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Adv. Appl. Prob. 6, 322-335 (1974) 
Printed in Israel 

? Applied Probability Trust 1974 

BOUNDS ON THE EXTINCTION TIME DISTRIBUTION 
OF A BRANCHING PROCESS 

ALAN AGRESTI, University of Florida 

Abstract 
The class of fractional linear generating functions, one of the few known 

classes of probability generating functions whose iterates can be explicitly 
stated, is examined. The method of bounding a probability generating func- 
tion g (satisfying g"(1)< oo) by two fractional linear generating functions is used 
to derive bounds for the extinction time distribution of the Galton-Watson 
branching process with offspring probability distribution represented by g. 
For the special case of the Poisson probability generating function, the best 
possible bounding fractional linear generating functions are obtained, and the 
bounds for the expected time to extinction of the corresponding Poisson 
branching process are better than any previously published. 
GALTON-WATSON PROCESS; EXTINCTION TIME; FRACTIONAL LINEAR GENERATING 
FUNCTION 

1. Introduction 

In this paper bounds are derived for the extinction time distribution of a one 
type Galton-Watson branching process. This process represents the evolution of a 
population in which different individuals reproduce independently of each other 
and the offspring probability distribution is identical for every individual and 
every generation. The Galton-Watson process has been used as a simplified model 
for such problems as determining the fate of the population generated by a newly 
mutant gene. 

Suppose that the offspring probability distribution of each individual in the 
population is represented by the probability generating function (p.g.f.) g(s) 
= 
-1~=0 pjs, 0 < s < 1, and let m = g'(1), the mean number of offspring 
produced by each individual. To avoid trivialities, assume that Po + p, < 1 and 
0 < Po. Letting Z, denote the size of the population at the nth generation, it is 
well known that the p.g.f. for Z, if Zo = 1 is g,(s) = 

g(g(.., 
g(s) ...)), the n-fold 

iterate of g. However, there are very few families of p.g.f.'s whose iterates have a 

simple closed form expression. The approach used in this paper results in bounds 
for {g,(s), O s ? 1, n > 1}, and hence for {g,(O) = P(Z, = 0) = P(T< n), 
n 

- 
1}, where T is the extinction time of the branching process. These bounds 
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Bounds on the extinction time distribution ofa branching process 323 

are used to obtain bounds for the percentiles of the distribution of T and other 
parameters of interest. As usual, subcritical, critical and supercritical processes 
refer to m < 1, m = 1 and m > 1, respectively. Without loss of generality, we shall 
assume throughout that Zo = 1. 

Our main approach consists of reducing the problem of deriving bounds for 
the Galton-Watson process to a problem involving the one family of p.g.f.'s whose 
iterates can be easily calculated, the fractional linear generating functions. Seneta 
(1967) noted that if U and L are two p.g.f.'s such that 

L(s) g (s) <! U(s), O <s < 1, 
then 

L,(s) 
_ 

ga(s) < U.(s), O 
_ 

s < 1, n ? 1. 

As a result, 

(1.1) L,(O) 
= 

P(T < n) < U.(O), n > 1, 
and when m < 1 the expected time to extinction ET = 

0_ 
[1 - g,(0)] is 

bounded by 

(1.2) [1 
- 

U(0)] 
_ 

ET 
_ 

1 [1 - L,(O)], n=O n=O 

and when in addition g"(1) < oo, 9 = lim,,, m" /(1 - g,(O)) is bounded by 

(1.3) lim mn /(1 - L,(O)) < 9 < lim m"/(1 - U,(O)). 

Seneta derived two fractional linear generating functions which bound a subcritical 
Poisson p.g.f., producing good bounds for y and ET for a Poisson branching 
process. In Section 3, we find two fractional linear generating functions which 
bound any subcritical or critical p.g.f. g with g"(1) < oo in such a way that the 
means of the bounding functions are equal. In Lemmas 2 and 3 and in Theorem 2, 
we show that for some special cases (such as the Poisson p.g.f.) it is easy to find 
the best bounding fractional linear generating functions with mean m. Bounds are 
obtained for supercritical processes in Section 4 by exploiting a duality between 
subcritical and supercritical processes. Since for a large class of Galton-Watson 
processes the variance of T grows exponentially faster than ET as m -- 1- (see 
Seneta (1968)), and since these measures are infinite for the unconditioned process 
when m > 1, we concentrate on obtaining good bounds for {P(T < n), n > 1} and 
for the percentiles ?P of T. Bounds for ET and p are easily expressed as a by- 
product of these bounds when m < 1. 

The problem of obtaining bounds on the extinction time distribution of a 
Galton-Watson process has been considered recently in a few papers. Heathcote 
and Seneta (1966) presented bounds for ET and # for subcritical processes with 
g'(1) < co. Under very general conditions (e.g., see Seneta (1968)), as m -+ 1- 
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324 ALAN AGRESTI 

their lower bound for ET converges to a finite limit (although ET-+ oo), and 
their upper bound grows at a rate proportional to (1 - m)- 1, which is exponentially 
faster than the actual rate. Pollak (1971) has also considered the problem of 

deriving bounds for ET and p. His bounds apply to p.g.f.'s which can be shown 
to satisfy a certain inequality involving the first three derivatives of the p.g.f. 
evaluated at one. However, there is a large class of p.g.f.'s for which these bounds 
are inapplicable, and in general it is difficult to verify whether the bounds apply 
to a given p.g.f. Seneta (1967), as described above, and Pollak (1969) have also 
derived bounds for the extinction time distribution when g has the Poisson form, 
which has been used in genetic applications of branching processes since Fisher 

(1930). The bounds derived in this paper are applicable to all Galton-Watson 

processes with g"(1) < oo, yet still maintain good properties for values of m close 
to one, which are of special interest in many applications. In particular, the bounds 
for ET for a Poisson branching process are better than any previously published. 

