal response,
allowing missing observations and time-dependent covariates.>® This approach does not allow
for simpler working correlation structures, however. When the association structure is itself of
interest, a GEE2 approach is available for modelling associations using global odds ratios.®®

3.2. Maximum likelihood fitting of marginal models

Multivariate logistic models have been defined that have a one-to-one correspondence between
joint cell probabilities and parameters of marginal models as well as higher-order parameters of
the joint distribution.®’”®3 One can then use ML to estimate the model parameters, but the
correspondence is awkward to specify for more than a few dimensions. Alternatively, one can
treat a marginal model as a set of constraint equations and use methods of maximizing Poisson
and multinomial likelihoods subject to constraints.®4:3 In these approaches, it is possible also to
model simultaneously the joint distribution or higher-order marginal distributions. For instance,
one might use a cumulative logit model for the marginal distributions and a model assuming
a common global odds ratio®!:¢2:%% or a common local odds ratio®? for the pairwise associations.

Recent computational advances have made ML feasible for relatively large joint distributions,
with covariates, both for constrained ML®%®7 and for maximization with respect to joint
probabilities expressed in terms of the marginal model parameters and an association model.®®
The latter approach is available in software (MAREG) that can perform either ML or GEE fitting
of marginal models for ordinal responses.®®

3.3. Random effects and mixed models

Random effects in models can represent a variety of situations, including subject heterogeneity,
unobserved covariates, and other forms of overdispersion. For binary repeated measurement
data, the basic model has a logit link with a linear predictor that contains a random effect having
a normal distribution with unknown variance. The model form extends to ordinal logits. For
instance, the jth cumulative or adjacent-categories logit for subject (or cluster) s and response ¢ of
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2196 A. AGRESTI

the multivariate response might have form
ordinal logit; = 4; + o, + p'x, (3)

where x, is a vector of predictors for that response and {,} are i.i.d. from a normal distribution.

The random effects literature for ordinal data so far considers primarily cumulative logit and
probit models. Parameter estimation utilizes best linear unbiased prediction of parameters of an
underlying continuous model®® or else an approximation for the likelihood using numerical
integration of the random effect’®~73 or the Laplace approximation for such integrals.”* A FOR-
TRAN program (MIXOR) is available.”! The log-likelihood has closed form”>:>¢ for a com-
plementary log-log link with the log of a gamma or inverse Gaussian distribution at the random
effects distribution.

Ordinal modelling with random effects should be an active area of research in coming years.
Further development for a variety of applications would be useful, for instance to model
overdispersion and to allow heterogeneity in association between two variables across strata of a
third. A major contribution would be the development of user-friendly software that could use
a variety of mixture distributions for the random effect, a variety of link functions, and potentially
a multivariate structure for multiple, correlated random effects.

3.4. Comparing marginal distributions

In repeated measurement studies, effects of interest may be either between-subject or within-
subject. For categorical responses, methods for the within-subject comparison of marginal
distributions have a long history. A common method is based on comparing log-linear models of
symmetry and quasi-symmetry.! One can also make such comparisons in the context either of
marginal models or random effects models. For ordinal responses, for instance, one could make
marginal comparisons based on an ordinal logit model such as (3) in which explanatory variables
are marginal indicators and their parameters describe these within-subject effects.

For model (3), alternatively one can use a non-parametric approach that makes no assumption
about the form of the distribution of the random effect, or one can treat the subject effects as fixed
and use conditional maximum likelihood.””~7° The latter approach generalizes the Rasch item
response model. Either approach with an adjacent-categories logit model yields ML estimates
that are equivalent to ML estimates for a corresponding quasi-symmetric log-linear model
having fixed scores for the ordered response categories.””*”® Recent applications of generalized
Rasch models and corresponding log-linear models include cross-over studies’”*8° and random-
ized clinical trials with matched-pairs responses. Simple special cases occur for the matched-pairs
case, with expected cell counts {x;; = E(n;;)} in a square table for outcome i at the first response
and j at the second. The model with a common shift § between margin 2 and margin 1 for each
adjacent-category logit, for each subject, has a non-parametric and conditional ML estimate that
is the same as the ordinary ML estimate for logit model””-78

log(pij/mji) = B(j — 1).

