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ABSTRACT:

Logit models allowing subject heterogeneity, such as Rasch-type models with
random effects, are useful for comparing distributions of repeated categorical
responses. Some simple models of this type imply a quasi-symmetric loglinear
model for the repeated responses, regardless of the distribution of the random
cffect. In many cases, the estimates for this loglinear model are also conditional
maximum likelihood estimates for a fixed effects treatment of the logit model.
This paper surveys connections among these various approaches and presents an
extension for repeated measurement of a multivariate vector of binary responses.
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1 Introduction

This article discusses models for repeated responses of subjects to a set of sim-
ilar categorical items. We illustrate for Table 1, presented by Coleman (1964),
from a study that interviewed a sample of schoolboys twice, several months
apart. The boys were asked about their self-perceived membership in the “lead-
ing crowd” (yes, no) and about whether one must sometimes go against his
principles in order to be part of that leading crowd (agree, disagree). The table
summarizes responses on the two variables (membership in the leading crowd,
attitude toward the leading crowd) at two interview times.

We discuss logit models with random effects for subjects that focus on com-
paring the repeated response distributions, simultaneously for each variable. In
Table 1, for instance, the logit model describes subject-specific changes in mem-
bership and changes in attitude between the two interview times. We survey
a variety of such models, for binary responses, nominal or ordinal responses,
or multivariate binary responses. For each model, effect parameters relate to
main effects in certain loglinear models, called quasi-symmetry models.

Section 2 introduces a multivariate logit model for repeated responses and
derives a loglinear model implied by a nonparametric treatment of random ef-
fects. Section 3 discusses simpler random effects structures and analyzes Table
1. Section 4 presents extensions for multiple-category responses. That section
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(M, A) for (M, A) for Second Interview

First Interview (Yes, Agree) (Yes, Disagree) (No, Agree) (No, Disagree)

Yes  Agree 458 140 110 49
(458) (141.8) (119.5) (49.1)

Yes Disagree 171 182 56 87
(169.2) (182) (58.6) (74.8)

No Agree 184 75 531 281
(174.5) (71.7) (531) (282.3)

No Disagree 85 97 338 554
(85.6) (109.2) (336.7) (554)

TABLE 1. Membership (M) and Attitude (A) toward the “Leading Crowd” for Boys,
with Fitted Values for Multivariate Quasi-Symmetry Model.

also surveys literature about connections among the parametric and nonpara-
metric random effects logit model, conditional maximum likelihood estimates
for a fixed effects version of the logit model, and ordinary estimates for quasi-
symmetric loglinear models.

2 A Multivariate Logit Model with Repeated
Measurement

Suppose n subjects respond to T items having the same binary scale. For
subject s and item ¢, let Y, denote the response category. The Rasch model is

~Om;—ﬂuﬁ¥wa = v_ = s + \Q? S = H, ey N, l = Hq ,NJ

This is the most basic of the item response models commonly used in educa-
tional testing (Rasch 1961) for the probability that student s makes a correct
response on question ¢. The {a,} permit heterogeneity among students. The
two common approaches to estimating {83, } eliminate {as} (i) using conditional
maximum likelihood, conditioning on sufficient statistics for {as} (Rasch 1961),
(ii) using a random effects approach, assuming a particular form of distribution
for {o;} (Bock and Aitkin 1981).

This section presents a multivariate extension of the Rasch model and shows
its connection to loglinear models. It refers to I separate binary variables, each
measured for T items (I = T = 2 in Table 1, with items being the interview
times). For subject s, denote the response under item ¢ for variable ¢ by Yi;,
with observed value 1 or 0. We consider the model

logit[P(Yyir = 1)] = aus + Bir (1)

For each variable 4, this model has the form of the Rasch model, assuming
a lack of subject-by-item interaction. Given the model parameters, we treat
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the observations as independent Bernoulli variates. Identifiability requires a
constraint such as B;; = 0 for each variable. The {81, ..., Bir } for each ¢ describe
the item effects for each variable. The {a;s} parameters reflect the heterogeneity
among subjects that induces the correlations among repeated responses on a
variable.
For subject s, the probability of a particular sequence of responses y =
(11, .-, yr7) for the IT variable-item combinations equals
@Q_.,.ITQ—.» Yit H 1—vyit
ILIL 1 + eistPir 1 + e@ist+Bit =
exp[}; s (3, yir) + 22, 20, Biryae
ILIT (1 + exp(ais + Bit)]

Let as = (s, ..., aps). We treat this vector as a random cffect, permitting
correlated components. In Table 1, for instance, subjects having a relatively
high random effect for the membership variable, thus having a propensity to
be members regardless of the interview time, probably tend to have a relatively
high random effect for the attitude variable.

