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ABSTRACT

Logit models are presented for repeated observations on
an ordinal categorical response variable. The models describe
how the marginal distribution of the response depends on values
of explanatory variables. Primary attention is given to a

" cumulative logit model that generalizes models proposed by
McCullagh (1977, 1980). Also discussed are an adjacent-
categories logit model that is equivalent to a loglinear model for
marginal response probabilities, and a mean response model.
The models are illustrated with an example in which a drug and
placebo are compared with respect to treatment of insomnia
problems. - When the covariates are categorical, a weighted least
squares fit for each type of model can be obtained using PROC
CATMOD. .

1. INTRODUCTION

In many applications a response variable is observed for
each subject under several conditions -- for instance, at several
time points, or before and after receiving some treatment. In
other applications there are matched sets of subjects, with one
subject from each set assigned to each condition. In either case,
the matching results in statistically dependent observations.
Repeated measurement on a categorical response variable occurs
commonly in health-related applications, such as when a
clinician makes a subjective evaluation of patients at weekly
intervals about whether a new drug treatment has been
successful. This paper proposes models for the case of an ordered
categorical response variable, such as evaluation of success
measured on the scale (excellent, good, fair, poor).

When a response is obtained for each subject under only two
conditions, the data can be described by a square contingency
table, the same categories occurring in each dimension. The cell
in row i and column j gives the number of subjects classified in
the ith level for the first condition and the jth level for the
second condition. There is a large body of research literature on
the analysis of square tables and their multidimensional analogs;
for a review of much of it, see Bishop et al. (1975, Chap. 8). In
practice, it is often desirable to incorporate a vector x of
explanatory variables in the model. The literature for this case
is considerably more sparse. The article by Koch et al. (1977) is
a good source both for describing types of repeated measures
data and for suggesting possible models.

Table 1, taken from Francom et al. (1987), is an
example of repeated ordered categorical response data. The table
gives results of a randomized, double-blind clinical trial
comparing an active hypnotic drug with placebo in patients
having insomnia problems. The response variable is patient
response to the question, “How quickly did you fall asleep after
going to bed?”, measured using the ordered categories (<20
minutes, 20-30 minutes, 30-60 minutes, and >60 minutes).
Patients were asked this question before and at the conclusion of
- a two-week treatment period. The two treatments, Active and
Placebo, canbe regarded as levels of a binary explanatory
variable. In Table 1, the subjects receiving the two treatments
are independént samples. In summary, the repeated
measurement over time produces an ordinal response variable
(patient’s response) that is bivariate, measured under conditions
(initial, follow-up). Also, there is a single explanatory variable,
corresponding to the two types of treatment. There is repeated
measurement over condition, but not over treatment. We shall
use models formulated in this article to analyze these data.
More generally, these models can be used to analyze ordinal
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variables measured under several conditions, for several
independent groups (or levels of explanatory variables).

To analyze repeated categorical data, we could formulate a
model for the cell expected frequencies. Such a model would
describe the dependence structure of the entire cross-
classification. An alternative approach is to formulate a model
for the marginal distributions of the response within the various
conditions and levels of the explanatory variables. In Table 1,
there are four such marginal distributions: for each treatment,
there is a patient’s response distribution before treatment and
after treatment.

For descriptive and inferential purposes, the full multivariate
dependence among the repeated responses is often of less interest
than the behavior of the marginal distributions of the response.
Modeling the marginal distribution permits investigation of
questions such as, “For a particular treatment, does the response
improve with time?” or “At a particular time, are there
differences among the response distributions for the various
treatments?” or “Is the difference in response for any two
treatments the same at all times?” For further discussion of this
point, see Koch et al. (1977), Liang and Zeger (1985), and Stram
et al. (1988).

We consider two types of logit models that describe how
marginal distributions of a repeated ordinal categorical response
depend on conditions and covariates. One type uses cumulative
probabilities and the other uses adjacent pairs of response

probabilities. We also briefly discuss a model suggested by Koch )

et al. (1977), based on describing variation in the means of the
marginal distributions, for some fixed choice of response scores.