For the corresponding model with cumulative logits (that is, model (3) with indicator x; = 0 and
X, = 1), simple estimates also exist®!-8? of the effect comparing the margins; one such estimate

has form?®!
3 = log [{Z (j— l)nu}/{z (i _j)nij}:|'
i<j i>j
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MODELLING ORDERED CATEGORICAL DATA 2197

For large multi-dimensional contingency tables, ML can be computationally difficult for
marginal comparisons. Recent solutions are motivated by GEE methods®® or by a randomiz-
ation approach.’*

For longitudinal data, Markov chains provide an alternative structure that, unlike models just
discussed, takes into account the time ordering. However, this approach seems to have received
little attention so far.8>-86

3.5. Modelling agreement

When the repeated measurement takes the form of ratings by several observers, agreement
between pairs of raters or between each rater and a gold standard is usually the primary focus.
Traditionally, it has been popular to measure agreement on an ordinal scale using weighted
kappa.®” Recent work has focused on modelling interrater agreement and handling more than
two raters, for instance using a latent trait models,®®-8° quasi-symmetric and association mod-
els,”°7°2 log-linear models for the two-way marginal distributions,’® random effects,*! and the
area under a receiver operating characteristic (ROC) curve.’® A cumulative logit model with
random effects both for subjects rated and for the observers may be promising for some
applications. A recent paper®* for binary responses uses a conditioning argument for a two-stage
agreement analysis in which the first stage focuses on subject-specific agreement and the second
stage on marginal agreement; it is of interest to extend this interesting analysis to ordinal
responses.

4. OTHER ADVANCES IN MODELLING ORDINAL RESPONSES

Many other topics have received attention in the research literature on ordinal data. These
include the following.

4.1. Small-sample inference

Significance tests that take into account the ordering of categories have the potential for
substantial power gain over tests that ignore that ordering. Large-sample inference, such as
likelihood-ratio tests and confidence intervals for parameters in ordinal models, is well estab-
lished. Small-sample methods are still under development.

For testing independence in two-way contingency tables, one can construct small-sample exact
tests using the generalized hypergeometric distribution that results from conditioning on the row
and column totals. Exact tests are available for several statistics, including correlation-type statistics
with fixed or mid-rank scores®>-?¢ and related tests motivated by decision-theoretic consider-
ations.?”-?® The exact conditional approach applies to exponential families with the canonical
link. This includes log-linear models for Poisson counts and adjacent-category logit models for
multinomial responses, but not cumulative logit models. For two-way tables, the correlation is
the sufficient statistic for the association parameter in the linear-by-linear association model, and
exact conditional inference (given the row and column totals) is based on that statistic.”’

For stratified data with an ordinal response, only the case of a binary predictor (for example,
two groups) is currently addressed in software,”® but in principle the exact conditional methodo-
logy extends directly to several groups. A FORTRAN program approximates exact score tests of
conditional independence for several ordinal log-linear models®® and provides small-sample
analyses for established large-sample tests such as generalized Mantel-Haenszel tests.' %1% For
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2198 A. AGRESTI

large tables, exact methods may not be computationally feasible but one can use Monte Carlo to
simulate the exact results®® or use higher-order asymptotic methods such as the saddlepoint to
approximate them very well.192-103

Open problems for future research include handling models that are more complex than
conditional independence and may have non-canonical links for which the conditional approach
does not apply. Approximate conditioning methods may provide a useful way of dealing with the
conservativeness that sometimes occurs because of extreme discreteness with exact conditional
methods. A random effects approach may become a popular way to eliminate nuisance para-
meters. Markov chain Monte Carlo methods employed for some non-standard log-linear models
and for logistic regression'®* may be useful for some analyses.

4.2. Sample size and power

For comparing two groups (for example, two doses of of a drug) with an ordinal response, sample
size formulae are available for the proportional odds model.1%5 This requires anticipating the
¢ marginal response proportions as well as the size of the effect. Setting p; = 1/c provides a lower
bound for the sample size. The sample size does not depart much from this bound unless a single
dominant response category occurs. With equal marginal probabilities, the ratio of the sample
size N(c) needed for ¢ categories relative to the sample size N(2) needed for two categories is
approximately

N()/N(2) = 0-75/[1 — 1/c*].