2. The class of fractional linear generating functions 

A fractional linear generating function (f.l.g.f.) is a p.g.f. of the form 

b bs 
(2.1) f(b, c; s) = 1 - + 

OCs 
1, 

where 0 < b ? 1, 0 ? c < 1, and b + c ? 1. Corresponding to this p.g.f. is the 

two-parameter geometric distribution {rj, j > 0}, where ro = 1 - b /(1 - c) and 

rj = bcj-', j > 
1. If c = 0, the distribution reduces to a Bernoulli trial with 

ro = 1 - b, r1 = b, andf(b, c; s) is linear. If b = 1 - c, it reduces to the geometric 
distribution rj = (1 - c)cj- , j > 1. The mean of a two-parameter geometric 
distribution is m = f'(b,c; 1) = b(1 - c)-2, and f"(b,c; 1) = 2bc(1 - c)-3. If 

m # 1, there are two distinct non-negative solutions to the equation f(b, c; s) = s, 
1 and so = so (b, c) = (1 - b - c)/c(1 - c). If m < 1, then so > 1; if m > 1, then 

so < 1 and so = q, the probability of extinction of the branching process with 

p.g.f. f(b, c; s); so = 1 if and only if m = 1. Iterates of f.l.g.f.'s are also f.l.g.f.'s 
and can be explicitly stated. In Section 3, the extinction time distribution of a 
Galton-Watson process with f.l.g.f. is detailed, and then is exploited in Theorem 1. 
In the remainder of this section, we prove other properties of the class of f.l.g.f.'s 
which are used in this paper. 

To use the bounding approach described in the previous section, it is necessary 
to determine which of the f.l.g.f.'s that bound a p.g.f. g produce the best bounds 
for the extinction time distribution. When m : 1, q - g,(O) ~ j-'[g'(q)]n as 

n -+ co (see Harris (1963), p. 16, 18), so that 
p, 

~ log p(q - p) /log g'(q) as p -+ q - 

In general, # is unknown. Good asymptotic bounds for P(T n) or for ,t are 
obtained by restricting attention to those f.l.g.f.'s that bound g in such a way 
that f(b,c;q) = q and f'(b,c;q) = g'(q). When m = 1 and g"(1)< oo, 
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Bounds on the extinction time distribution of a branching process 325 

Kolmogorov (see Harris (1963), p. 21) showed that 1 - gn(0)~ 2/g"(1)n as 
n -+ co, so that 

p 
~ 2/g"(1)(1 - p) as p -+ 1-. As a result of Lemma 1, we shall 

see that when m ? 1 (so that g'(q) = m), the best asymptotic bounds using this 

approach are produced by the two f.l.g.f.'s with mean m that bound g and have 
second derivative at one as close as possible to g"(1), or alternatively, have ro as 
close as possible to Po. 

Lemma 1. Forf'(b,c; 1) = m < 1 fixed: 

(i) f(b, c; s) is an increasing function of f"(b, c; 1) for all s, 0 ? s < 1; 
(ii) f(b, c; s) is an increasing function of ro = 1 - b /(1 - c) for all s, 0 < s < 1. 

Proof. Sincef'(b,c; 1) = b(1 - c)-2 andf"(b,c; 1) = 2bc(1 - c)-3, we have 

b = 4f'(b, c; 1)3 [2f'(b, c; 1) +f"(b, c; 1)]-2 

and 

(2.2) c = f"(b, c; 1)1/[2f'(b, c; 1) + f"(b, c; 1)]. 

For fixed m = f'(b, c; 1), c is an increasing function off"(b, c; 1), and if s is also 
fixed (0 ? s < 1), 

dcf(b, 
c; s) = f(( - c)2m, ) 

= )2 
> 0, 

dC de (1 - cs)2 

so that (i) holds. Similarly, since ro = 1 - b /(1 - c), we see that 

b = (1 - ro)2 /f'(b, c; 1) 
and 

c = (f'(b, c; 1) + ro - 1)/f'(b, c; 1). 

Thus, for fixed m = f'(b, c; 1), f(b, c; s) is an increasing function of ro for all s, 
O < s < 1, and (ii) holds. Notice that whenever f (b, c; 1) < 1, b + c ? 1 for any 
f"(b, c; 1) > 0 and b + c ? 1 for any proper ro > 0, so that the above arguments 
provide legitimate parameter values for the f.l.g.f. and also show that the class 
of f.l.g.f.'s provide a wide variety when m ? 1 for the bounding approach we use. 

3. Subcritical and critical cases 

Let g be any p.g.f. satisfying m ? 1. In this section, we show that the best 

bounding f.l.g.f.'s with mean m can be determined easily when g is in the class 
A = {Po + pIs + p2s2} or B = {po + (1 - po)sk, k 

=> 
1 a real number}. We then 

use these two classes to obtain f.l.g.f. bounds for a p.g.f. g of more arbitrary form. 

Lemma 2. (i) f(bL,c; s) with bl = (p + 2p2)3 ( , + 3p2)-2 and c1 
= P2 (P1 + 3p2) is the best lower bounding f.l.g.f. for Po + 

pls 
+ p2s2 with mean 

m = pi + 2p2. 
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326 ALAN AGRESTI 

(ii) f(b', c'; s) with b' = (pl + P2)2 (P1 + 2p) and c = P2 /(P + 2p2) is the 
best upper bounding f.l.g.f. for Po + pis + p2s2 with mean m = pt + 2p2* 

Proof. (i) f(b, c; s) < Po + pls + p2s2, O < s < 1, and b(1 - c)-2 = p, + 2p2 
if and only if 

1 - (1 - c)(p, + 2P2) + (1 - c)2 (p + 2p2)s/(1 - cs) 
? Po +Pas + p2s2, O & S 

$ 1. 