Section 2 surveys different types of logit transformations
for ordinal response variables. Section 3 gives notation for
modeling marginal distributions of a repeated response, and the
models are presented in Sections 4-6. Section 7 discusses model-
fitting, Section 8 uses the models to analyze the data in Table 1,
and Section 9 shows how to fit the models using PROC
CATMOD. Section 10 briefly discusses an alternative logit
model that is much like an analysis of covariance model,
describing response differences between groups while controlling
for a baseline response. The final section discusses relative
merits of the various models and special problems provided by
repeated categorical measurement data.

2. TYPES OF LOGITS

If = denotes the probability of a particular response, the
logit for that probability is defined to be

logit(x) = log[x/(1-7)],

the log of the odds of making that response. Logits are defined
for binary responses, but can be generalized for r > 2 response
categories, there being r-1 non-redundant logits.

For inétance, suppose the response variable Y is ordinal.
Let

1rj =P(Y =j)i = LsssLs

We shall take the order of categories into account by
constructing logits for cumulative probabilities,

logit[P(Y <) = logl(my+++-+m)/(r , -]

i= 1,...,f-1, called cumulative logits, and for adjacent-response
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‘probabilities,
log| "j/"j+l] = logit[P(Y:jlY =jor j+1)],

j = L...,1-1, called adjacent-categories logits. A third type is the
set of logits

log 1rj/(1r. 1+ +1r,)] loglt[P(Y_J|Y>J)]
or, alternatively, the set
log| . /(7rl+ -+ 1)] loglt[P(Y..Jqu):l

j=2,...,r. These are called continuation-ratio logits.

Depending on the application, one type of logit may lead
to more natural interpretations than the others. Cumulative
logits are useful for extending interpretations to an underlying
continuous distribution for the response variable; see McCullagh
(1980).  For categorical explanatory variables, models for
adjacent-categories logits are equivalent to loglinear models; see
Goodman (1983). Continuation-ratio logits have the appealing
feature that results of fitting models separately for different j are
statistically independent; see Fienberg (1980, pp. 114-116). For
cumulative logits and adjacent-categories logits, it is often
possible to use a simple model in which effects of explanatory
variables are identical for the various cutpoints for forming the
logits.

3. MODELING MARGINAL DISTRIBUTIONS

Denote by d the number of conditions under which each
subject in the sample is observed. Since there are r possible
responses at each condition, the frequencies of the possible
multivariate response cPmﬁles can be summarized in a
contingency table with 1~ cells. Let

wj ‘Yithj =(p -0 dg)
denote the probability that the response for a randomly selected
subject is jo under condition g, 1<_]g<r, g=1,...,d. The case

d=2 corresponds to a square contingency table thh r categories
in each direction.

When there are covariates x, we allow a separate
distribution

{qer1<igsr g=1..4}

at each level of x. When x is categorical, its levels usually
correspond to subpopulations, or treatments, whose distribution
on the response we would like to compare.

Let the + subscript denote summation over that index.
Then {1r+“_+k+_“+(;g), k=1,..,r}, where k is in position g’tilf
the marginal distribution of the response under the g
condition, at level x of the explanatory variables. Denote these

..t}. That is, ¢gk(’~‘) is

marginal probabilities by {¢ k(x), k=1,.
the probability of making response k, for the g th condition at

level x of explanatory variables, so Ek¢ gk(g) = 1. The primary

concern may be to analyze how the marginal distribution
changes across the conditions g=1,...,d, for fixed x, or it may be
to analyze how it depends on x, for fixed g. In either case,
interpretations depend on whether the difference (on some scale)
between the marginal distributions for two covariate values is the
same for all conditions; that is, on whether there is condition x
_covariate interaction.
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4. CUMULATIVE LOGIT MODELS

In the single-response (d=1) case, models based on t}
cumulative logit transformation of the response probabilitic
have been utilized by Williams and Grizzle (1972) an
McCullagh (1980), among others. For such models it i
unnecessary to assign scores to response categories, and mode¢
parameters can be simply interpreted using odds ratios. Model
apply simultaneously to the cumulative logits formed for each ¢
the r-1 possible cutpoints for collapsing the response into twe
categories. At condition g and covariate value x, the cumulative
logits for marginal response probabilities are, for k=1,...,r-1,

B ()6 (0)
g,k+1(’5)+"‘+¢gr(’5)

At a particular setting x, the d marginal distributions of
the contingency table can be represented by a dxr table of {¢_, }
values. In terms of cumulative logits, the saturated model lor
this table has form
d, k=1,

g A o oy ey o

Fek = %gio
The “cutpoint” parameters {a_, } increase in k for fixed g (since
the cumulative probabilities ificrease in k), and the saturated
model permits them to vary by condition g in an unstructured
manner.