Relative to a continuous response (¢ = o0), using ¢ categories provides efficiency (1 — 1/c?). The
loss of information from collapsing to a binary response is substantial, but little gain results from
using more than 4 or 5 categories.

For stratified data, one may need a somewhat increased sample size to preserve the desired
power.'%5 However, the variation among strata in the category probabilities has to be substantial
before sample size is greatly affected. A somewhat different approach to sample size determina-
tion evaluates the exact conditional distribution with a network algorithm by simulation.!®®

4.3. Choice of scores and categories

Some methods for ordinal data, such as association models, require assigning scores to response
categories. Various factors are relevant in choosing scores,'®”~11° but it usually makes more
sense to select scores that seem meaningful for the categories rather than to use automatic
methods such as mid-rank scoring. Mid-rank scores need not provide reasonable scalings, since
scores for neighbouring categories having relatively few observations are necessarily close. For
highly unbalanced data, such as one response category has much greater frequency than the
others, results may depend strongly on the choice of scores.!?®

In medical research, continuous variables are often converted to ordered categorical variables
by grouping values. Grouping introduces an extreme form of measurement error with an
associated loss of power!!! that, as mentioned above, can be severe in the binary case.

4.4. Order-restricted inference

Occasionally, one may want to account for the ordering but make weaker assumptions than
ordinary models about structural forms of relationships. For instance, one might conduct an
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MODELLING ORDERED CATEGORICAL DATA 2199

order-restricted inference that assumes only a stochastic ordering of response distributions.
Likelihood ratio tests exist for comparing two multinomial distributions against the alternative of
a stochastic ordering!*?'''2® or a narrower alternative of non-negative local log-odds ratios.!*
The large-sample distribution of the test statistics is chi-bar squared, the distribution of
a weighted average of chi-squared variates with differing degrees of freedom. Other order-
restricted approaches for stochastic ordering alternatives are motivated by decision-theoretic
considerations'!3-11¢ Recent evidence shows possibly anomalous behaviour by likelihood-ratio
tests for the stochastic ordering alternative.!*®- 117

Results for order-restricted comparisons of several multinomial distributions are incomplete,
although tests have been suggested for local odds ratios, !4 117:118 cymulative odds ratios,!17-11°
and continuation ratios.'° It is possible to simulate exact conditional distributions of likelihood-
ratio tests for various ordered alternatives.!?” Other work has focused on order-restricted
inference in the context of models. For instance, for an association model having a parameter for
each level of an ordinal response or predictor, one can fit the model subject to an ordering
constraint on the parameter estimates.!?!:122 Little attention has yet been paid to order-
restricted inference in repeated measures problems.!??

4.5. Goodness-of-fit

For multivariate categorical response models, it is possible to partition goodness-of-fit statistics.2*
For sparse data or continuous predictors, chi-squared fit statistics are inappropriate. Alternatives
include a generalization!2> of the Hosmer-Lemeshow statistic for binary logistic regression,
which compares observed to fitted counts for a partition of the possible response (for example,
cumulative logit) values. A second way'>-'2° tests the proportional odds assumption for model
(1), and a third way checks the choice of link function. It would be worthwhile to develop residual
analyses and other diagnostics that exploit the ordinal nature of the response, as well as develop
and evaluate indices such as AIC to compare the fits of distinctly different forms of models.

4.6. Latent variable models

Most of the latent class modelling literature treats the observed categorical variables as nominal
scale. For ordinal variables, it normally makes sense to have a continuous or ordinal latent
variable. In the context of joint log-linear modelling of the observed and latent variables, one
could assume linear-by-linear structure between observed and latent variables.!?8:12° Alterna-
tively, various types of logits, such as cumulative logits or cumulative probits,'*° could be applied
to the observed responses, or one could use an ordinal latent variable even if observed variables
are nominal.!31-152 Recent applications of latent variable models include modelling rater agree-
ment,!28 cross-over trials,®® and household fertility.