This is true if and only if c P2 /(Pl2 + 2P2 + p2s), 0 < s ? 1. That is, f(b, c; s) 
< Po + 

Pls 
+ P2s2, O ! 

S 1, and f'(b, c; 1) = pl + 2P2 if and only if 0 < c 

< P2/(P1 
+ 3P2) and b = (1 - c)2(p1 + 2p2). Thus, f(bl, c1; s) ? Po + 

pls + p2s2, 0 ? 
S 

? 1, and since f 
(bl, cl; 

1) = 
pl 

+ 2P2 and 
f"(bl, cl; 1) = 2P2, 

f(bl, cl; s) is the best lower bounding f.l.g.f. with mean Pl + 2P2, by Lemma 1 (i). 
(ii) Similarly,f(b, c; s) ? po + Pis + 

P2s2, 
0 < s < 1, and b(1 - c) -2 = p + 2P2 

if and only if P2 /(P+ 2p2) ? c < 1 and b = (1 - c)2(p1 + 2p2). Thus, 
f(b', c'; s) ? po + p0s + p2s2, 0 s < 1, and since f (bl, c'; 1) = pi + 2P2 and 

f(b, c; 0) = Po, f(b', c1' s) is the best upper bounding f.l.g.f. with mean 

PI + 2p2, by Lemma 1 (ii). 

Lemma 3. (i) f(b2,c2; s) with b2 = (1 - po)/k and c2 = (k - 1)/k is the 
best upper bounding f.l.g.f. for Po + (1 - po)sk with mean m = k(1 - po). 

(ii) 
f(b.,c'; 

s) with b' = 4k(1 - po)(k + 1)-2 and c' = (k - 1)/(k + 1) is 
the best lower bounding f.l.g.f. for Po + (1 - po)sk with mean m = k(1 - Po). 

Proof. (i) Po + (1 - po)sk <f(b2, c2; S), 0 S 1, if and only if 

Po + (1 - p)sk Po + ( - p)s/(k - (k - 1)s), O0 s < 1, 

which holds if and only if t(s) = 1 - sk - (1 - s)ksk- > 0, s 1. Now 

t1(1) = 0 and t'(s) = - k(k - 1)sk-2(1 _ S) 0, O S 1, so that t,(s) 0, 
O ? s ? 1. Also, since f'(b2, c2; 1) = k(1 - Po) and f(b2, c2; 0) = Po, f(b2, c2; s) 
is the best upper bounding f.l.g.f. for Po + (1 - po)sk with mean k(1 - Po), by 
Lemma 1 (ii). 

(ii) f(b?, cI; s) < Po + (1 - po)sk, 00 < s 1, if and only if 

Po + (1 - po)sk 
- 

1 - [2k(1 - po)/(k + 1)] 

+ [4k(1- p)s/((k + 1)2-(k2-1)s)], 0 < s < 1, 

which holds if and only if t2(S) = (k - 1)(1 - sk+1) - (k + 1)s(1 - sk-1) 
- 

0, 
O s ? 1. Now t2(1) = 0, tt(1) = 0, and ti(s) 

_ 
0, so that t2(s) > 0, 0 s 1. 

Also, since f(b, c; 1) = k(1 - Po) and f"(b2 ; 1) = k(k - 1)(1 - 

f(b2,c; 
s) is the best lower bounding f.l.g.f. for Po + (1 - po)sk with mean 

k(1 - Po), by Lemma 1(i). 

This content downloaded from 128.227.62.150 on Mon, 21 Oct 2013 16:00:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Bounds on the extinction time distribution of a branching process 327 

The f.l.g.f.'s f(bl, ct; s) and f(b', c'; s) or f(b2, c2; s) and f(b', c'; s) can be 
used as described in SeCtion 2 to provide bounds for the extinction time dis- 
tribution of the subzritical or critical Galton-Watson process with p.g.f. 
Po + PIs + p2s2 or Po + (1 - po)sk, respectively. The simple approach used in 
Lemmas 2 and 3 becomes very cumbersome as the number of terms in the p.g.f. 
increases. Instead, we now direct our attention to finding f.l.g.f.'s that bound a 
more arbitrary form of p.g.f. In Lemma 4 we show that a p.g.f. g with mean 
m ? 1 can be bounded below by a p.g.f. from class A with mean m, and bounded 
above by a function from class B with first derivative at one equal to m, if g"(1) 
< co. The bounding functions we derive are the best in these classes which bound 

g and have derivative m at s = 1. 

Lemma 4. Let g(s) = 1o psj, with m = g'(1) 1. 

(i) If Po < 1 - Im, then 

def 
g(s) ? L(s) = Po + [2(1 - po)- m]s + (po + m - 1)s2, 0 < s 1. 

If Po ? 1 - Im, then 

g(s) ? L(s) =1 - 
lm 

+ _m s2, O s 
< 

1. 

L(s) is the best lower bound in class A with mean m. 

(ii) If g"(1) < oo0, then 

2 2 def m 2 m m 
S0 + 

g(s) < U(s) d 1 + 
S~ 

1)/m)+1 O s 1. g 
m+g"(1) m+g"(1) 

U(s) is the best upper bound in class B with first derivative at one equal to m. 

Proof. (i) Suppose that po ? 1 - Im. Then 

L(s) = Po + [2(1 - po) - m]s + (po + m - 1)s2 < g(S), O s < 1, 

if and only if LI 3 Pj[j - 2 - (j - 1)s + s -'] , 0, s ? 1. Let v,(s) = k - 2 
-(k - 1)s + s- 1, k k 3. Then v(O)= k - 2 > 0, v(1) = 0, and v(s) = -(k - 1) 
(1 - sk-2) 

_ 
0, O s < 1, k 

- 
3. Hence vk(s) 

- 
0, O s 

- 
1 and k 3, so 

I pj[j - 2 - (j-1)s+sj-]> 0, 0< s l1, j=3 

and L(s) 
?_ 

g(s). Now suppose that po 2 1 - Im. Then L(s) = 1 - ?m + Ims2 
< g(s), O <s 

_ 
1, if and only if 

Co 

?m(1 - s2) - p(1 - s 
/ 

) 0, 
j=1 

which holds if and only if 
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328 ALAN AGRESTI 

v(s) = jm(1 + s) - [P1 + P2(1 + s) + 
p3(1 

+ s + s2) 

+ ... + pj(1 + + + 
2 + ... + sj- ) + 

...] _ 
0. 