A cumulative logit model that incorporates effects of
covariates is
(4.1)

for g=1,...,d, k=1,...,r-1. In this and subsequent formulas, the
vectors (such as 3 and x) are column vectors. This model allows
conditionxcovariate interaction -- the effect By of the covariates
on the response is permitted to depend on the condition g.

As in McCullagh’s (1980) model for a single response, the
covariate effect in (4.1) is assumed to be identical for all
cutpoints k. Under this assumption, it is simple to describe the
covariate effect at each condition, since

Lok (%) = agy + B,

Lgk(gl) - Lgk(’.‘g) = @g(’.‘l - 752)

is identical for all k. The antilog of this measure is simply an
odds ratio - the odds of making response < k (rather than > k) -
when x = x, divided by the odds of making response < k when -
X = or fixed g, model (4.1) induces an ordering of
cumulatlve probabilities among levels of x according to th
values of ﬂ X, the ordering being the same for each k; hence, fo
each condlt.lon, marginal distributions at different covariate
values are stochastically ordered on the response variable.

We can simplify (4.1) by modelmg how fg varies across
conditions. When estimated effects in (4.1) are fairly stable -
across the conditions, the model :

Lgk(’.‘) =ag + B'x (42)
may be adequate. This model assumes an absence of condition
covariate interaction as well as a covariate effect that is
independent of the cutpoint. Hence, L k(xy) - Lgk(’~(2) is the
same for all conditions and for all cutpou%

Condition effects are simpler to interpret when the model -
provides some structure for the marginal inhomogeneity over the
conditions. For instance, consider the special case of (4.2)

Lgk(’..‘) =oy +pg+ f'x @

The cutpoint parameters {ak} are usually nuisance parameter




the condition effects are described by the { g} and the covariate
effects by B. For this model,

Lbk(’f) & Lak(’S) = By, - Ha-

The difference in cumulative logits is the same for all cutpoints;
that is, the marginal distributions for different conditions are
location shifts on a cumulative logit scale. The odds under
condition b of making response below category k are exp(pb- Ha)
times greater than the corresponding odds under condition a, for
all k and for all x.

Also for model (4.3),

Lgk(?.‘]) E Lgk(?.‘g) = @'(2.‘1 % ?.‘2)1

so simple interpretations apply to covariate effects, which are the
same for all conditions and for all cutpoints. More generally,

Ly (1) - Ly (89) = (py, - pa) + B'(x1-%9)

~ for all k, which implies a stochastic ordering of the response
~ marginal distributions at all combinations of condition and
covariate values.

McCullagh (1977) proposed model (4.3) for d=2, s=1
(two conditions, no covariate). In that case, By = B gives the
- much-studied model of marginal homogeneity for a two-way
table. More generally, when all g are equal, model (4.3)
simplifies to marginal homogeneily across d conditions. On the
other hand, if § = 0 in (4.3), there are no covariate effects, and
condition effects are location shifts on a cumulative logit scale.
When all ng are equal and 8 = 0 in (4.3), the response is
independent of condition and of the covariates.

Model (4.3) can be generalized, for instance by replacing
B by Bg, thus permitting conditionxcovariate interaction but
maintaining a simple structure for the marginal inhomogeneity.
Table 2 lists a variety of models that have condition and
covariate effects independent of cutpoint.

Suppose x is fully categorical, and denote by s the

number of settings of x at which observations occur. Then the

there is a separate r™ table for each of the s settings of x. In this
case, Table 3 lists the residual degrees of freedom (df) for testing
goodness of fit of the models in Table 2. These formulas are
based on ds(r-1) marginal cumulative logits [(r-1) logits for each
of the ds marginal distributions], d(r-1) {e k} parameters, and
an identifiability constraint (such as p 4 = 0) placed on the

{#g}

Figure 1 shows the. hierarchical relationships of the
models listed in Table 2. The figure becomes considerably more
complicated when we allow for models in which g is replaced by
B); that is, models that have covariatexcutpoint interaction in
the effect of X on the response. For the models in Table 2, we
can test the assumption of a lack of interaction of this type by
fitting the corresponding model that allows it. For instance,
model (4.3) would be compared to

Lgk(l‘) = ayp + pg + Bix,

and the difference in goodness-of-fit statistics would give a test,
based on df = (r-2)d1m(ﬂ), of- H : fy=- 1+ When this
more complex model gives a better ﬁt we can stlll investigate
marginal homogeneity across the d conditions by testing Hj :
i | in it.

