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 STATISTICAL ANALYSIS OF
 QUALITATIVE VARIATION

 Alan Agresti
 UNIVERSITY OF FLORIDA

 Barbara F. Agresti
 UNIVERSITY OF FLORIDA

 Many variables of interest in the social sciences are mea-

 surable only at the nominal level. That is, they represent types of

 phenomena such as race, ethnicity, religious affiliation, or politi-

 cal party preference. It is sometimes of interest to measure the

 amount of variation, or heterogeneity, within a population with

 respect to one or more of these variables. By a measure of varia-

 tion for a qualitative variable, we mean a description of the dis-

 persion of the population over a number of nominal categories.

 We shall refer to such measures as indices of qualitative variation
 or diversity.

 The ecological sciences have made considerable use of

 204
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 205

 such measures to determine the species diversity in a geographical

 or spatial area. Rex (1973) studied the diversity of gastropod
 species at deep-sea levels, for example, and Sargent and Owen
 (1975) studied similar diversity among moth wing patterns. (See

 also Pielou, 1969, Chap. 18, for a discussion of this type of ap-
 plication.) Identical measures have been developed in linguistics

 for estimating the heterogeneity of populations with respect to the

 native languages of their members (Greenberg, 1956; Lieberson,
 1964).

 In addition, sociological uses of measures of diversity have

 appeared-two primary references are Lieberson (1969) and
 Mueller, Schuessler, and Costner (1977). These measures have

 been applied mainly to the degree of division of labor of a society.

 (Gibbs and Martin, 1962; Grandjean, 1974; Frisbie, 1975; and
 Labovitz and Gibbs, 1964, represent a few examples of this ap-
 plication.) Amemiya (1963) has employed the same type of mea-

 sure to describe "economic differentiation." These measures

 could also be applied to racial or ethnic diversity, religious di-

 versity, diversity in political party preference, or diversity with

 respect to other qualitative variables. As far as we can tell, they

 have not been widely used in sociology, except in measuring the

 division of labor based on occupational diversity. Since much of

 sociology deals with qualitative variables, the measures to be dis-
 cussed in this chapter might have a broader range of application.

 We shall describe two of the most important measures of
 qualitative variation: (1) Simpson's index of diversity and (2)

 Mueller and Schuessler's index of qualitative variation. In the
 next section we define these indices, discuss some of their basic

 properties, and illustrate their use. The sampling distributions

 are given in the following section along with examples of large-

 sample confidence intervals and tests of hypotheses. Then sta-

 tistical methods are presented for comparing two measures of

 qualitative variation and for measuring diversity "between
 groups." Finally, we offer some generalizations concerning the

 measurement and statistical analysis of qualitative variation for a

 cross-classification of two or more nominal variables. Deriva-
 tions of the sampling distributions used in the inferential analyses
 are given in three appendices at the end of the chapter.
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 206 ALAN AGRESTI AND BARBARA F. AGRESTI

 AIEASURLA4; QU ALITA TI LE 1ARIA TIOA

 A commonly used measure of qualitative variation was de-
 veloped by Simpson (1949). This "index of diversity" has been
 widely used in the ecological sciences in studies of species varia-

 tion. (See, for example, Sargent and Owen, 1975, and Rex, 1973.)
 Simpson's index is apparently identical to one first proposed by

 Corrado Gini in 1912 (Lieberson, 1969, p. 815). The same mea-
 sure of diversity has also been "discovered" by others, including

 Greenberg (1956), who calls it the index of linguistic diversity A.

 The same index is referred to as A, (Lieberson, 1969) and MI
 (Gibbs and Martin, 1962) in some sociological applications.

 In order to measure diversity according to this method,

 one must first classify the individual observations into a number
 of categories, say k. One then computes the value

 k

 D = 1 P

 where pi is the proportion of observations in the ith category

 (i = 1, . . ., k). This index gives us the probability that two
 individuals selected at random from the population would be in

 different categories. This interpretation strictly applies if the

 population size is infinite or if the sampling is done with re-
 placement. In that case, an index of D = 0.6 for a classification
 of ethnicity means that the probability is 0.6 that two randomly
 selected individuals have different ethnicity. Conversely, the
 probability of selecting two individuals from the same ethnic
 category would be 0.4. The larger the number of categories and
 the more uniformly dispersed the observations over the categories,
 the higher this index of diversity tends to be.

 To be precise about what is meant by "diversity" as mea-

 sured by this index, we now consider a few of the basic properties
 of D. These can be easily noted from its definition in Formula (1).
 First, the minimum possible value of D is zero, which occurs if
 and only if some pi = 1, and hence ph = 0 for j 5 i. That is, the
 least diverse population is one in which all members of the popu-
 lation are classified in just one category. Second, for a fixed num-
 ber of categories k, the maximum possible value of the diversity
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 207

 index is D = 1 - l/k = (k - 1)/k, which occurs if and only if

 Pi = p2= P' = l/k. That is, for a nominal classification
 with k levels, the most diverse population is one that is evenly
 spread over the k categories.

 A third property is concerned with how the value of D re-
 lates to the relative heterogeneity of the proportions. Let D be the

 value of the index of diversity corresponding to the proportions

 (PI,... I, Pk) for some population, and let D' be the value of the
 index of diversity corresponding to the proportions (p,.. . I,p
 P+i, ... , Pk) for some other population. That is, the two distribu-
 tions are identical except for l of the categories. Now let

 I I

 PT=Zp/i/ = p/

 and suppose that

 pi - TI < -pi i= 1,2,...,l

 That is, the proportions (pi, ... , pi) are each closer to their aver-
 age than the corresponding proportions (pt,.. ,p). Then it is
 easily seen that this implies that D > D', with D > D' if some

 of the inequalities are strict. For example, D > D' when

 (pt,p2,p3,p4) = (0.2,0.2,0.3,0.3) and (Pt,P2,p3,p4) = (0.1,0.3,
 0.3,0.3). As a special case, for ! = k, it follows that D > D' if

 p- l/k < I pi - l/k i = k

 That is, one population is more diverse than another, according
 to this index of diversity, if each proportion for that population is

 at least as close to the overall average l/k as the corresponding
 proportion for the other population.

 Notice that the upper limit for D of (k - 1)/k approaches
 1 asymptotically as the number of categories k increases. In other

 words, the potential diversity increases as the number of levels
 in the classification increases. A community with residents falling
 in six ethnic categories has a greater potential for diversity than a

 community with residents falling into four such categories. For

 additional properties of D, see Bhargava and Doyle (1974) and
 Bhargava and Uppuluri (1 975).