Suppose that a1, ..., a, are independent with cumulative distribution func-
tion F. Denote the marginal probability of responses y, averaged over the sub-
jects, by 7(y). For model (1), the marginal probability equals

exp[; ais (30, Yit)]
n(y) = oxOAMU Mﬁum:@:v \MF LT + explos + Ba)] dF(ays,

Regardless of F, the integral determining this marginal probability yields a
complex function of {3:}. Note, however, that that function depends on the
data only through the values of (3, y1¢, ...,MUE:V. Thus, the model for the
marginal probability is a special case of one that provides a separate parameter
for each possible value of that vector of sums. This more general marginal model

has form
n(y) = exp(>_ D Buvi) V(Y Y1es s ) Y10,y
1 t t t

where « is an unspecified positive parameter that can assume a different value
for each combination of the arguments.

The sample of n observations on the binary responses y for the I7' variable-
item combinations form a multinomial sample with probabilities {n(y)}. The
form just derived that these probabilities satisfy is a loglinear model for ex-
pected frequencies {u(y)} in a 2!T contingency table that cross classifies the
responses for the IT variable-item combinations. That model has form

log[i(y)] = MUMU?Q: + A( MS: MU@:V. (2)
t

For this model, the interaction involving any set of items for a particular vari-
able has term that is invariant for any permutation of the response outcomes

for those items.

ey O s)
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No matter what form the random effects distribution F' takes, the implied
marginal model has the same main effects structure, and it has an interaction
term that is a special case of the one in (2). Thus, one can consistently estimate
{Bi¢} in a nonparametric manner using the ordinary ML estimates for the
loglinear model. One can fit that model with standard software for generalized
linear models. The usual goodness-of-fit statistics have large-sample chi-squared
distributions with df = 27 — [I(T — 1) + (T + 1)']. For the univariate case,
model (2) is the quasi-symmetry model (Caussinus 1966). It adds an interaction
term to the mutual independence model that is invariant to permutations of
the indices. We refer to (2) as a multivariate quasi-symmetry modcl.

In the matched-pairs case (T' = 2), model (2) has fitted values in the 2x2
marginal table for each variable that are identical to the observed counts. The
estimate of exp(Bn — Bu) then equals the number of cases with (y;1,yia) = (0,
1) divided by the number of cases with (yi1,yi2) = (1, 0). In the univariate
case (I = 1), this is also the conditional ML estimate for the logit model,
and Neuhaus et al. (1994) showed that it is also normally the estimate for a
parametric random effects approach.

For the fixed effects approach with model (1), the conditional likelihood
factors into a product of I terms, one for each variable. It follows that the
conditional ML estimates of {8;;} are identical to those obtained using condi-
tional ML separately with the data for each variable. Using the approach of
Tjur (1982), one can show that the conditional ML estimates are identical to
the ordinary ML estimates of {3} obtained by fitting the loglinear model (2).

3 Rasch-Type Models for “Leading-Crowd” Example

For Table 1, loglinear model (2) fits fairly well. The goodness-of-fit statistics
are G? = 4.92 for the likelihood-ratio statistic (deviance) and X2 = 4.95 for the
Pearson statistic, with df = 5. Table 1 also displays the fitted values. The ML
estimates of the item mmooﬂm are Ba1 — Bas = .176 (ase = .058) for attitude and
S: - EEN = .379 (ase = .075) for membership. For instance, for each subject,
the estimated odds of membership in the leading crowd at the first interview
equal exp(.379) = 1.46 times the estimated odds of membership at the second
interview.

Goodman (1974) and Haber (1985) presented alternative models for these
data. Goodman used a latent class model with four latent classes that cross
classify two associated binary latent variables, one of which affects the mem-
bership responses and one of which affects the attitude responses. Haber (1985)
fitted a model that assumes solely that the marginal odds ratio between atti-
tude and membership is identical for each interview. The sample odds ratios
are 1.53 and 1.71, and Haber’s model yielded fitted odds ratios of 1.62.

The fit of model (2) also suggests that these marginal odds ratios are similar,
as the fitted odds ratios equal 1.63 and 1.61. Using the methodology described
by Lang and Agresti (1994) for simultancous fitting of generalized loglinear
models to joint and marginal distributions of contingency tables, we fitted the
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Model G? X% df
a. Mutual Independence 1421.7 15726 11
b. 4-item Quasi Symmetry 616.6 680.3 8
c. Indep. Random Effects 97.5 96.8 9
d. Multiv. Symmetry 40.3 400 7
e. Multiv. Quasi Symmetry 4.9 50 5

f. (¢) + Common Odds Ratio 5.3 54 6
NOTE: Models result from logit model (1) with (a) de-
generate random effects, (b) perfectly correlated random
effects, (¢) independent random effects, (d) identical item
effects for each variable, (e) unspecified distribution of
random effects, and (f) case (e) with identical odds ratio
between variables at each time.