. data consist of cell counts in a sx1“ contingency table; that is, -

5. ADJACENT-CATEGORIES LOGIT MODELS

We can generalize models introduced in the previous
section by using, instead of the logit, an alternative link function
that transforms monotonically the (0,1) cumulative probability
scale onto the real line. Such models include cumulative probit
models, proportional hazards models, and others of the sort
studied by McCullagh (1980). There are also alternative types of
logit transformations that can be used, such as continuation-ratio
logits and adjacent-category logits. In this section we discuss the
latter transformation.

At condition g and covariate value x, the adjacent-
category logits are

Ly (x) = logl 63 (£)/¢g 118 s

k=1,...,;-1. The models formulated in Table 2 for cumulative
logits also make sense for adjacent-category logits. The formulas
for residual df are identical to those given in Table 3, but the
models for adjacent-category logits are not equivalent to those
for cumulative logits when r > 2. The interpretations refer to
identical odds ratios for all pairs of adjacent response categories.

Goodman (1983) discussed the use of adjacent-category
logits in models for a single response. Those models are
equivalent to loglinear models presented in Goodman (1979).
Similarly, adjacent-category logit models can be expressed as
loglinear models for the marginal probabilities {¢ gk()j)}.

For instance, consider the case in which there is a single
covariate, say a nominal variable corresponding to s
subpopulations. Let ¢ ; denote the probability of response k
under condition g, for §ult)population i. A model for adjacent-
category logits that is analogous to model (4.3) for cumulative
logits is

L’gik= ]°g(¢gik/ ¢gi, k+1)
=op tugt+ B

For each pair of adjacent response categories, the odds of making
the lower (rather than higher) response are exp(p - pg) times
greater under condition b than under condltxon a (for each
subpopulation), and they are exp(ﬂb Ba) times greater for
subpopulation b than for subpopulation a (under each condition).
The response marginal distributions for the ds different
condition-subpopulation combinations are stochastically ordered
according to the values of {uug + B;}. This model is equivalent
to the loglinear model .
log(dzg‘k) =p+ )\g + /\S + AR + ,\C -a B - a g

with {a) =k} and o} = A AR 0 where C = condition, R =
response, S = subpopulatxon kI'—Yus loglinear model applies to
dxsxr marginal probabilities of the original sxr™ contingency
table, and, because of the dependence in the samples across
conditions, it cannot be fitted using standard loglinear methods
for three-way tables.

Adjacent-category logits and cumulative logits coincide
when there are only r=2 response categories. For that case, logit
models for marginal distributions of repeated measures data were
discussed by Koch et al. (1977).

6. MEAN RESPONSE MODELS

The models discussed in this section are simpler to
interpret thaa the logit models of the previous two sections, but
are structurally more controversial. Unlike the logit models,
they require assignment of scores {a;,...,ar} to response
categories. This choice is often straightforward for grouped



— Table 1.  Frequency Distribution of Time to Falling Asleep, Table 3.  Residual Degrees of Freedom for Models in Table

by Treatment and Condition. for Categorical Covariates.
Time to Falling Asleep Model Residual df
Initial Follow-Up 1. d(r-1)(s-1) - Zg dim(Bg)
Treatment <20 20-30 30-60_>60 % d(r-1)(s-1) - dim(8)
<20 7 4 1 0
Active 20-30 11 5 2 2 ‘ 3. (r-1)(ds-1) - (d-1) - Tg dim(Bg)
' 30-60 13 23 3 1
>60 9 17 13 8 4. (r-1)(ds-1) - (d-1) - dim(p)
<20 7 4 2 1 5. (r-1)(ds-1) - dim(B)
Placebo 20-30 14 5 1 0 ?
30-60 6 9 18 2 6 d(r-1)(s-1)
>60 4 11 14 22
T (r-1)(ds-1) - (d-1)
Source: Francom et al. (1987)
8. (r-1)(ds-1)

Table 2. Summary of Logit Models and Interpretations. Figure 1.  Nesting of Cumulative Logit Models (Arrow Points
, to More General Model).