 In some situations, a researcher might prefer to use a mea-

This content downloaded from 
������������128.227.159.199 on Mon, 02 Dec 2024 00:45:49 UTC������������ 

All use subject to https://about.jstor.org/terms



 208 ALAN AGRESTI AND BARBARA F. AGRESTI

 sure that can attain an upper limit of 1 no matter what the num-

 ber of categories. A standardized version of the diversity index D

 is given by

 I (= pi P)/(l - l/k) (2)

 = [k/(k- 1)]D

 That is, we can control for the number of categories in the classi-

 fication by dividing D by its maximum possible value: (k - 1)/k.

 This measure has the same properties as those just discussed for

 D, except that the maximum possible value is 1, which occurs if

 and only if p, = l/k, i = 1, ... ., k. The measure I was apparently
 first introduced by Mueller and Schuessler (1961, pp. 171-179)

 and is usually referred to as the index of qualitative variation

 (IQV). It was also used as an index of economic diversity by

 Amemiya (1 963) and by Labovitz and Gibbs (1 964) in measuring

 division of labor.

 Advantages and disadvantages of standardizing for the

 number of categories are discussed in Lieberson (1969, pp. 860-

 861) and in Mueller, Schuessler, and Costner (1977, p. 177). If

 comparisons are made between groups with the same number of

 categories, then either measure is appropriate, since in each case

 lis the same constant multiple of D. If the groups have different

 numbers of categories, however, and we believe that a larger num-

 ber of categories contributes to greater diversity, then we would

 wish to use the unstandardized index D. Otherwise we would

 conclude, for example, that a population with proportions

 (0.5,0.5), for which I = 1, is more diverse than one with pro-

 portions (0.2,0.2,0.2,0.15,0.25), for which I = 0.99. Basically D
 is a function of both the number of categories and the dispersion
 of the population among the categories, whereas I is just a mea-

 sure of the dispersion of the population among the categories,
 whatever they are.

 An alternative approach to measuring population diver-

 sity is based on the so-called information index, 1iP1 log pi,
 originally developed for use in communications theory. Although

 its properties are considered especially useful by ecologists, it is

 not quite so easy to interpret as D or I. The interested reader is
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 209

 referred to Good (1953), Renyi (1961), and the works of Pielou
 (1967; 1969, pp. 224-233) for details of this index.

 Given a sample of n observations from some population
 classification, one could compute the sample analogs of the diver-
 sity measures,

 k

 D=1 Z2 (3)
 i=l

 and

 ( i= I

 where the '. are the sample proportions of observations in these
 categories. Through simple algebra, it can be seen that D and I
 are related to the statistic used in the well-known chi-square
 goodness-of-fit test when the null hypothesis is

 Ho: pI = P2 = . = Pk = l/k

 For example, if X 2 denotes the value of that statistic in the test
 for this particular null hypothesis, then

 I= - x2/n(k - 1) (5)

 and

 D = 1 - (1/k)(X2/n + 1) (6)

 Thus I (D) is a function of the X2 statistic that falls between 0 and
 1 [ (k - 1 )/k], equaling the upper limit in the extreme case when

 2= 0 (that is, when each sample proportion '. equals the hy-
 pothesized value pi = l/k). In fact, Weiler (1966) proposed an
 "index of discrepancy" designed to measure the deviation of an
 actual population from the population as stated in the null hy-
 pothesis of the goodness-of-fit test. In the special case in which
 the null hypothesis is that of equal proportions, Weiler's measure
 02 reduces to

 02= x2/n(k- 1) = 1 -I (7)

 That is, a high index of discrepancy corresponds to a low amount
 of diversity in the population. This complement of the index of
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 210 ALAN AGRESTI AND BARBARA F. AGRESTI

 qualitative variation is also shown by Mueller, Schuessler, and
 Costner (1977, p. 180), to equal the ratio of the variance of the k
 frequencies about their mean to the maximum possible such
 variance.

 To illustrate the calculation of these measures, we have
 taken some data from Agresti (1976) that describe the major oc-
 cupational-class breakdown of Walton County, a farming county
 in Florida's panhandle, in the years 1870 and 1885. The data
 came from samples of census manuscripts for those years.'
 Table 1 shows the sample distributions in the classifications for

 T'ABLE I

 Occupational Status by Race and Year in W'alton County, Florida

 White White Black Black

 Occupational Status 1870 1885 1870 1885

 Professional 0.019 00(99 0.007 0.(0(
 Manager, clerical, proprietor 0.029 0.093 0.000 0.000
 Skilled 0.086 0.040 0.007 (.00(
 Unskilled 0.0-53 0.073 0.046 0(049
 Laborer 0.45 5 0.517 0(.776 0.896
 Farmer 0.359 0.179 0.164 0.0,56

 Sample size 29W) 1 I 1 2 144

 the four samples: white 1870, white 1885, black 1870, black 1885.
 Records for the entire black population were obtained in each
 year, whereas a systematic random sample of records for the
 white households yielded the sample of white individuals with
 occupations described in Table 1.

 To compute the index of diversity, we find for the white
 population in 1870 that

 6

 p2 = 0.0192 + 0.0292 + 0.0862 + 0.0532
 i=t

 + 0.455 2 + 0.3592 = 0.347

 Then the index of diversity is D = I - 0.347, or 0.653. This
 means that the probability of a randomly selected pair of in-
 dividuals coming from different occupational levels, for the white
 sample in 1870, is 0.653. Similarly, one finds that the indices of

 I Florida held a special census in 1 885.
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 211

 diversity for the white sample in 1885, the black population in

 1870, and the black population in 1885 are 0.675, 0.368, and

 0.192, respectively.

 The maximum possible value for D when there are k = 6

 categories is 1 - l/k = 1 - 1/6 = 0.833. Thus the standardized

 value of D for the 1870 white sample, which is the index of quali-

 tative variation, is

 1 = 0.653/0.833 = 0.784

 Similarly, the values of the index of qualitative variation for the

 white sample of 1885, the black population of 1870, and the black

 population of 1885, respectively, are 0.811, 0.442, and 0.230.

 Notice that the black population became much less diverse in

 occupational distribution while the white population stayed at

 about the same level of diversity over this 15-year period. In ad-

 dition, in each year, the black population appears to have been

 much less heterogeneous than the white with respect to occupa-

 tions.

 If one knows, theoretically, the total set of categories for a

 variable, then that total set should be used as the basis for stan-

 dardizing the D index, even though there may be no observations

 in some of the categories. For example, even though the entire

 black population of 1885 was concentrated in just three cate-

 gories, the maximum possible diversity for this classification cor-

 responds to a uniform distribution over the six categories of

 occupational status, so k = 6. In the sampling problems we con-

 sider next, we shall assume that k is known; that is, before ob-

 taining the sample, the nominal classification is well defined. If k

 is unknown and the number of categories sampled is naturally

 treated as a random variable (as is often the case in ecological

 problems, where the total number of species may be unknown),

 the following sampling theory is not appropriate.