TABLE 2. Summary of Loglinear Model Fits to Table 1.

simpler version of model (2) that constrains these marginal odds ratios to be
identical. The fit, also shown in Table 1, has G* = 5.31 and X? = 5.41 with df =
6. The fitted common odds ratio equals 1.62, with f41 — 42 = .176 (ase = .058)
and \w,:_ - \wiw = .378 (ase = .075). In summary, this analysis describes Table
1 using three parameters: One parameter compares the attitude responses at
the two interviews, estimated by an odds ratio of exp(.176) = 1.19; a second
parameter compares the membership responses at the two interviews, estimated
by an odds ratio of exp(.378) = 1.46; and a third parameter describes the
association between the attitude and membership responses at each interview,
estimated by an odds ratio of 1.62.

Four special cases of logit, model (1) relate to loglinear models that are
special cases of model (2). First, suppose the random effects distribution is
degenerate, with variance equal to zero for each component. Then, the marginal
model is the special case of (2) without the interaction term, which is the
model of mutual independence among the responses for all the variable-item
combinations. Second, suppose that the components of as = (ays, ..., @15) are
mutually independent. Then, the marginal probability satisfies the loglinear

model
log[u(y)] = M M Biryie + M \(_AM Yit)-
it i t

For this model, responses on variable a for any item ¢, and on a different vari-
able b for any item t, are independent, both marginally and also conditionally
on other responses.

Third, suppose that the components of as = (s, ...,ars) are perfectly
positively correlated. Then, the marginal probability satisfies

log[u(y)] = M M Bityie + \/AMU MU Yit)-
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In this case, the logit model (1) treats all the variable-item combinations sym-
metrically and is identical to the Rasch model applied to the IT separate
responses. The loglinear model is the quasi-symmetry model for the 27 con-
tingency table. Finally, suppose {;} in the logit model (1) are identical. Then,
so are they identical in the loglinear model. Model (2) then exhibits within-
variable symmetry. Each cell having the same value of (3, y1¢, ..., 5., y1:) has
the same probability.

Each of these four simpler models is typically too simplistic to fit well. Table
2 summarizes their fits to Table 1. All of them fit poorly.

4 Survey of Connections Between Univariate
Rasch-Type Models and Loglinear Models

In the univariate case of repeated binary responses on a single variable, Tjur
(1982), Kelderman (1984), Hatzinger (1989) and others have discussed connec-
tions between the Rasch model and loglinear models. Tjur (1982) showed the
equivalence between conditional ML estimates for the Rasch model and ordi-
nary ML estimates for the quasi-symmetry model. He also showed that those
estimates result from a slightly extended version of the likelihood obtained
with the nonparametric random effects approach. Later work showed strong
connections between the actual nonparametric ML estimates and conditional
ML estimates for the Rasch model (de Leeuw and Verhelst 1986, Lindsay et al.
1991).

Logit model (1) generalizes to incorporate a group factor or to handle
multiple-category responses. For simplicity, we concentrate on the multiple-
category case with a single variable for a single group. For r unordered response
categories, let Y;; denote the category outcome for subject s on item ¢. Rasch
(1961) proposed the model

leg[P(Yy = B)/P(¥s =F)] = s + Bigy =1, 0yt — 1,

which maintains additivity of item and subject effects for each category. For
this model, the conditional ML estimates of the item effects are identical to
estimates of main effects in the quasi-symmetry model for expected frequencies
{tas..+} in a 7T contingency table (Conaway 1989),

log(ptas...t] = Ba1 + Boz + .. + B + Aab..t,

where the interaction term is symmetric in its indices.

The complete symmetry model is the special case in which the main effect
terms are identical; that is, the response probability is identical for any per-
mutation of (a,d,...,t). When the quasi-symmetry model holds, complete sym-
metry is equivalent to marginal homogeneity. The standard test of marginal
homogencity is based on comparing the fits of the quasi-symmetry and com-
plete symmetry models (Caussinus 1966).