Model L, (x) = : . Description of Model
1
L agk'*'g g% condition x covariate ‘ / \
: - interaction :

2. ask+g')_c * no condition x covariate

“ 1

3. op+pugtPgx """ condition x covariate
interaction, location condition

effects for each x. \ /

4. aptpgthx covariate effects, location : 8
g 3 . condition effects

" 5. ak+g'§ -7 covariate effects, no condition
t * effects
6. gk ' condition effects, no covariate
¥ effects
1. o tug ' ‘ location condition effects, no .

covariate effects

8. o ' no condition effects, no
covariate effects
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linuous variables, but there may be several reasonable
ients for ‘subjective rating scales. The mean response
Mer condition g, for covariate x, is

Mg(’.‘) = Ekak¢gk (x)-

e the logit models, mean response models do not
terize the marginal distributions in their entirety, but only
a measure of location.

A general mean response model for repeated ordinal
tegorical data is

L ot A e

] Mg(x) = a + pg + Bgx,

;l,...,d. This model allows conditionxcovariate interaction,
rough a different regression of the response on the explanatory
riables at each condition. The simpler model

(611)

l,...,d, assumes an absence of such interaction. When this
odel fits adequately, variation in the marginal means is simple
describe, with condition effects given by the {ug} and the
fluence of the explanatory variables at each condition given by
‘There are d marginal response means at each of the s settings
1, 50 when the covariates are categorical, the residual degrees
freedom for testing the fit of model (6.1) equals df = ds - [d +
m(p))-
.. As with the cumulative logit model (4.3), further special
seg correspond to lack of condition effects or lack of covariate
ects, . For instance, the special case in which the {pg} are

ual corresponds to marginal homogeneity of the means across
 d conditions, for each x.

Mg(x) = o + pg + B'x,

When the repeated response is ordinal, modeling the
an response was suggested by Koch et al. (1977). For r=2
ponses, this approach assumes a linear influence of X on the
bability of making a particular response. Such a model has
en criticized for being structurally unsound, since it can yield
dicted probabilities outside the [0,1] range. Similarly, for the
response case, mean response models cannot hold over an
bounded range of covariate values. However, when r is
derately large and there is reasonable dispersion of responses
ong the r categories at each setting of x, it is unusual to
tain predicted means below a; or above a;.

The modeling of only a measure of location of the
ponse does not allow simple comparisons of entire response
tributions (such as whether they are stochastically ordered).
0, when r >2, special cases of the model do not correspond
ctly to conditions such as marginal homogeneity or statistical
ependence of response and covariates. On the other hand,
itive features of the mean response model include (1) the
erface with standard regression modeling that occurs as r
reases, so that the response is more nearly continuous, and (2)
 simplicity of description obtained with it - condition effects
| covariate effects being given in terms of differences of means.
nce, it is a useful model when the technical level of one’s
nts necessitates an approach having simple interpretations.

7. MODEL FITTING

A commonly assumed sampling model for repeated
msvérw on a categorical response is multinomial sampling over
1% possible response profiles, with independent samples at
h of the s levels of x. In other words, if ¥ denote the cell
babilities in the full table, then # consists of s independent
s of multinomial probabilities.
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Haber (1985a) gave an iterative Newton-Raphson routine
for obtaining ML estimates for models of the form

Az =Xp or Alog 7 = XpB.

The models discussed in Section 6 are of the first form, so
Haber’s routine can be applied to fit those models. The logit
models of Sections 4 and 5 have the form

A log Bx = X8,

Haber (1985b) showed how to obtain ML fits for this class of
models. Haber’s routines are an application of theory described
by Aitchison and Silvey (1958) for maximizing a likelihood
subject to constraints. These routines are impractical when there
is a large number of cells in the table (such as happens when
there are several conditions, several groups, and a several-point
scale), because of the size of the matrix that must be inverted.