 STA TISTICAL INFERENCE

 In this section we explain how to make the standard sta-

 tistical inferences about the values of the diversity index D and its

 standardized value, the index of qualitative variation I. We shall

 suppose that a random sample of n measurements is selected from
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 212 ALAN AGRESTI AND BARBARA F. AGRESTI

 the population of interest. It can be shown that D and I, as de-

 fined in Formulas (3) and (4), are just slightly biased estimates of

 D and I and that unbiased estimates (Good, 1953) are

 [ n/ (n - 1) ] D and [ n/ (n - 1 ) ] I. The fact that D and I are
 slightly biased need not concern us, since we are dealing with

 large-sample approximate sampling distributions for these

 indices.

 The exact variance of D was given by Simpson (1949). For

 large samples, this variance is approximately (4 = o2/n, where

 a2can be estimated from the sample observations by

 2=[Z4 [p3 (kp2] (8)

 Suppose, moreover, that 0 < D < (k - 1)/k, corresponding to
 0 < I < 1. Then, from standard distribution-theory arguments,

 it follows (see Appendix A) that for large sample sizes

 v'W(b - D)/a has approximately the standard normal distribu-
 tion. This result is also reported in a paper by Van Belle and

 Ahmad (1974).

 Therefore a large-sample 100 (1 - a) percent confidence

 interval for D, when 0 < D < k/ (k - 1), is given by the interval

 D Z.</2Y/V\/n (9)

 where Zg,/2 iS the Z value corresponding to the a/2 and 1 - a/2
 quantiles of the standard normal distribution. In calling this a
 large-sample 100(1 - a) percent confidence interval, we mean
 that the probability that this interval includes D converges to
 1 - a as the sample size increases indefinitely. Alternatively, if
 one wished to test the null hypothesis Ho: D = Do, where

 0 < Do < (k - 1 )/k, one could use the test statistic

 Z= V/n(D - Do)/a (10)

 which has the standard normal distribution under Ho, for large
 sample sizes. Conducting this test with alternative hypothesis
 Ha: D 5? Do at the a significance level is equivalent to noting
 whether the number Do falls within the 100(1 - a) percent con-
 fidence interval for D.

 The sample size n that is needed for the standard normal
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 213

 approximation for V\n(D - D)/& to be adequate has not been
 investigated. We would conjecture that the convergence of the

 sampling distribution to the standard normal would be relatively
 rapid, unless one of the p- is very close to 1 (in which case D could

 equal zero with moderate probability even for large n). The small-

 sample distributions of some indices of diversity have been in-

 vestigated by Bowman and others (1971), though primarily for

 the case pi = - * * = Pk
 To illustrate the foregoing discussion, we return to the

 data presented in Table 1. For the white sample in 1870, we noted

 that the index of diversity was D = 0.653. For the sample2 pro-
 portions given in the table,

 k k

 Z p= =0.141 pi= 0.347
 i=1i=

 and thus

 = 4[0.141 - (0.347)21 = 0.083

 = 0.288

 A 95 percent confidence interval for D is

 D ? 1.96 /V = 0.653 ? 1.96(0.288)/ 209

 = 0.653 ? 0.039 = (0.614,0.692)

 Similarly, using the sample proportions for the white population

 in 1885, one attains &2 = 0.163, so that a 95 percent confidence
 interval for the index of diversity for that group is 0.675 ?
 0.064 = (0.611,0.739).

 Occupational data were obtained for the entire black
 population in 1870. For that group, the index of diversity was
 0.368. To test whether the 1870 white population had the same

 diversity as the black population, we could test the null hy-

 pothesis Ho: D = 0.368 against Ha: D 5? 0.368, where D rep-
 resents the index of diversity for the entire white population of

 2For simplicity of exposition, we are omitting the use of a finite popula-
 tion correction, although 20 percent of the white population was sampled in this
 example.
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 214 ALAN AGRESTI AND BARBARA F. AGRESTI

 Walton County in 1870. The test statistic is

 = 209(0.653 - 0.368)/(0.288) = 14.31

 Thus we would feel very confident in concluding that the white

 population enjoyed a greater degree of occupational diversity

 than the black population in 1870. A similar conclusion applies to

 1885.

 Since the index of qualitative variation I is related to D by

 I = Dk/ (k - 1), inference procedures for I follow directly from

 those for D. For example, a 100(1 - a) percent confidence in-

 terval for I is

 I =i= .12 [kl(k - l)]a/ (ll)

 The hypothesis Ho: I = Io can be tested by using the test sta-
 tistic

 z= Io1() (12)
 = [k/(k - 1)]a (12)

 For the 1870 white population I = 0.784, and a 95 percent confi-

 dence interval for I is (0.737,0.831), which is simply the interval

 for D multiplied by k/(k - 1) = 1.2. The test of Ho: I = Io

 yields the same Z value as that of Ho: D = D(, where Io =
 Dok/ (k - 1) is the hypothesized value of the index of qualitative
 variation corresponding to the hypothesized value Do of the
 diversity index.

 Notice that the normal sampling distributions of D and I

 discussed in this section apply when 0 < D < (k - 1)/k, or

 0 < I < 1. If D = 0 (I = 0), then pi = l for some i, so = 1

 with probability 1 for all n > 1 for that category i, and hence

 D = I = 0 with probability 1. If one observes a D > 0 in some

 sample, then of course one can reject Ho: D = 0, with a zero
 probability of a type I error. If D > 0, the probability that D = 0

 converges to zero as the sample size increases.

 Now if D = (k - 1)/k(I = 1), D could not be normally

 distributed about D, since D < D (I < I) with probability 1. In

 this extreme case, pi = P2 = Pk= p = l/k. And since x2 -
 n[k(l - D) - 1] is the statistic used in the chi-square goodness-

 of-fit test of Ho: P =p =* = =/k, it follows that for a
 large sample size
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 215

 n[k(l - D) - 1] = n(k - 1)(1 - 1) (13)

 has approximately the chi-square distribution with k - 1 degrees

 of freedom. Thus one can test the hypothesis IHo: D = (k - 1)/
 k(I = 1) of greatest possible diversity using this test statistic.

 Again, using the data from the white population in 1870 to il-

 lustrate, the test statistic for testing Ho: D = 0.833 (I = 1) is

 n[k(l - D) - 1] = 209[6(1 - 0.653) - 1] = 225.85

 which is based on 5 degrees of freedom. This statistic indicates
 that the white population of 1870 did not have maximum hetero-

 geneity with respect to occupation. Of course, in nearly all practi-

 cal applications we would not expect the population to exhibit the

 maximum or the minimum diversity. It would usually be much

 more informative to compute a confidence interval for the value

 of D or I.