Now v(0) = m - (1 - po) 0, v(1) = 0 and v"(s) 0, 
O- 

s 1. Since v is 

concave, v(s) 
- 

0, 0 ? s ? 1, and hence L(s) 
_ 

g(s), 0 ? s ? 1. 
To show that L is the best lower bound in class A with mean m, fix m > 0 and 

let A = {qo + qls + q2s2}. In terms of m = ql + 2q2 and qo, we can express 
q1 =2(1-qo)- m and q2= m+qo - 1, so that 

q0 + qs + q2s2 = q0 + [2(1 - qo)- m]s + [m + qo - 1]s2, O s? S1. 

Now 
qo + [2(1 - qo) - m]s + [m + q' - 1]s2 

> q0 + [2(1 - qo) - m]s + [m + qo- 1]s2, o0 s< 1, 

if and only if (qo - q0)(1 - s)2 > 0, 0 s < 1, or qo 
_ 

qo. That is, for fixed m, 
the best lower bounding p.g.f. in class A with mean m is the one with largest qo, 
or equivalently since q2 = m + q - 1, the largest q2. If Po 

= 
1 - Im, then 

qo = 1 - m and q2 = Im are clearly the largest values qo and q2 may assume 
under the restriction ql + 2q2 = n. If Po 

= 
1 - Im, the largest values of qo and 

q2 possible so that qo -Po and q1 + 2q2 = m are clearly qo = Po and q2 
= m + qo - 1. In each case this is L(s), which has been shown to be a lower 
bound for g, and hence is the best in class A with mean m. 

(ii) Assume now that g"(1) < oo. Then 

t2 
2 

U(s) = 1 - + S(g"(1)/m)+1 > g(s), 0 s 1, m + g"(1) m + g"(l) 
if and only if 

w(s) = m(1 - s(#''(1)m)+1) - ((g"(1)/m) + 1)(1 - g(s)) 
_ 

0, 0 ? s ? 1. 

Now w(1) = 0, so a sufficient condition that w(s) < 0, 0 < s < 1, is that 

w'(s) = ((g"(1)/m) + 1) (g'(s) - msg()/m) 
= 

0, 0 ? s ? 1. 

That is, it is sufficient to show that g'(s)/m 
= 

sg"(1)/M', 0 < s 
< 1, or 

, 
jpj- 1 >_ 

I =2 (i - 1)jPJ/m 
j=1 m 

Now consider the random variable Y such that P(Y = j - 1) = jpj /m, j > 1. Then 

oo 1.OO 
2 - 

t)jtJ/M 
JPj sJ- = Esr EY = 

m=1 m 

by Jensen's inequality, for 0 
_ 

s ? 1. Thus U(s) ? g(s), 0 < s ? 1. 
For fixed m > 0 and fixed s, 1 - m(n + 1)-V1 + m(n + 1)-1s"n• is an increasing 

function of n. Thus 1 - m(n + 1)-1 + m(n + 1)-'s+1 2 g(s) whenever 
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Bounds on the extinction time distribution of a branching process 329 

n ? g"(1) /m, and out of these values the best bound is for n = g"(1) /m. Also, if 
n < g"(1) /m, then the second derivative at one is less than g"(1), so 1 - m(n + 1)-1 
+ m(n + 1)-'sn+L is not an upper bound for g. Hence U(s) is the best upper 
bound in class B with first derivative at one equal to m. 

Thus, any p.g.f. g with m < 1 and g"(1) < oo can be easily bounded by two 
functions with first derivative at one equal to m, which are themselves amenable 
to bounding by f.l.g.f.'s with mean m. This fact enables us to display f.l.g.f. bounds 
with mean m for this very general form of p.g.f. 

Lemma 5. Let g(s) = 
ij=o = ps be a p.g.f. with mean m. 

(i) If m 
< 

1, g(s) 
>f(bx, 

c1; s), O < s < 1, where bI = m3(po + 2m - 1)-2 and 

S= (p + m - 1)/(po + 2m- 1), po < 1 - -m; 
bx 

= 4m/9 and c1 =j, 
Po > 1 - Im. 

(ii) If g"(1) < oo, g(s) <f(b2, c2; s), 0 
< 

s 1, where bz = m3(g"(1) + m)-2, 

c2 = g"(1)/(g"(1) + m). 
Proof. (i) If Po < 1 - Im, 

g(s) > L(s) = Po + [2(1 - Po)- m]s + (po+ m - 1)s2, s < 1, 

by Lemma 4(i). Also, L(s) >f(b1, c1; s), 0 < s < 1, where bI = m3 (po+ 2m- 1)-2 
and c1 = (Po + m - 1)/(Po + 2m - 1), by Lemma 2(i). Hence, g(s) >f(b1, c1; s), 
where g'(1) = 

f(bx,c1; 
1) = m and so(bx, 

cx) 
= 1 + m(1 - m)/(po + m - 1). 

If Po > 
1 - Im, g(s) > L(s) = 1 - Im + Ims2, O s 1, by Lemma 4(i). 