For the ordinal-response case, one generalization of the Rasch model has
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the adjacent-categories logit representation
log[P(Yet = k + 1)/P(Yst = k)] = s + Bt

This is a special case of the nominal-scale model in which the item m.mmo.a .gzm
the ordinal structure Biy1 ¢ — Bre = B¢ for all k; that is, {8k} are linear in \a
Generalizing Tjur (1982), Agresti (1993) noted that one can oma.m::im {B:} in
a random effects version of this model using the ordinary ML estimates for the
loglinear model

log[ttas...t] = aBy + bfa + ... +tBr + Aab.t »

where ) is permutationally invariant. Moreover, these estimates are m._mo condi-
tional ML estimates for the logit model. The loglinear model is a special case of
the quasi-symmetry model with linear structure for the main effects. :.ﬁmwdm
the main effects as variates, with equally-spaced scores, rather than qualitative
factors. Each main effect term has a single parameter, rather than the r — 1
parameters in the more general model.

The complete symmetry model is the special case P.H ... = Br. One can
test marginal homogeneity using a likelihood-ratio test with df = T -1, based
on comparing its fit to that of complete symmetry. The ML estimates of AQL
have the same order as the sample mean responses (for equally-spaced mnozwmv in
the 7' one-way margins of the 77 table. See Agresti (1993, 1995) and Hatzinger
(1994) for examples of the use of GLIM and Agresti (1996, p. 277) .mOa ﬂrw use
of SAS for fitting such models. When T' = 2, letting 8 = B2 — (1, this loglinear
model is equivalent to the logit model

B(b - a).

One can also estimate 3 using software for logistic regression models, treating
{nas, a < b} as independent binomial variates with sample sizes {nas +.E:L.
An alternative model form for ordinal responses uses cumulative logits,

1l

~Om?.mv\35v

logit[P(Yst < k)] = axs — Bt

This model has the proportional odds property, for which the T' item effects
{8} are identical at each k. McCullagh (1977) discussed a related Bomo_ for
T = 2. Conditional ML is not available for this model, but Hedeker and Q&v.o:m
(1994) presented a random effects approach for a simpler form of the subject
term. .

For T = 2, Agresti and Lang (1993) eliminated the subject parameters by
noting a corresponding model for the r x r marginal table, namely

Ya'>a Mutm@ Ta'b! Lt Muv.mﬂﬁ Ta’b!
MD.Ma 2 b >b Tarb! Muam@ 2 b a Tarbl

for all @ < b. One can estimate the difference in item parameters by Emﬁaidm
the likelihood for the r x r observed table, subject to these constraints for all

log + log = 2(61 - B)
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combinations of a < b. The special case with no item effect (i.e., constraining
the sum of log odds to equal 0 for all a < b) is an alternative characterization
of symmetry.

Agresti and Lang (}993) extended this analysis to T items. The general case
corresponds to a Rasch model for all 7 — 1 binary collapsings of the response,
with the same item effects for cach collapsing. One can estimate item parame-
ters by fitting a quasi-symmetry model simultaneously to all such collapsings,
using the same main effect parameters for cach. For 7' = 2, a simple estimate of
B = B2 — 31 uses the fact that for each collapsing, the conditional ML estimate
is the log of the ratio of off-main-diagonal counts. A nearly efficient estimator
combines these, adding the numerators and adding the denominators before
taking their ratio and their logarithm. In terms of the cell counts {ni;} in the
full  x r table, the resulting estimate is

B =10g{[D (7 = )ni)/1D_ (i - 5)nys]}.

i<y i>j
The estimated asymptotic variance of this estimator equals

MQ.GC. - N.vm::. 4 M&V&Q - g.vw:s.
iU =) [, = j)ni P

See Agresti (1995) for a more detailed discussion of these models, Tutz
(1990) for a continuation-ratio ordinal model, and Ten Have and Becker (1995)
for a wide variety of loglinear models with quasi-symmetric structure. Hatzinger
(1994) provided a more complete overview of the considerable literature about
item response models and their connections with GLMs.

V(B) =

5 Comments and Conclusions

For the general multivariate model (1), it would be interesting to analyze
whether results for a particular parametric formulation of the random effects
vector tend to agree with those for the nonparametric formulation. Assuming
parametric structure for the random effects distribution raises other questions,
of course. If the specification is correct, do the nonparametric estimates suffer a
substantive efficiency loss? If the specification is incorrect, could this introduce
much bias? Previous work (e.g., Heckman and Singer, 1984) in a somewhat
different context has shown that results may depend on the choice, and this is
an advantage of the nonparametric approach (Aitkin 1995).

In particular, under the assumption that logit model (1) holds, loglinear
model (2) is valid and provides consistent estimates regardless of the true dis-
tribution for the random effects. Thus, an informal diagnostic for the parametric
approach is to compare estimates under various distributional assumptions to
the nonparametric-based loglinear estimates; substantial deviations from the
nonparametric estimates indicates a possibly inappropriate choice.
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