 QUALITATIVE VARIATION FOR TWO GROUPS

 In many situations, it is of interest to compare D or I

 values for two or more populations. We might wish to compare

 the diversity on occupational status of two groups in some com-

 munity, or the diversity of the occupational structures of two

 communities, or the diversity of the same community at two

 points in time. If independent random samples are chosen from

 the populations of interest, then confidence intervals and tests of

 hypotheses for the difference between D values or I values for two
 populations can be obtained using the sampling variances given
 in the previous section.

 Suppose that a random sample of size ni is selected from
 the first population and that these observations are classified ac-
 cording to a scheme with k1 categories. Denote the population

 proportions for the k1 categories by lpt., 1 < i < ki and the
 index of diversity by D1. Now suppose that another random sam-
 ple of size n2 is selected from the second population and classified

 into a set of k2 categories. The corresponding proportions and
 diversity index for the second population are denoted by

 IqI, 1 < i < k2l and D2. Now if n1 and n2 are relatively large, it
 follows from the previous section that a 100(1 - a) percent con-
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 216 ALAN AGRESTI AND BARBARA F. AGRESTI

 fidence interval for the difference D2 - DI between the two popu-
 lation diversity indices is

 (D2 - D,) Z gZ/2 (42/ni) ? (&2/n2) (14)
 where

 a2l = 4 [ . 0i3_( 2 2 =4 [qi3_ q,2 (15)

 The corresponding 100(1 - a) percent confidence interval for the

 difference 12 - I, between the two indices of qualitative variation
 is

 (12 II) + z a2( ,)2 a + (k2 )2 02 (16)

 If interest focuses primarily on testing the hypothesis
 Ho: D1 = D2 of identical diversity for the two groups, one could
 use the test statistic

 /(4D/n) + (D2/n2) (17)
 which has approximately the standard normal distribution under

 Ho. To test the hypothesis Ho: D2 - DI = c, the numerator of
 the Z test statistic would be replaced by (D2 - D1) - c. Notice
 that Ho will be rejected in favor of Ha: D2 - D1 5? c at the a
 significance level if c does not fall in the 100(1 - a) percent con-
 fidence interval for D2 - D1. If there are s samples (s > 2), one
 could test Ho: DI = D2= = D, using the test statistic

 2= [n(D, - D)2/ &2] (18)

 which has approximately the chi-square distribution with s - 1

 degrees of freedom under Ho if all s sample sizes are large, where

 D = [~ nb^2j1/[i ni&j (19)

 The reasoning for this test (see Appendix A) is similar to that
 given by Goodman and Kruskal (1963, p. 318) for a several-
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 217

 sample test for measures of association. The analogous tests about

 I values yield the exact same values of the test statistics if the

 number of categories in each classification is the same. Again,

 these inference procedures are appropriate as long as the indices

 are not equal to their boundary values.

 To illustrate these procedures, let us return to the data in

 Table 1 and compare the diversity indices DI and D2 of the white
 population of Walton County in 1870 and 1885. The samples

 were independently selected from the two populations. We have

 seen that D1 = 0.653 and D2 = 0.676 and that &l = 0.083 and

 2 = 0.163. Thus a 95 percent confidence interval for the change
 in diversity of the white occupational structure is

 (0.676 - 0.653) ? 1.96 V(0.083/209) + (0.163/151)

 = 0.023 + 0.075 = (-0.052,0.098)

 The corresponding 95 percent confidence interval for the change

 in the index of qualitative variation 12 - Al is

 (0.811 - 0.784) + 5 1.96V V) (209)+ + 5 151

 = 0.027 ? 0.090 = (-0.063,0.117)

 Thus, for these sample sizes, there is insufficient evidence to con-

 clude that there was a change in occupational diversity from

 1870 to 1885 for the white population in Walton County.

 In examples such as this one, a hypothesis test might be

 employed for testing for a change in D or for testing whether the

 change is different from the observed change for the black popu-

 lation (D2 - D = 0.192 - 0.368 = -0.176). For these data, we

 would not reject the null hypothesis of no change in diversity for

 the white population using the usual significance levels, but we

 would reject the null hypothesis that the change in diversity for

 the white population is the same as the corresponding change for

 the black population. Even if the white population became less di-
 verse in occupational status from 1870 to 1885, it seems unlikely

 that the decrease would be as great as that for the black popula-
 tion.

 This simple approach to making inferences about dif-

 ferences in qualitative variation is completely unlike the one
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 218 ALAN AGRESTI AND BARBARA F. AGRESTI

 recently proposed by Swanson (1976). He appears to have been
 unaware of the work that has been done on the sampling vari-

 ances of these measures (Simpson, 1949; Good, 1953; Van Belle
 and Ahmad, 1974), and the test statistic he proposes is invalid.3

 A somewhat different way to measure diversity for two

 groups involves measuring diversity '"between groups." Lieberson

 (1969) defined the diversity between two populations as being the
 probability, when one member is randomly selected from each

 population, that the two members are classified differently on the
 variable of interest. Now if the same classification scheme of k

 categories is used for each of the two populations, then the prob-
 ability that the two individuals are in the same category is

 .,=piqq, where Jpij and JqJ are the sets of population pro-
 portions for the two groups. Thus the index of between-groups

 diversity suggested by Lieberson is just

 k

 Db =- - pq (20)

 A related index, 1 - Db, was used by Holgate (1971) to

 study the drift over time in the proportion of isonymous mar-
 riages-that is, marriages between individuals having the same
 surname. In that case, the two populations are the collections of
 men and women in a given generation.

 The following properties of the measure Db are easily ob-
 served. First, the two groups are the most diverse with respect

 to each other if pi - 0 whenever q1 > 0 and q1 = 0 whenever pi >
 0 that is, if the categories into which the observations in the first
 population fall are mutually exclusive of the categories into which
 the observations from the second population fall. For this extreme
 case, Db = 1. The two groups are least diverse relative to each
 other when p, = qi for some category i-that is, when all the
 members in both the populations are classified in the same cate-
 gory. In that extreme case, Db= 0. Notice that when pi q=,

 = 1, . .., k, then

 k k k

 Db = 1 - E piq, - 1 - Ep = 1 2 E q2

 3Among other difficulties, Swanson's assumption that the distribution
 of the expanded binomial random variable is normal is not even approximately
 true when the number of categories is small.
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 219

 so that Db = DI = D2. In other words, when each population has
 exactly the same distribution on the nominal classification of in-

 terest, then the "within-group" indices of diversity DI and D2 are
 identical to the "between-groups" diversity Db. In particular,

 pi= = = 1 for some category i leads to D1 = D2 = Db = 0, and
 pi= q = l/k for 1 < i < k leads to Di = D2 = Db = 1 - l/k.
 Notice, however, that the fact that Di = D2 is not enough by it-
 self to imply that Db has the same value (as when pi = 1, q1 = 1
 (i # j), so that DI = D2 0 O, but Db = 1). Also, unlike the
 within-group index of diversity D, the measure Db can attain an

 upper value of 1, so there is no need to define a standardized
 version.