Again, by Lemma 2(i), L(s) >f(b, cx; 
s), 0<s < 1, where 

bx 
= 4m/9 and 

c1 = 1. Hence g(s) >f(b1, cx; 
s), where g'(1) = f'(b1, 

cx; 
1) = m and so(b,, 

cx) = 1 + 2(1 - m). Thus, when m < 1, g(s) > f(b1, c1; s), where f'(b1, c1; 1) = m 
and 

so(bx, 
c1) = 1 + D(1 - m), where D = max [2, m/(po + m - 1)]. 

(ii) If g"(1) < oo, 
2 2 

g(s) 
< 

U(s) = 1 - m + s(g"(1)m)+ 1, O<s< 1 
m+g"(1) m+g"(1)= 

by Lemma 4(ii). Also, U(s) <f(b2, c2; s), 0 s 1, where b2 = m3(g"(1) + m)-2 
and c2 = g"(1)/(m + g"(1)), by Lemma 3(ii). Hence, g(s) < f(b2,c2; s), 0 s < 1, 
where g'(1) = f'(b2, c2; 1) = m and so(b2, c2) = 1 + m(1 - m) /g"(1). 

As a result of Lemma 5, relatively simple bounds can be formed for 
P(T< n), 

?P, 
ET and y that depend only upon m, Po and g"(1). The form of the bounds 

follows directly from the extinction time distributions associated with the bounding 
f.l.g.f.'s. 

If m 9: 1, the nth iterate of Expression (2.1) for f(b, c; s) is 

f(bc;s) 1 m"(so - 1) mn((so - 1) /(so - mn))2s 
so - m + 1 - ((1 - mn)/(so - m))s' 
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if m = 1, 
nc - [(n + 1)c - 1]s f,(b, c; s) = 1 + (n - 1)c - ncs 

Thus, letting T(b,c) denote the extinction time of a Galton-Watson process 
with p.g.f. f(b, c; s), 

(i) if m : 1, 

(3.1) P(T(b, c) <n) = so(1 - m")/(so - m"), n> 1 

(ii) if m = 1, 

(3.2) P(T(b, c) < n) = nc/(1 + (n - 1)c), n 1. 

We can also calculate explicitly the percentiles of the distribution of T(b, c). 
Considering P(T(b, c) < n) as a continuous function of n for all real numbers 
n > 0, the 100pth percentile, denoted by ?p(b, c), is the solution of 

p = so(1 - mrp(b'~))/(so - mp(b,C) (m # 1), 

p = p(b, c)c /(1 + (?p(b, c) - 1)c) (m = 1). 
That is, 

(3.3) ?p(b, c) = log(so(1 - p)/(so - p))/log m, 0 < p < q, m # 1, 

(3.4) ?p(b,c) = p(l - c)/(1 - p)c, O < p < 1, m = 1. 

These equations express the percentiles as a continuous function of p. If we 
require ?p(b, c) to be the smallest integer such that P(T(b, c) < ?p(b, c)) 

- 
p, then 

?p(b, c) is the greatest integer part of (3.3) or (3.4) plus 1, for p #f,(b, c; 0), n > 1. 
With this in mind, however, we shall use the continuous interpretation for simpli- 
city. Now, since 

f(b1, c; s)< g(s) 
_f(b2, 

C2; S), 0 
<- 

S 1, 
we have 

P(T(bh, c,) < ?p) ? P(T < •p) 
= p < P(T(b2, c2) p). 

Then, since 

p = P(T(b1, c1) ? p,(b1, cg)) = P(T(b2, c2)< =p(b2, c2)), 

we have 

(3.5) p(b2, C2) !p <= (b1, c1), O < p < q. 

That is, fractional linear bounds for g extend directly to bounds for the percentiles 
of T. 

The bounds in Theorem 1 are now a consequence of (1.1)-(1.3) and (3.1)-(3.5), 
Lemma 5 and the expressions in its proof for so(b1, c1) and so(b2, c2). 
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Bounds on the extinction time distribution of a branching process 331 

Theorem 1. Let g(s) = 1?o psj be a p.g.f. with mean m < 1 and with 
g"(1) < oo, and let D = max [2, m /(po + m - 1)]. Then, 

[1 + D(1 - m)] (1 - m") 
< P(T< n) 1 + D(1 - m) - m" 

< [1 + (m(1 - m) / g"(1))] (1 - mn") 

_ 
, ngl, m<l;1 1 + (m(1 - m)/lg"(1))- m"n 

n 

n n 
SP( T n) -"(1)]-' 

n > 1, m = 1; n+D n + [g"(1)]' 

[g(1 
- p) [g"(1)+ m(l - m)] 

logm:!m9< 
log /og m _ 

Sg"(1) (1 - p) + m(1 - m) = 
- 

(1 - p) [1 + D(1 - m)] 

p 
<9< 

pD 1- p 1- , m= 1, 0<p<1; 
(1 - p)g"(1) 1 - p 

1 + m + m(1 - m)log1 - "(1) mg"(1) /g"(1)logm 
2(g"(1) + m)I g"(1) + m(1 - m) 

< ET_ 
1 + + I +o1 1 + D(1 - m)lg 1log m; 

1+ 1 
+I1 + g(1) 

D(1 - m) - m(1 - m) 

If g"(1) = oo, the side of each of these bounds that corresponds to bounding 
g below by f(b1, cl; s) still applies. In fact, when g"(1) = co, it is possible to 
derive an upper bounding f.l.g.f. with mean slightly less than m, so that a complete 
set of bounds can be given even in that situation. 

4. Supercritical case 

When m > 1, g,(q) = q for n > 1, lim,-o g,(s) = q for 0 s < 1, and 

P(T> n) = q - gn(O) - -'g'(q)] as n -+ 
•o. 