Stram et al. (1988) have proposed a somewhat different
approach to cumulative logit modeling of repeated measures
data, one that more easily permits ML solutions. They proposed
fitting a cumulative logit model separately to each of the sxr
marginal tables obtained for the d different conditions. They
also showed how to construct the joint asymptotic covariance
matrix of the model parameter estimates obtained under the
various conditions. This approach makes it simple to allow for
time-dependent covariates and for missing data. However, since
their approach involves fitting separate models under the various
conditions, it does not give as special cases models for the full
table that assume either marginal homogeneity or a constant
covariate effect fy = S, g=1,...,d. Their approach is related to
recent work by Liang and Zeger (1985), who modeled repeated
measures data using a generalized linear model for each
condition.

When the covariates are fully categorical, the weighted
least squares (WLS) approach suggested by Koch et al. (1977)
for repeated measures data can be applied to all models given in
this paper. That approach requires a nonsingular estimated
covariance matrix for the ds(r-1) sample marginal logits for the
models in Sections 4 and 5 and for the ds sample means for the
models in Section 6. A WLS solution can be difficult to obtain
for tables with small sample sizes or for large, sparse tables,
because of the possibility of ill-defined sample logits (for
instance, because of a zero marginal count) or a singular sample
covariance matrix for the sample response functions used in the
model. However, WLS methods are more likely to be
manageable for the models discussed hefe than for models for the
joint cell probabilities in the full sx1® table. Even if the full
table is quite sparse, the sxrxd table of marginal counts may
not be.

An advantage of the WLS approach is that it can be
implemented using PROC CATMOD. An important
disadvantage is its inefficiency in handling continuous covariates,
which must be collapsed into categorical variables in order to use
WLS.

8. EXAMPLE

We now use Table 1 to illustrate several models for
repeated ordinal categorical data. Table 4 contains the marginal
distributions of Table 1 for the four combinations of treatment
and condition. From the initial to follow-up observation, the
distribution of time to falling asleep seems to shift downwards
both for the active and placebo treatments. The degree of shift
seems to be greater for the active treatment, though, indicating
that an interaction term may be needed in the model. Since
there is only a single covariate (treatment), we will replace the
notation L gl(()_() by the simpler L gik’ where i indexes treatment.




The model (4.3) of location shifts for conditions and
treatments is

Lgik = oy + pg + ﬂi’ (8.1)

g=1,2, i=1,2, k=1,2,3. For identifiability, we impose constraints
po =0 and B, = 0. The WLS fit of this model gives p; =-1.29
(a.se. = 0. 13) and ﬂ = 0.37 (a.s.e. = 0.20). According to this
model, for each treatment the odds that time to falling asleep is
below any fixed level is estimated to be exp(1.29) = 3.6 times as
high at the follow-up observation as at the initial observation.
Similarly, for each condition, the odds that time to falling asleep
is below any fixed level is estimated to be exp(0.37) = 1.4 times
as high for the active treatment as for the placebo.

These interpretations assume the no-interaction model is
reasonable. However, the goodness-of-fit statistic for testing
(8.1) equals 14.5. The residual degrees of freedom equal 7, since
there are 12 cumulative logits (3 for each marginal distribution)
and 5 parameters (al, ag, ag, Hy, ﬂl) in the model. The lack
of fit is not surprising, since the treatments have similar sample
marginal distributions at the initial observation, but not at the
follow-up.

Next consider the model
Lyik = o + #g + B; + 1y (8:2)

where pg = B9 = 179 = 791 = M99 = 0. The WLS fit gives &,
=-1.16, &y = 0.10, &3 = 1.37, js; = -1.05 (a.s.e. = 0.16), By =

0.69 (a.s.e. = 023), and fj;; = -0.65 (a.s.e. = 0.25). There is

substantial evidence of interaction. The model fits reasonably
well, with a residual chi-squared of 7.4 based on df = 6.

%

Table 4.  Observed and Fitted Marginal Proportions (in
Parentheses) for Cumulative Logit Model (8.2)

il Response
Treatment Condition <20  20-30 30-60 >60

Active Initial 101 168 .336 .395
- (-102) (.184) (.303) (.411)

Follow-Up .336 .412 .160 .092
(:385) (.303) (.200) (.111)

Placebo Initial J17 167 .292 425
' (-098) (.179) (.301) (.421)

Follow-Up - .258 .242 .292 .208
(:239) (.286) (.273) (.202)

For the active treatment, the odds that time to falling
asleep is below any fixed level is estimated to be exp(1.05+0.65)
= 5.5 times as high at the follow-up observation as at the initial;
for the placebo group, the corresponding effect is exp(1.05) = 2.
At the initial observation, the odds that falling asleep is below
any fixed level is estimated to be exp(0.69-0.65) = 1.04 times as
high for the active group as for the placebo; at the follow-up
observation, the corresponding effect is exp(0.69) = 2.0. In other
words, the placebo and active groups had about the same
distributions of time to falling asleep at the initial observation,
but at the follow-up the active group tended to fall asleep more
quickly than the placebo. The interaction model gives a simple
and economical description of the varlatlon among the four
marginal distributions.