4.7. Bayesian inference

With recent advances in computational methods, Bayesian approaches with ordinal models are
ripe for development. A recent paper uses Gibbs sampling with a normal or ¢ prior for the
association parameter in a linear-by-linear association model.'*3 Another paper uses models for
cumulative probabilities with prior information about the choice of link.!** The cumulative
probit form of model was applied to modelling rater agreement.®® An alternative, order-
restricted, approach conducts inference solely under the assumption that several multinomial
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distributions are stochastically ordered.'!® A serious challenge in applying Bayesian methods
with multivariate categorical data is the large number of parameters, most of which may be
nuisance parameters.

4.8. Smoothing ordinal data

The Bayesian approach is natural for smoothing data, for instance to eliminate sampling zeros or
to estimate cell probabilities in contingency tables without assuming parametric models.!3>
Alternatively, for ordinal data one can achieve this aim using kernel methods,'*® penalized
likelihood methods,'37 or local likelihood estimation. For continuous and binary data, generaliz-
ed additive models provide a smoothing that reflects a sampling model and a link function yet
does not require a linear structural form. This approach could also be useful for ordinal
responses, for instance by formulating a generalized additive model of proportional odds form.

4.9. Paired preference modelling

The Bradley-Terry model describes outcomes of pairwise competitions of a set of items (for
example, tennis players, types of wines). Each item has a parameter, and the logit of the
probability of preference of item i over j equals the difference between the parameters for those
items. This model extends to ordinal variables,!38~14° for instance using compulative logits. For
future work, a random effects approach seems natural here to reflect dependence among repeated
comparisons by the same subjects.

4.10. Missing data

Missing data are an all too common problem, especially with longitudinal designs.'*' The
relative paucity of literature about handling them with ordinal models includes a score test of
independence in two-way tables with extensions for stratified data,'** a comparison of likeli-
hood-based and GEE methods for repeated responses with missing data,’*>> handling non-
random drop-out,'*3 and Bayesian tobit modelling in studies with longitudinal ordinal data.'**
This is a promising and important area for future research.

4.11. Other areas

Areas not mentioned above on which work has appeared in recent years include diagnostics
summarizing higher order effects,!*> odds ratio estimates for highly sparse situations in which
ML estimates are inconsistent,#® 147
decompositions of chi-squared statistics for ordered alternatives,
tion test comparing two groups of clusters,'>! transitional models (pp. 201-203
overdispersion for ordinal responses,'? interval censoring with an ordinal response,
R-squared measures for ordinal models.!%3

joint modelling of ordinal and continuous responses,
148-150 4 two-sample permuta-
),132 modelling
154 and

5. OTHER CONSIDERATIONS
5.1. Software

New methods are rarely used in practice unless accompanied by user-friendly software. Of
particular benefit would be a program that can handle a variety of strategies for multivariate
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ordinal logit models, including ML fitting of marginal models, GEE methods, and mixed models,
all for a variety of link functions. Even with binary data, such goals currently require a variety of
software, and more basic software needs exists that are not nearly as ambitious. For instance,
some major statistical packages do not yet contain procedures for fitting univariate ordinal logit
models or other models for multinomial responses.

5.2. Model interpretation

The tremendous improvements in computing power in recent years have fuelled the development
of ever more complex statistical methodology. A major challenge for research statisticians is to
explain this methodology to statisticians who are not specialists in their area and to scientists who
could benefit from the methods. Statisticians should not underestimate this challenge. For
instance, to what extent are the advances of the past 25 years for analysing ordinal data used in
practice? One of the most useful advances is regression modelling using cumulative logits. To
what extent has this model been adopted by consulting statisticians and by quantitative method-
ologists in other disciplines? My limited experience suggests it is gradually becoming better
known among statisticians but that it still finds little use in many areas (such as the social
sciences) in which ordinal responses are common.

This challenge is becoming greater because of the complexity of much of the newly developing
methodology. Whereas it may not be crucial for a scientist to understand the technical details of
how to produce the parameter estimates and their standard errors, it is important for the scientist
to know what the estimate means. How can one explain differences among the various potential
approaches and when they may be appropriate? Even basic distinctions such as (population-
averaged/subject-specific) and (marginal/conditional) are confusing to many. In terms of actual
applied impact, this may be a bigger challenge than any mentioned in this paper regarding the
development of new methodology.
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