A direct calculation shows that there is always exactly one f.l.g.f. that equals q and 
has derivative g'(q) at s = q. It is unrealistic, then, to expect two f.l.g.f.'s that 
bound g over 0? s ? q to produce good bounds for the extinction time distribution. 
However, it is possible to derive bounds with quality comparable to those derived 
in Section 3 by exploiting the following duality between subcritical and supercritical 
processes. Let 

gi(s) = g(qs)/q. 
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Then 9'(1) = g'(q) < 1, so g is the p.g.f. of a subcritical process, and can be 
given the interpretation of being the p.g.f. of the original process conditioned on 
eventual extinction (see Athreya and Ney (1973)). 

Now 

E(sZ"n T< oo) = g,(s) = g,(qs)/q, 
so that 

g,(0) = q n(0). 
Thus, bounds for the extinction time distribution can be obtained by using the 
f.l.g.f. bounds derived in the last section for a p.g.f. with mean g'(q) < 1. Also, 
g"(1) = qg"(q)< 00, so that f(b2, c2; s) always applies as an upper bound for g. 

Therefore, letting 

bI = g'(q)3 [Poq - + 2g'(q)-1]-2 
and 

cI = (Poq-1 + g'(q) - 1)/(Po0q- + 2g'(q) - 1) 

when Poq-' 1 - jg'(q), letting b, = 4g'(q)/9 and cl = j when p0q-1 

> 1 - jg'(q), and letting b2 = g'(q)3[qg"(q) + g'(q)]-2 and c2 = qg"(q)/ 
(qg"(q) + g'(q)), we have from Lemma 5 that 

qf,(bI, c1; 0) < P(T < n) < qf,(b2, 
C2; 0) 

and 
ET(b2, c2) < E[TI T< oo] ! ET(b1,c,). 

Also, P(T? n) = p (0 < p < q) if and only if P(T n I T< co) = pq-', so that 

?pjq(b2, 2) -2 p/ (bl, c,). 

5. Fractional linear bounds for the Poisson p.g.f. 

Naturally, in some instances there are f.l.g.f.'s which provide a tighter bound 
for g than those in Lemma 5, thus giving better bounds for the extinction time 
distribution. In fact, for many p.g.f.'s, it is possible to derive the best bounding 
f.l.g.f.'s with mean m. We have seen that such is the situation for p.g.f.'s of the 
form Po + Pls + p2s2 or Po + (1 - po)sk, k > 1. As another example, we derive 

now the best f.l.g.f. bounds with mean A for the Poisson p.g.f. g(A; s) 

=e (S- 1), 0 < <1. 
Theorem 2. When A; < 1, the best upper and lower bounding f.l.g.f.'s for 

g(A; s) = eA(S"1) with mean 2 have the parametrizations b = (1 - e-)2 /1, 
c = (A + e- - 1)/1 and b = 2(2/(2 + 2))2, c = 1/(2 + 2), respectively. 

Proof. Let 0 < 2 ? 1 be fixed. f(b,c; s) ee(s1), O s ? 1, and g'(Q; 1) 
= f'(b, c; 1) (i.e., b = (1 - c)22) if and only if 
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1 - (1 - c) A + (1 - c)2As/(1 
- CS) e(s- 1), 0< s< 1, 

which is equivalent to 

e"(s- 1) 
_ 

1+ (1 - s) 
c se s1) 

- 
+ (1 

- s)= v(,s), 0 s < 1. 
se (S-1) - s + (1 - s) 

Now v(A; 0) = (e- + +1- 1) /1, v(2, 1-) = 2/(A + 2), and it can be easily seen 
that v(A; 0) > v(A; 1-), all 2 > 0. Also, 

d [eA(s-1)2(1 - s)]2- [1 -e 1-12 
d v (; s) = v,(A; s)S= ds [se"(s-1) - (1 + 2)s + A]2 

so that v'(A; s) = 0 implies that e+(s"-')2(1 - s)= 1 - eA(s-), or, equivalently, 
J1(1 - s) = [e+(1-s) - e-•(1l-s)]. But x = 

?(ex- e-x) (or sinh x = x) if and 
only if x = 0, so v'(A; s) = 0 implies that s = 1. Thus, v(A; s) must be a strictly 
monotone function of s over [0, 1). Since v(A; 0) > v(A; 1-), we see that v'(A; s) 
<0, O0 s < 1, and 

sup v(A; s) = v(2; 0) = (e- + 2- 1)/21, 
Os<l 

inf v(A; s) = v(A; 1-) = I/(2 + 2). 
O<_s<1 

As a consequence, f(b, c; s) > ex(s- 1), 0 < s 1, and f'(b, c; 1) = A if and only if 
(e-" + 1 - 1) /A < c < 1 and b = (1 - c)21. Note that when b(1 - c)-2 = 2, c < 1 
and b + c =(1 -c)2+ c 1 if and only if (2 - 1)/A < c < 1. Since (e- 
+ -1)/ > 0 (A- 1)/1 for 0 < ~ 1, the set of points {(e- +2-1)/2 
? c < 1 and b = (1 - c)2A} give proper parameter values for the f.l.g.f. Now 
c = (e-' + 2- 1))/1 and b = (1 - c)22 = (1 - e-)2/2 are such that f'(b, c; 1) 
= A and f(b, c; 0) = g(A; 0) = e-'. Thus, this parametrization gives the best 
upper bounding f.l.g.f. for g with mean A, by Lemma 1(ii). 

Similarly, f(b, c; s) < ex(s-1), O 0 s < 1, and g'(A; 1) = f'(b, c; 1) if and only 
if 0 c finfos< v(A; s) = /( + 2), b = (1 - c)22 and b + c ? 1, where 

v(2; s) is as above. Thus, when 0 < 2 ? 1 and b = A(2 /(I + 2))2 and c = 1/(2 + 2), 
f(b,c; s) ? g(Q; s), 0 ? s ? 1. Then, since f'(b,c; 1) = 2 and f"(b,c; 1) = 12 
= g"(2; 1), this parametrization gives the best lower bounding f.l.g.f. for g with 
mean A, by Lemma 1 (i). 