Table 5 summarizes results for the two cumulative logit
models just described. The table also gives results for the
corresponding models using the adjacent-categories logit
transform, for which similar results hold. The parameter
estimates are somewhat smaller for the adjacent-categories logit
transform, which is expected since the effects for that transform
refer to a restricted range of the response.

The mteractlon model for adjacent-categories logits fits
adequately, and can be interpreted as follows: For the active
group, the odds that time to falling asleep is <20 minutes
instead of 20-30 minutes (or 20-30 minutes instead of 30-60
minutes, or 30-60 minutes instead of >60 minutes) is estimated
to be exp(0.55+0.36) = 2.5 times as high at the follow-up
observation as at the initial observation; for the placebo group,
the corresponding effect is exp(0.55) = 1.7. Similarly, at the
initial observation, the odds that time to falling sleep is in

. category k instead of k+1 (for k = 1,2,3) is estimated to be .

exp(0.38-0.36) = 1.01 times as high for the active group as the
placebo; at the follow-up observation, the corresponding effect is
exp(0.38) = 1.46. We obtain the same substantive conclusions
as we did using cumulative logits.

Table 5. Summary of Results for Logit Models Fitted to
Table 1 (a.s.e. Values in Parentheses).

Adjacent
‘ Cumulative Categories
- Model Effect Logit Logit
No Interation Treatment .37(.20) .20(.11)

Condition _  -1.20(.13)  -.67(.07) |
. 2
. Residual x*  14.5,df=7  15.4,df=7 .

Interaction Treatment .69(.23) .39(.138)
Condition -1.05(.16)  -.55(.09)
Treat.xCond. -.65(25)  -.36(.14)
Residual x> 7.4,df=6  8.3,df=6




Fitted models can be used to generate fitted marginal
logits, and hence fitted marginal proportions. To illustrate,
Table 4 also contains the fitted marginal proportions for the
cumulative logit model (8.2). The only poor fit occurs for
response 20-30 for the active treatment under the follow-up
observation, in which case the observed proportion is
considerably larger than the fitted one.

Let M. denote the mean response for the marginal
distribution for’ condition g and treatment i, g = 1,2, i = 1,2.
Model (6.1) corresponds to

Mgi =a+ pg + B (83)
We fitted this model using WLS, with response scores {a, = 10,

= 25, ag = 45, ay = 75} for time to falling asleep. For the
constraints pg = B, = 0, the estimates are & = 35.3, i, = 17.2
(a.s.e. = 1.5), ﬁl = -5.7 (a.s.e. = 2.4). There are four response
means and three parameters, so the residual chi-squared of 9.3 is
based on df = 1. There is strong evidence of interaction on this
scale, as well.

Adding an interaction term to (8.3) gives a saturated
model, whereby the fitted marginal means equal the observed
ones. From this model, we find the initial means were 50.0 for
the active group and 50.3 for the placebo, and the difference in
response means between the initial observation and the follow-up
was 22.2 for the active group and 13.0 for the placebo. The
difference between these differences of means equals 9.2, with
as.e. = 3.0, indicating that the change was significantly greater
for the active group.

9. FITTING ORDINAL LOGIT MODELS USING SAS

All results quoted in the previous section were obtained
using CATMOD. Table 6 shows code for fitting the cumulative
logit model (8.2). The RESPONSE statement forms the three
cumulative logits for each of the two conditions — the first three
for the initial observation margin and the final three for the
follow-up margin. Since there are two treatments, the
POPULATION GROUP statement results in the calculation of
twelve cumulative logits, six for each treatment. The MODEL
statement contains the design matrix. The first three columns
refer to the cutpoint parameters, the fourth column refers to
treatment (the first six rows refer to the active group, and the
last six to the placebo), the fifth column refers to condition (rows
1-3 and 7-9 refer to initial, rows 4-6 and 10-12 to follow-up), and
the sixth column refers to the interaction.