 Using similar arguments (see Appendix B) to those that

 led to the sampling distribution of D discussed in the previous

 section, we can show that n1-i+n2(Db - Db)/&b has approxi-
 mately the standard normal distribution for large samples n1 and
 n2, when 0 < Db < 1, where

 k

 Db= 1 - q (21)

 and

 ( n, + E2 k + (ni n2) E ,P (n (i + n2)

 (22)

 It follows that a large-sample 100(1 - a) percent confidence in-
 terval for Db is

 / k k

 D 4 V/ - +M I (n i + n 2) ( - Dh ) 2 2
 Db 4+ 'Za/2 ZA + = __ (n ? fl)1-D) (23)

 ni n2 nin2

 Furthermore, the null hypothesis Ho: Db = D (0) (O < D () < 1)
 can be tested using the test statistic

 n-i +2 D(Db - D h)/ab (24)

 for large sample sizes. Clearly, if Db = 1, then Db = 1 with prob-
 ability 1; and if Db = 0, then Db = 0 with probability 1. Thus one
 would reject Ho: Db = 1 whenever Db < 1 and reiect Ho: Dh = 0
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 220 ALAN AGRESTI AND BARBARA F. AGRESTI

 whenever Db> 0. The probability of a type I error would be zero

 in each case.

 To illustrate these formulas, let us consider the between-

 groups diversity for the white population in 1870 relative to that

 in 1885. Using the values of {fr- and {"Il calculated when Dt and
 D2were obtained, we have

 k

 pzqi = (0.019)(0.099) + + (0.359)(0.179) = 0.311

 so that Db = 0.689. That is, the probability is 0.689 that two in-

 dividuals selected at random, one from the white sample of 1870

 and one from the white sample of 1885, will be in different oc-

 cupational classes. Also ni = 209, n2 = 151, Z.=tpz = 0.134, and
 EZk=tqfi2 = 0.130, so that a 95 percent confidence interval for Dbis

 0.689 + 1.96 0.134 +0.130_ (360) (0.311)2
 209 151 (209)(151)

 = 0.689 + 0.039 = (0.650, 0.728)

 One might note that the true value of the between-groups

 diversity index as calculated for the black population of Walton

 County in 1870 and 1885 is

 1 - [(0.007)(0.000) + + (0.164)(0.056)] = 0.293

 which reflects the very high coricentration of blacks in the laborer

 category at both times. It is again clear that the measure for the

 white populations is different from the known value of 0.293 for

 the black population, although in some examples one might wish

 to compute the Z test statistic to report the attained significance
 level at which such a conclusion holds.

 In some situations, it may be of interest to compare the

 diversity index D for a group to the between-groups diversity in-

 dex Db for that group and some other group. For a particular

 classification, for example, one might wish to compare the prob-

 ability that two members selected at random from the group are
 in different categories to the corresponding probability that a

 pair of individuals selected at random from the two groups (one

 from each) are in different categories. Lieberson (1969, p. 852)
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 221

 mentions this type of comparison as a means of analyzing politi-

 cal cleavage. He notes that one could compare the political cohe-

 sion within each socioeconomic group with the political bonds

 existing between socioeconomic groups. Another natural applica-

 tion arises in comparing language diversity within a country to
 language diversity between countries.

 As a statistical description of such a difference, one could

 calculate a confidence interval for Dt - Db, or D2- Db, where

 Di and D2 are the within-group indices of diversity for the two
 groups. Using the same notation as applied previously, a large-

 sample 100(1 - a) percent confidence interval for

 (25)

 is (see Appendix C)

 (Di - Db) 4 4a./2

 k k

 / z -q 2i&) - [2Dt- (1 ? Db)]A E qzp - [1 - Db]

 t ~~~~~ni n2

 (26)

 The Z test statistic for testing Ho: Dt = Db is just the sample
 difference (Dft - Db) divided by its estimated standard error,
 which is the square root term in Formula (26). These results are

 appropriate if 0 < Di < (k - 1)/k or 0 < Db < 1 and the two sam-
 ples are random and independently obtained.4 The analogous

 confidence interval and test for D2 - Db has the same form with

 the {i -I and {lqi, D1 and D2, and n 1 and n 2 interchanged.
 We shall again use the white populations in 1870 and

 1885 to illustrate the computations. Now Dt 0.653 and Db =

 0.689, and ZiZf (qi - 2fi = 0.176, Z iq - 0.130, and Z=i
 pzqi = 0.311. Thus a 95 percent confidence interval for Db - Di is

 4Notice, though, that Df and Db are not statistically independent.
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 222 ALAN AGRESTI AND BARBARA F. AGRESTI

 (0.689 - 0.653) ? 1.96

 l/0.176 - [2(0.653) - (1.689)]2 0.130 - (0.311)2

 V 209 ? 151

 - 0.036 4 0.037 = (-0.001,0.073)

 Since D2 = 0.676, Z=.q(PI - 2q)2 = 0.179, and Z. =piq i =
 0.134, one can verify that a 95 percent confidence interval for

 Db - D2 is 0.013 + 0.049 = (-0.036,0.062). That is, two white

 individuals chosen at random from Walton County, one each in

 1870 and 1885, are not necessarily more likely to have different

 occupational levels than two white individuals both chosen at

 random in 1870 or both chosen at random in 1885 (because the

 intervals contain zero).

 M UL TI VARIA TE GENMERALIgA TIONS

 Lieberson (1969) has introduced generalizations of the

 index of diversity D and the between-groups index of diversity

 Db for the situation in which the populations are cross-classified

 according to two or more nominal variables. In this section we

 introduce these indices, describe their properties, give an exam-

 ple of their computation, and illustrate large-sample confidence

 intervals for their values.

 Lieberson (1969, p. 853) defines the multivariate exten-

 sion of the index of diversity D to be the "average proportion of

 disagreement between pairs on the characteristics under study"

 when two observations are randomly chosen. To be more precise

 about the meaning of this index, we must introduce additional

 notation. Suppose we are considering the cross-classification of

 m variables and the Ith of these variables has k1 levels, I = 1,
 2, .. ., m. Then there are k x k2 x ... x km cells in the cross-

 classification. An m-tuple i = (i1, 12, . ., ,m) is used to represent
 the cell in the cross-classification corresponding to level it of the
 first variable, level i2 of the second variable, ..., and level im of the

 mth variable. The symbol pi denotes the proportion of the popula-
 tion classified in cell i. If two individuals are selected at random

 from the population, then the probability that the first is in cell

 i and the second is in cell j is pipj-
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 223

 To form the multivariate index of diversity, the probability

 of each possible type of pairing is multiplied by the proportion of

 the m variables for which the pairs have a nonidentical categoriza-

 tion, and then this is summed over all possible pairs. To elabo-

 rate: For a member in cell i and a member in cell j, the proportion

 of nonidentical attributes is the proportion of positions in i and j

 for which 1i, Ji. We consider all such pairs of cells for the two
 members, and we weight the proportion of nonidentical attributes

 for a particular pair by the probability pipJ of classification in

 those cells. When this weighted proportion of nonidentical at-

 tributes is summed over all possible pairs of cells, we get the

 average proportion of disagreement between pairs selected ran-

 domly (with replacement) on the m characteristics.