Seneta (1967) also derived the above lower bound for g. Bounds for P(T < n), 
?, ET and y can be obtained by combining Theorem 2 with Expressions (1.1)-(1.3) 
and (3.1)-(3.5). Table 1 contains bounds for P(T< n) when 2 = 1, and Table 2 
contains bounds for ET for several values of ". The bounds for ET compare 
favorably to those given by Heathcote and Seneta (1966), Seneta (1967), and 
Pollak (1971). The supercritical process can be treated as in Section 4, noting that 
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9(s) = q-lg(A; qs) = q-1e (qs-1) 

= eq(s-1)q- 
ex•q-1) 

= eq(S-1) = g(2q; s), 

where )q = g'(2; q) < 1. 

TABLE 1 
P (T ? n): Critical Poisson branching process 

n 5 10 15 20 50 100 200 500 

lower bound 0.714 0.833 0.882 0.909 0.961 0.9804 0.9901 0.9960 
true value 0.732 0.842 0.888 0.913 0.963 0.9807 0.9902 0.9961 
upper bound 0.744 0.853 0.897 0.921 0.967 0.9830 0.9915 0.9966 

TABLE 2 

ET: Poisson branching process 

A 0.50 0.70 0.90 0.95 0.99 0.999 

lower bound 1.71 2.33 3.86 4.93 7.67 11.5 
true value 1.74 2.37 4.00 5.16 
upper bound 1.76 2.38 4.10 5.25 8.43 13.0 

6. Asymptotic forms of the bounds 

In each of the three special cases we have discussed, the upper bound for 
P(T> n) in the critical case is 2/(2 + g"(1)n), which is smaller than Kolmogorov's 
approximation of P(T> n) ~ 2/(g"(1)n) for any n ? 1. In fact, whenever the f.l.g.f. 
f(b*, c*; s) with f'(b*, c*; 1) = 1 and f"(b*, c*; 1) =g" (1) bounds g, the cor- 

responding bound for P(T> n) is 2/(2 + g"(1)n) by (2.2) and (3.2). Also, for any 
m < 1, it can be seen that one side of Pollak's ((1971), Inequality 3.2) bound for 
q - g,(s) applies if and only if the f.l.g.f. f(b*, c*; s) with f'(b*, c*; 1) = m and 
f"(b*, c*; 1) = g" (1) bounds g, in which case his bound is identical to the one 
obtained using the bounding method described in this paper. Then, the resulting 
bound on the extinction time distribution has the asymptotic form as m -+ 1 
given by Seneta (1968), if g is a member of a class of p.g.f.'s satisfying conditions 
stated in that paper. Under similar conditions, Nagaev and Muhamedhanova 
(1968) derived the approximation 

2(1 - m)m"(1 - s) 
1 -9n(s) -2(1 

- m) + g"(l) (1- s) (1 - m") asn oandm 

This is similar to the expression for 1 -f,(b*, c*; s), parametrized in terms of m 
and g"(1) instead of b* and c*. 
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7. Generalizations and extensions 

The main advantages of the bounds derived in this paper are that they apply 
to nearly all Galton-Watson processes, they are good in the region of greatest ap- 
plicational interest (m 1), and yet they are relatively simple. Moreover, the 

f.l.g.f. bounds for a p.g.f. derived in this paper are useful for obtaining information 
about the extinction time distribution of more complex discrete time branching 
processes. A future paper will be devoted to showing how they can be used to 
derive bounds for the non-homogeneous Galton-Watson process and a branching 
process with random environment. The results in this paper apply directly to the 

age-dependent branching process, in the sense that the sizes of the successive 

generations of that process form a Galton-Watson process (see Harris (1963), 
p. 127). 

The approach of bounding a p.g.f. by f.l.g.f.'s is in itself conceptually appealing. 
Spitzer (seeAthreya and Ney (1973)) bounded a p.g.f. tightly within a neighborhood 
of s = 1 by f.l.g.f.'s to prove an important lemma for the critical Galton-Watson 

process. A variation of this approach can be used to derive simple proofs for 

asymptotic results as m -> 1- such as those stated by Seneta (1968), and may be 
useful in other aspects of the theory of branching processes. Lastly, if the p.g.f. 
in some evolving branching process is unknown, we can utilize Stigler's results 

(1971) on the estimation of the p.g.f. g in order to derive asymptotically normal 
estimates (as the number of observed offspring counts increases) of the bounds 
for the extinction time distribution. 

Acknowledgement 

The guidance and advice of Dr. Stephen Stigler is sincerely appreciated. 

References 
ATHREYA, K. B. AND NEY, P. (1973) Branching Processes. Springer Verlag, New York. 

FISHER, R. A. (1930) The Genetical Theory of Natural Selection. Oxford University Press; 
(1958) Dover Publications, New York. 

HARRIS, T. E. (1963) The Theory of Branching Processes. Springer Verlag, Berlin. 
HEATHCOTE, C. R. AND SENETA, E. (1966) Inequalities for branching processes. J. Appl. 

Prob. 3, 261-267. 
NAGAEV, S. V. AND MUHAMEDHANOVA, R. (1968) Certain remarks apropos of earlier 

published limit theorems in the theory of branching processes. (In Russian) Probabilistic Models 
and Quality Control, 46-49. Izdat. FAN, Uzhbekskoi S. S. R. Tashkent. 

POLLAK, E. (1969) Bounds for certain branching processes. J. Appl. Prob. 6, 201-204. 
POLLAK, E. (1971) On survival probabilities and extinction times for some branching proces- 

ses. J. Appl. Prob. 8, 633-654. 
SENETA, E. (1967) On the transient behavior of a Poisson branching process. J. Austral. 

Math. Soc. 7, 465-480. 
SENETA, E. (1968) On asymptotic properties of subcritical branching processes. J. Austral. 