Table 7 shows code for fitting the corresponding
adjacent-categories logit model to Table 1. The design matrix is
the same as for the cumulative logit model, and the RESPONSE
statement forms the six adjacent-categories logits for each
treatment. Table 7 also contains code for the mean response
model. The RESPONSE statement forms the means for the two
condition margins, using the chosen scores. For the design
matrix in the MODEL statement, the first column refers to the
“y-intercept,” the second column is the treatment effect, the
third column is the condition effect, and the fourth column is the
interaction.

10, COMPARING TREATMENT EFFECTS, CONTROLLING
FOR INITIAL RESPONSE

Though this article has focused on model-building for the
marginal distributions, modeling the interior of the table can also
be informative, particularly when there are only d=2 responses.
For data such as in Table 1, for instance, we might want to
model the follow-up response in terms of effects of explanatory
variables, controlling for a baseline (initial) observation. Let
Lijk denote the cumulative logit when the cutpoint for follow-up

response is at category k, for group i with baseline observation j,
and let {xj} be fixed scores for the baseline levels. For the model

Lijk =a + ﬂi + ﬂxj (10.1)

we use the {f.} to compare the groups in terms of distribution
of follow-up, controlling for baseline observation. This model is
an analog of an analysis of covariance model, in which the
response and covariate are ordinal rather than quantitative.

Applying model (10.1) to Table 1 with scores {10, 25,
45, 75} for time to falling asleep, the constraint ﬂ2 =0, and 0.5
added to the two empty cells (so WLS estimates exist), we
obtain §; = 0.81 (a:s.e. = 0.25) and § =-0.037 (a.s.e. = 0.006),
with a residual chi-squared of 25.7 based on df = 19. Given
initial observation, the odds that follow-up time to falling asleep
is below any fixed level is estimated to be exp(0.81) = 2.25 times
higher for the active group than for the placebo.

Inspection of Table 1 reveals that for the first two
baseline levels, the two treatments have similar distributions of
time to fall asleep at the follow-up, whereas the active treatment
is relatively more successful at the higher baseline levels. The
model with interaction of baseline observation and treatment fits
slightly better, with residual chi-squared of 22.5, based on df =
18; the estimated interaction effect is 0.019 (a.s.e. = 0.011),
whereas 'Bl = -0.161 and 3 =-0.046. Across the four baseline
levels, the treatment effect varies between -0.161 + 0.019(10) =
0.03 and -0.161 + 0.019(75) = 1.27. It is uniformly positive
(i-e., time to falling asleep at follow-up is estimated to be smaller
for the active group), but the effect increases from negligible to
strong as baseline level increases.

11. DISCUSSION

Complications that often occur for repeated categorical
measurement data include sparseness of cell counts, missing data,
time-dependent covariates, and a sampling design more complex
than independent multinomial. For WLS analyses, it is natural
to handle the missing data problem as illustrated by Stanish et
al. (1978) or Woolson and Clarke (1984). For cumulative logit
models, Landis et al. (1987) showed how to incorporate sampling
weights and design effects into test statistics, by using Taylor-
series approximations to obtain weighted proportions and their
corresponding covariance matrix. Repeated measurement of
covariates (i.e., the covariates x = x, are time-dependent) can
be handled without difficulty with the Stram et al. (1988)
approach of fitting a model separately under each condition.

The advantages and disadvantages of the different types
of models described in this article arc similar to those for the
corresponding models for a single response. See Agresti (1984,
Chap. 11) for a discussion of these. Of the logit models, the
cumulative logit has an important advantage of a certain
invariance to response category choice. If a cumulative logit
model holds for a particular set of response categories, it will also
hold when some of the categories are combined, with the same
value for the covariate effect parameter. This is not true for the
adjacent-category logit models, for which the corresponding
loglinear model reveals that it assumes an equal-interval scoring
of response categories. When there is an arbitrary rather than
fixed choice of response categories, the interpretation of the
parameters may also be more natural for the cumulative logit
models. The mean response model has the advantage of simple
interpretation. However, it requires the assignment of response
scores, and its structural form can be problematic.
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