 Lieberson (1969, p. 855) gives a formula for the multi-

 variate index of diversity D that is somewhat simpler to use for

 computation than the definition just given. His formula is

 7kl k2 km

 D =1- _?( 2 + p2? Z .m (27)

 Notice that - is simply the sum of squares of the marginal

 proportions in the ki categories of the first variable; the other
 sums refer to the corresponding sum of squared marginal propor-

 tions over the categories of each of the other variables.

 The basic properties of D are readily seen from the com-

 puting formula (27). Notice that the value of D just depends on

 the marginal proportions of each of the m variables, not on the

 distribution among the cells of the cross-classification. Let D(l),
 D (2) ,..., D (m) denote the univariate indices of diversity corre-
 sponding to the m marginal distributions-that is, D(l) - 1 -

 kl 2
 Z=tp... and so forth. Then

 D = 1 - [(1 -D(1)) + + (1 - D(m))]/m

 = (D(l) +? + D(m))/m (28)

 In other words, Lieberson's multivariate index of diversity is

 just the simple average of the marginal univariate indices. Thus,

 for the univariate case (m = 1), D is exactly the Simpson index

 of diversity discussed in previous sections of this chapter. It fol-
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 224 ALAN AGRESTI AND BARBARA F. AGRESTI

 lows that the multivariate index D = 0 if and only if pi = 1 for
 some i, in which case D(i) = 0 for all i = 1, .. ., m. Also

 D < 1 - (l/kl + 1/k2 + *. ? l/km)/m (29)

 which is the average of the upper bounds (1 - l/k1) for the uni-

 variate indices. This upper bound for D is achieved when the

 marginal distribution for each variable is evenly dispersed over

 the categories for that variable. The index D could be divided by

 its maximum possible value to get an adjusted index that takes

 on values between 0 and 1. Such a measure would be a multi-

 variate extension of the index of qualitative variation.5 Of course,

 as the numbers of categories (k1, . .k) get larger, the upper

 bound for D approaches 1.

 To illustrate the computation of the multivariate version

 of D, we consider the data in Table 2 representing the relation of

 occupational status to place of birth for the white sample in 1870.6

 TABLE 2

 Occupational Status by Place of Birth and Year for White Adults in

 Walton County, Florida

 1870 1885

 Florida Non- Florida Non-

 Occupational Status natives natives Total natives natives Total

 Professional 0.0((0 0.(15 (.(15 0.042 0.042 0.085

 Manager, clerical, proprietor 0.(0(0 0.021 0.021 0.025 0.051 0.076
 Skilled (.(01( 0.077 0.087 0.008 0.034 0.042

 Unskilled 0.031 0.026 0.05 56 0.000 0.042 0.042

 Laborer 0.215 0.210 0.426 0.195 0.381 0.576

 Farmer 0.082 0.313 0.395 0.076 0.102 0.178

 Total 0.338 0. 662 0.347 0.653

 Sample size 195 118

 Let variable 1 represent occupational status and variable 2 rep-

 resent place of birth. Denote the multivariate index of diversity

 for this group by D1. Then we have m = 2 variables, with k, = 6
 levels for the first and k2 = 2 for the second. Also

 5The index defined in this manner would not, in general, be the same as
 the average of the univariate indexes of qualitative variation.

 6This is a smaller sample than those in previous examples, since informa-
 tion on place of birth was not available for all individuals in the original sample.
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 6

 Z p. = (0.015)2 ? *. ? (0.395)2 = 0.349

 2

 Z p 2 (0.338) ? (0.662) 0.552
 i=1t

 so that

 D, = 1 - (0.349 + 0.552)/2 = 0.549

 That is, for two individuals selected at random with replacement
 from the white sample in 1870, the average proportion of the two
 variables on which the two individuals differ in classification is

 0.549. Similarly, using the data for the white sample in 1885, one

 can verify that z,=ilq. = 0.380, 1.=Iq2i = 0.547, and D2 = 0.537.
 The inference procedures for the multivariate index are

 direct extensions of the corresponding procedures for the uni-
 variate diversity index. A large-sample 100(1 - a) percent con-

 fidence interval for D, when a simple random sample is taken

 from the population cross-classification, is given by

 D ih / a/ V'n (30)

 where the expression (see Appendix A) for 02 iS

 a2 = (4/2) M + + )...I )2 4(1 _ P)2 (31)

 The term in the brackets is a sum taken over all k1k2 ... km cells
 in the cross-classification. For each cell, one multiplies the pro-

 portion in that cell by the square of the sum of the proportion of
 observations having the same category on variable 1, the propor-
 tion of observations having the same category on variable 2, and

 so forth.

 Consider, for example, the data in Table 2 for the white

 population in 1870. For these sample proportions,

 ?+ fPi i2)2 = (0.010)(0.338 + 0.087)2

 + ? + (0.313)(0.662 + 0.395)2

 = 0.848

 Also m = 2, n1 = 195, and Dt = 0.549, so that a2 = 0.848 -

 4(1 - 0.549)2 = 0.034 and 'a = 0.185. An approximate 95 per-
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 226 ALAN AGRESTI AND BARBARA F. AGRESTI

 cent confidence interval for D1 is given by

 0.549 ? 1.96(0.185)/V/195 = 0.549 + 0.026 = (0.523,0.575)

 To compare the multivariate diversity indices Di and D2
 for two populations based on independent random samples of

 size n, and n2, one could compqte the confidence interval for their
 difference, which is

 (D2 - D1) + Z./2 (31/fl) ? (31/f2) (32)

 where 31 and 32 are computed according to Formula (31) for

 the two samples. To test for the equality of s multivariate diversity
 indices, one could use the same chi-square test as described by

 Formula (18). This test and the intervals (Expressions 30 and 32)
 are valid as long as the values of the indices are strictly between
 their boundary points.

 Lieberson (1969) also introduced a multivariate analog
 of the measure of diversity Db between two populations classified

 according to the same scheme. This index represents the average
 proportion of nonidentical attributes between pairs for the char-

 acteristics under study when one observation is randomly drawn
 from each of the two populations. Lieberson presents the com-

 puting formula for this multivariate version of Db of

 /kt k2 km \ I

 Db = |pi..qi_ + pE ... q.i.. + **+E iqi

 (33)

 The terms in parentheses represent the sum, over all the marginal
 categories of all the m variables, of the product of the proportions
 of the first and second population in each category.