Math. Soc. 8, 671-682. 
STIGLER, S. M. (1971) The estimation of the probability of extinction and other parameters 

associated with branching processes. Biometrika 58, 499-508. 

This content downloaded from 128.227.62.150 on Mon, 21 Oct 2013 16:00:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p.322
	p.323
	p.324
	p.325
	p.326
	p.327
	p.328
	p.329
	p.330
	p.331
	p.332
	p.333
	p.334
	p.335

	Issue Table of Contents
	Advances in Applied Probability, Vol. 6, No. 2 (Jun., 1974), pp. 185-405
	Front Matter [pp.185-186]
	Third Conference on Stochastic Processes and Their Applications
	Introduction [p.187]

	Invited Review and Research Papers
	The Statistical Analysis of Spatial Pattern [pp.188-190]
	Composition and Invariance Methods for Solving Optimal Control Problems [pp.190-191]
	On the Family Structure of Populations [pp.192-193]
	An Approximation Technique for a Curved Boundary Problem [pp.194-196]
	Limit Theory for Stationary Processes via Approximating Martingales [pp.196-197]
	Sojourn Times, Fluctuation and Rare Events; The Role of Jitter [pp.197-200]
	Age-Dependent Branching Processes [pp.200-202]
	The Application of Stochastic Processes in Function Theory [pp.202-205]
	Properties and Applications of Stochastic Processes with Stationary Increments [pp.205-207]
	Queues with Random Service Output [pp.207-208]
	Problems of Group Theory Related to Probability Theory [pp.209-210]
	Some Recent Work on Branching Processes in Random Environments [pp.210-212]
	Survey of Fluctuation Theory [pp.213-214]

	Contributed Papers
	Markov and Semi-Markov Processes
	On Generalizations of the Method of Stages to Ageing and Learning Phenomena [pp.215-216]
	The Spectral Density of a Markov Process [pp.216-217]
	Infinite Divisibility and Stability of Finite Semi-Markov Matrices [pp.217-218]
	An Inequality for the Total Flow in a Dam with Non-Markovian Inputs [pp.218-219]

	Renewal and Diffusion Processes
	Dirac Equation and Dynamics of Brownian Motion [p.219]
	Nearest Neighbour Distances for Equilibrium Renewal Processes [p.220]
	Renewal Theory in Two Dimensions [pp.220-221]
	A Decomposition Result for Diffusions [pp.222-223]
	One-Dimensional Brownian Motion and the Three-Dimensional Bessel Process [pp.223-224]
	Variance at Variance in Eddy Diffusion [pp.224-225]

	Point Processes
	Random Walk Point Processes [pp.225-226]
	Infinitely Divisible Bivariate Poisson Processes [pp.226-227]
	Asymptotic Results for Poisson Cluster Processes [pp.227-228]

	Branching Processes
	Bounds on the Extinction Time Distributions of Some Branching Processes [pp.228-229]
	Asymptotic Properties of the Supercritical Galton-Watson Process [pp.229-230]
	Breakage Mechanisms Branching Processes [p.230]
	Almost Sure Convergence of Galton-Watson Branching Processes in Varying and Random Environments [p.231]
	Age Distribution in Some Size-Dependent Populations [p.232]

	Biological Processes
	The Latent Roots of Some Genetic Drift Models [pp.232-233]
	Percolation Processes and Tumour Growth [pp.233-235]
	Stochastic Model of Gene Decay [p.236]
	Random Systems of Locally Interacting Cells [p.237]
	Evidence for Super-Critical Tumour Growth [pp.237-238]
	Epidemic Models in Non-Homogeneous Populations [p.239]

	Control Theory and Time Series
	A Property of Asymptotic Least Squares Estimates for Moving Average Processes [pp.239-240]

	Limit Theory and Estimation for Stochastic Processes
	Limit Theorems for Some First Passage Times [pp.241-242]
	Maximum Likelihood Estimation in the Birth-and-Death Process [pp.242-244]
	Sharp Upper and Lower Bounds for the Moments of a Martingale [pp.244-245]
	Propagation of Sufficiency and Minimal Sufficiency in Stochastic Processes [pp.245-247]
	Extremal Processes and Record Value Times [pp.247-248]

	Markov Chain and Random Walk Theory
	A Two-Dimensional Random Walk in the Presence of a Partially Reflecting Barrier [pp.248-249]
	Random Walks Conditioned on the Proportion of Time Spent on the Positive Half-Line [p.250]
	Conditional Probability Distributions for Partially Observed Markov Chains [pp.250-251]
	On Keilson's Compensation Method [pp.251-252]

	Queueing Theory
	Some Remarks on Stationary Distributions for the GI/G/1 Queue [pp.252-253]
	The Many Server Queue in Discrete Time [p.253]
	A Basically Poisson Queue with Non-Poisson Output [pp.254-255]
	Stochastic Integral Equations Applied to Telecommunications Traffic without Delay [pp.255-257]
	Properties of Waiting Times of Queues under Various Queue Disciplines [pp.257-258]
	A Non-Homogeneous Hilbert Problem with Applications to Queueing Theory [pp.258-259]

	The Latent Roots of Certain Markov Chains Arising in Genetics: A New Approach, I. Haploid Models [pp.260-290]
	An Age Dependent Branching Process with Variable Lifetime Distribution: The Generation Size [pp.291-308]
	Limit Theorems for Some Functionals of Certain Galton-Watson Branching Processes [pp.309-321]
	Bounds on the Extinction Time Distribution of a Branching Process [pp.322-335]
	The Statistical Analysis of Spatial Pattern [pp.336-358]
	Poisson Process and Distribution-Free Statistics [pp.359-375]
	Renewal Theory in Two Dimensions: Basic Results [pp.376-391]
	Inverses of Extremal Processes [pp.392-405]
	Back Matter