 It is easily seen that Db is just the simple average of the
 between-groups diversity indices for the m pairs of marginal dis-
 tributions of the m variables. In the univariate case, it reduces to
 the index Dbpreviously considered. The index can take values be-

 tween 0 and 1. The value of 0 occurs if and only if pi = qi = 1 for
 some cell i. The value of 1 occurs if and only if the observations
 for one population fall in completely different categories on all
 variables than the observations for the other population. The
 larger the value of Db, the less is the tendency for pairs chosen at
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 227

 random from the two populations to share the same attributes on

 the m variables-that is, the greater the diversity of the two groups

 relative to each other.

 For the bivariate classification of occupational status and

 place of birth for the white samples of 1870 and 1885, m = 2,

 6

 E - .. = (0.015)(0.085) + + (0.395)(0.178) = 0.324

 and

 2

 Ep iq-.i = (0.338) (0.347) + (0.662) (0.653) = 0.550

 Thus

 Db = 1 - (0.324 + 0.550)/2 = 0.563

 In other words, for a randomly selected white individual from

 the sample of 1870 and a randomly selected one from the sample

 of 1885, the expected proportion of nonidentical attributes is

 0.563 for this bivariate classification.

 For large samples ni and n2 from the two populations, a
 100(1 - a) percent confidence interval for Db(O < Db < 1) iS
 given (see Appendix B) by

 Db 4 Za/2Ob/Nfln1+ nl2 (34)

 where

 0 [(2 ni + f2) + ? ' 2

 (ni' + n2) E j ^ j -

 P ...+ J )2]/m2 - (1 -fD) 2(ni + n2)2/In2 (35)

 In Table 2, for which nt = 195 and n2 = 118, the first summation
 in the estimated variance expression is

 (0.010)(0.042 +0.347)2?+ + (0.313)(0.178 +0.653)2=0.814

 The second summation is

 0.042 (0.015 + 0.338)2 + + (0.102) (0.395 + 0.662)2 =0.813
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 Thus

 =b 195 (0.814) + 118 (0.813)3/4

 - (1 - 0.563)2(195 + 118)2/(195)(118) = 0.053

 and 0b = 0.230. A 95 percent confidence interval for Db iS given
 by

 0.563 ? 1.96 (0.230)/ 313 = 0.563 ? 0.026 = (0.537, 0.589)

 In the multivariate case, one could also give a confidence

 interval for the difference in the indices Di - Db or D2 - Db. This
 interval would describe the difference between the average pro-

 portion of disagreement within a population and the average
 proportion of disagreement between that population and another

 one for the attributes in the cross-classification. The derivation

 of the sampling distribution in this case and the corresponding

 large-sample confidence interval are given in Appendix C.

 COvNCXL LSIOA"N

 We have now completed our presentation of methods of

 describing and making large-sample inferences about popula-

 tion heterogeneity with respect to qualitative variables. We have

 shown how to measure and estimate population diversity on a

 one-variable classification for one, two, and several groups. A

 measure of between-groups diversity was defined, and its sam-

 pling properties were considered. In addition, we have considered

 the statistical properties of analogous multivariate indices, where

 diversity is measured with respect to a cross-classification of

 nominal variables.

 These measures of diversity, as noted, have been applied

 in several disciplines, particularly ecology. We believe they can

 also be of value to sociologists in a variety of applications. In the

 examples analyzed in this chapter, some interesting conclusions
 can be made about the postbellum status of blacks in a Southern

 county. Most notably, the occupational diversity for blacks de-

 clined sharply in the decades following the emancipation of

 slaves, while the corresponding white occupational diversity re-
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 229

 mained about constant. It might also be useful in many applica-

 tions to correlate indices such as these with indices representing

 other social phenomena, such as crime rates or measures of in-

 equality. It is hoped that drawing together the various measures

 of diversity and presenting their sampling theory within one

 chapter will be helpful to researchers interested in describing or

 estimating qualitative diversity in a population.

 APPENDIC'ES

 The derivations of the large-sample behavior of D, Db,

 and D - Db follow the standard methods used by Goodman and

 Kruskal (1963, p. 359) for bivariate measures of association. The

 derivation in each of the three appendices is based on the fact
 that the diversity indices are functions of a collection of sample

 proportions that are jointly normally distributed for large sam-

 ples. We just consider the case of "multinominal" random sam-

 pling from the cells of the classification. This case corresponds

 to random sampling from an infinite population or random

 sampling with replacement from a finite population. None of the

 marginal frequencies in the cross-classification (for the multi-
 variate case) are treated as fixed.

 Appendix A:
 Sampling Distribution of D

 We shall derive the sampling distribution of D for the gen-

 eral multivariate version, for which

 nbT(D-D) = n

 -kl km

 2t -p2.. + E(p2 i -2.) /

 from Equation (27). This quantity is a continuous function of the

 sample proportions {pi}, with continuous first partial derivatives.
 Since the sample proportions are asymptotically jointly normally

 distributed, V\n(D - D) is itself asymptotically normally dis-
 tributed with mean zero and variance a2 = d' I d, where I is
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 230 ALAN AGRESTI AND BARBARA F. AGRESTI

 the covariance matrix of the {VInpi and d is the vector of first
 partial derivatives of D with respect to the { evaluated at {pi.

 Now the covariance between V/npb and V/npj is bijpi -
 pipj, where bij = 1 if i = j (that is, if ii= jI, for 1 < I < m) and
 bij = 0 otherwise. Also, for arbitrary i = (i't, * * im),

 dD = -2(p1. ? ** ? p m)/m
 3pi PI

 Thus the asymptotic variance of VIn (D - D) is

 d' X d =42 E (pi +*** + P .m)(Pj*+ ** *+.. im)
 m i i

 (bijpi - pipj)

 4{ Pi(pi + + p ..m )2 m i

 pi (Pi,... + ... +p im)2

 Lastly,

 ZPi(Pi... + + p ...)
 kt km

 p2. + . .. + 2 i=m( -D) i=t1i=t
 so that

 2= 2 E pi(pit + + p...im)2- 4(1 D2
 m i

 For the univariate case (m = 1), this reduces to

 52 2 :E p 3 _ D)2] 42 4 z>(1 - D)

 Thus, for large samples, D is approximately normally dis-
 tributed about D with variance a2/n. This fact is of use as long as
 a2> 0; for example, in the univariate case, whenever 0 < D <
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 231

 (k - 1)/k. For two independent random samples of sizes ni and

 n2, it follows that Df - D2 is approximately normally distributed
 about Di - D2 with variance al2/n, + a2/n2. For large samples,
 the estimated variances can be substituted in formulas for con-

 fidence intervals and tests of hypotheses by virtue of Slutzky's

 theorem.

 If D1, D2, ..., D are the values of the index of diversity for s
 independent random samples, and if , are the values of

 the preceding expression for a2 for each of the corresponding

 populations, then the -v/rnb[(DA - D-)/au] are independent and
 have approximately the standard normal distribution. If

 Di -D* * * = 19 = D, then

 Z ni(D, -D)2/U2 n=l

 has approximately the chi-square distribution with s degrees of

 freedom. Now, letting D = (Li =Dn/ vn ) (Zs=inj/ o),
 s s s

 Z ni(D,- D)2/U2 = Z n(D -D)2/ a2 + (D-D)2Z ni/2

 The asymptotic variance of D is (Zs=inil/o), so the term (D -
 D) (in /a)1I2 has approximately the standard normal distri-

 bution and its square has approximately the chi-square distribu-

 tion with 1 degree of freedom. A standard application of Coch-

 ran's theorem can be used to show that i =ini (Di- D)/ai has
 approximately the chi-square distribution with s - 1 degrees of

 freedom. Also, by Slutzky's theorem, this term has the same

 asymptotic distribution if the estimated variances $&} are sub-

 stituted for $oT. Thus to test the null hypothesis Ho: Di =
 D2= = Ds) based on s independent random samples, one
 can use the test statistic

 s

 2 = 2I

 which has approximately (if nl, . .., nS are large) the chi-square
 distribution with s - 1 degrees of freedom under the null hy-

 pothesis.
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 Appendix B:

 Sampling Distribution of A

 For the general multivariate case,

 -?l2(Db - Db) rnl+ n=2

 kl

 p (..q..- ..q.) +**

 km

 +Z( z p..q. -k 4.i.i gm

 from Equation (33). Now for any cell i = (ii,..., im)

 aDb = -(q.. +* + q ...m)/m
 dfii l pi, qi I

 0Db| = -(pit... + * + p... m
 adq; i tpi qit I

 Let r = ( , {q;}) be a vector with 2k1k2 ..km positions, the
 first k1k2 . . . km consisting of the {fri and the last ki k2* km con-

 sisting of the Iq- Also let d' = (d11,d'), where di is the vector of
 length k, . . . km consisting'of the

 0Db

 aPi 1pi,qij

 and d 2 is the vector of length ki . . . km consisting of the

 0Dbl

 aqi 1pi,qij

 Then n-i? f2 (Db - Db) is asymptotically normally distributed
 about zero with variance ab2 = d' 2 d, where $ is the covariance
 matrix of ni ? n 2r. Now

 coy ( ri -I- n21bP, ni)+ 2p) = (n1 + n2)cov(pj,pj)
 = [(n? + n2)/nl](Gijpj-pipj)

 and similarly

 cov (VT1? T2qi, vTni +r2) = [(ni + n2)/n2] (bjj qi - qiqj
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 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 233

 Since the two random samples are independent, cov (pi, q^j) = 0
 and the covariance matrix 4 may be partitioned as

 /1

 t= 0 t2j

 where the i jth element of 4 is [ (ni + n2)/nl ](ijpi - pipj) and
 the i-jth element of 2 iS [(nti + n2)/n2](bijqi - qiqj). Thus the
 asymptotic variance of (n + n2(Db - Db) iS

 cr^2 _ d' 4d = d4 i d + d4d2

 tl+2 Z Z (q1... + + q .im)(qjil- + + q . )
 ni1m

 (bijpi - pipj)

 + +2 Z (p1.. + + P ..im) (PJi + + P
 n2m i

 (3ijqi - qiqj)

 =ni + n2 ,Ejql, ,,m Ti - + T pi( q + +...
 n1m2 {

 - [Z qi(Pi + + p im]2}

 Finally, since

 Z Pif(q1i... + + q..q.I)

 q p+ +p..m) = m(1 - D2)
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 234 ALAN AGRESTI AND BARBARA F. AGRESTI

 the asymptotic variance reduces to

 2 f
 b T= [(nl + n2)/ni] pi(qi._ + * + q_in)

 + [(ni + n2)/n2] qi + * + p I) }/m

 - (1 - Db)2(nl + nf2)2/nlin2

 For the univariate case, the expression reduces to

 k

 Fb= [(ni + n2)/fl] Z p,q. + [(ni + n2)/n2]

 k

 Z qip - (1 - Db)2(nl + n2) /2nn2

 Thus, as ni oc and n2-x so that ni/ (ni + n2) A X(O <
 A < 1), the sampling distribution of \ni ? 2 (Db - Db) con-
 verges to the normal distribution with mean zero and variance

 a2 given by this formula with ni/(n, + n2) replaced by A. From
 the properties of Db, it is seen that ab = 0 if and only if Db = 0 or
 Db = 1. Thus this formula leads to confidence intervals (Db d4

 Za/2 Ub/ V\n1 + n2) and tests of hypotheses about Db as long as 0 <
 Db < 1.

 Appendix C:

 Sampling Distribution of Df - Db

 We shall again treat the general multivariate case. When

 the random samples from the two populations are independent,
 the derivation is similar to the one in Appendix B. The asymptotic
 distribution of v`n-i- n2[(Di - Db) - (Di - Db)] is normal
 about zero with variance d' I d. Here 4 is the same covariance
 matrix as in Appendix B and d' = (d', d'), with di the vector of
 the

 d - Db) - A) =(q.. + + q.i)
 djii lPi,qil

 - 2(pil, + + p...im)]/m

 and d2the vector of the

This content downloaded from 
������������128.227.159.199 on Mon, 02 Dec 2024 00:45:49 UTC������������ 

All use subject to https://about.jstor.org/terms



 STATISTICAL ANALYSIS OF QUALITATIVE VARIATION 235

 O(D1 - Db) = (pil + + p ... m
 pi, ,qiI

 Following the same steps as in Appendix B, we obtain the
 asymptotic variance of

 2 ni1+ fl2(Y .r 4- -
 Yl,b = 2 pi[ q1 ... + ** + q ...1M

 - 2(p1.. + * ? pi

 2 { Pi z. i... + + q...im
 p qi + +Pim)])

 2 2(p * + p.. P

 qi(p. + * p m12}

 fl+f2{ /[qi(p+ * + im 2(pi1 + p P im)]

 - [m(2D - Db - 1)]2}

 +I- ?7 i2 {Z qi(pl + *** + p. m)2- [m(1 -Db)] }

 n2m i~~~~~

 Thus, for large samples, an approximate 100(1 - a) percent con-
 fidence interval for D1 - Db is (D1 - Db) di Za/2U1,b/ b/+ 2
 For the univariate case, this reduces to Formula (26). The vari-
 ance o^- is strictly positive as long as not both D, and Db are at
 their boundary values.
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