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SUMMARY

Methods for exact small-sample analyses with categorical data have been increasingly well developed
in recent years. A variety of exact methods exist, primarily using the approach that eliminates unknown
parameters by conditioning on their su5cient statistics. In addition, a variety of algorithms now exist
for implementing the methods. This paper brie6y summarizes the exact approaches and describes re-
cent developments. Controversy continues about the appropriateness of some exact methods, primarily
relating to their conservative nature because of discreteness. This issue is examined for two simple
problems in which discreteness can be severe – interval estimation of a proportion and the odds ratio.
In general, adjusted exact methods based on the mid-P-value seem a reasonable way of reducing the
severity of this problem. Copyright ? 2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

The recent development of various algorithms for implementing ‘exact’ small-sample analyses
has been a major advance in categorical data analysis [1–5]. With these methods one can
make probability calculations such as P-values using exactly speciBed distributions rather than
with approximate large-sample ones. Exact methods guarantee that the size of a hypothesis
test is no greater than the nominal level and that the coverage probability for a conBdence
interval is at least the nominal conBdence coe5cient. A variety of exact methods exist, using
both conditional and unconditional approaches. This article surveys the exact approaches and
summarizes some of the recent developments.
Many statisticians have been critical of some exact methods. Sometimes this is for philo-

sophical reasons but more often it is because, although the probability calculations are exact,
they lead to conservative inferences when used as the basis of hypothesis tests and conB-
dence intervals. The conservatism, meaning that actual error probabilities are less than nominal
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2710 A. AGRESTI

levels, re6ects complications due to discreteness. We illustrate these issues for interval esti-
mation of two basic parameters – the proportion and the odds ratio. For highly discrete data
it seems sensible to use adjustments of exact methods based on smoothings of P-values, such
as the mid-P-value.

2. THE EXACT CONDITIONAL APPROACH

This section reviews the conditional approach to exact inference for categorical data. This
utilizes the distribution of the su5cient statistic for the parameter of interest, conditional on
su5cient statistics for the other model parameters.
First, consider a two-way contingency table having r rows and c columns, cross-classifying

a row explanatory variable X and column response variable Y . In biomedical applications,
probably the most common sampling scheme is independent multinomial samples within the
rows; if instead the sampling is full multinomial over the entire table, the independent multi-
nomial scheme applies after conditioning on totals at the levels of X . Let �j|i=P(Y = j|X = i),
i=1; : : : ; r, j=1; : : : ; c, and denote the cell counts by {nij}, with ni+ =

∑
j nij ; n+j=

∑
j nij and

n=
∑

i; j nij . Under independence of Y and X , for each j, �j|1 = · · · =�j|r . For 2× 2 tables,
this is equivalent to the odds ratio =1:0. One can test this hypothesis by comparing {nij} to
the maximum likelihood Bt {�̂ij = ni+n+j=n} using chi-squared statistics such as the Pearson
and likelihood-ratio statistics. These have asymptotic null chi-squared distributions, but the
approximation may be poor if many {�̂ij} are small (for example, less than about 5). Asymp-
totic behaviour may also be poor when the overall sample size is large but the contingency
table has a large number of cells. Di5culties can occur when the table contains a mixture
of relatively large counts and relatively small ones or when an asymptotic framework applies
in which the number of cells (and hence the number of parameters) grows with the sample
size [6].
The actual null distribution of chi-squared statistics depends on {�j|i}. When one conditions

on the su5cient statistics {n+j} for {�j|i} as well as the multinomial sample sizes {ni+}, the
resulting distribution no longer depends on those parameters. R. A. Fisher, who had introduced
the concept of su5cient statistics, noted this for 2× 2 tables, in which case the conditional
distribution is the hypergeometric. In the non-null case, this distribution depends also on 
and is

P(n11 = k|{ni+}; {n+j}; )=
( n1+
k
) ( n−n1+

n+1−k )
k

∑
u(
n1+
u
) ( n−n1+

n+1−u )
u

The P-value for the one-sided test of H0:=1 against H1:¿1, based on sample odds ratio
̂obs and count n11;obs, is

P-value=PH0 [̂¿̂obs|{ni+}; {n+j}]=P(n11¿n11;obs|{ni+}; {n+j}; =1)

This test is called Fisher’s exact test, re6ecting its basis on an exact probability calculation
rather than a large-sample approximation. Non-null inference about , such as conBdence
intervals, uses this distribution for all . An exact conBdence interval for  results from

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722

 10970258, 2001, 17-18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.738 by U
niversity O

f Florida, W
iley O

nline L
ibrary on [29/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



EXACT INFERENCE FOR CATEGORICAL DATA 2711

inverting two separate one-sided exact tests [7]; for example, the lower endpoint of a 95 per
cent conBdence interval is the 0 value for which P-value=0:025 in testing H0:= 0 against
H1:¿0.

The exact conditional approach is trustworthy compared to possibly poor large-sample ap-
proximations. It is also quite 6exible, applying to any exponential family model with canonical
link, which are the models for which nuisance parameters have reduced su5cient statistics.
This includes all Poisson log-linear models and binomial logit models. For instance, inde-
pendence in r× c tables can be formulated as a Poisson log-linear model with main eOects.
Conditioning on row and column totals to eliminate those parameters yields a multivariate
hypergeometric distribution deBned on the set of tables having the same row and column
margins as the observed table. The P-value equals the total probability of those tables that
have test statistic value at least as contradictory to the null as the observed value.
For another example, consider the logistic regression model. For subject i, denote the re-

sponse by yi=0 or 1, and denote the explanatory variables by xi=(xi0; xi1; : : : ; xik). The
model is

log[P(Yi=1)=P(Yi=0)]=
∑
j
�jxij

with typically xi0 = 1 for an intercept term. Consider testing the eOect of predictor j on the
response and estimating the log-odds ratio �j to which the eOect pertains. The su5cient
statistic for �j is Tj=

∑
i yixij . Exact inference for �j uses the distribution of Tj, conditional

on {Tk ; k �= j}. To test H0:�j=0 against H1:�j¿0

P-value=P(Tj¿tj|{Tk = tk ; k �= j})

where {tk} denote observed values [1]. Exact inference after eliminating nuisance parameters
with conditional logistic regression is especially useful in matched case-control studies [8; 9]
and other applications in which the strata contain few observations and the number of strata
(and hence the number of parameters) increases with the sample size. The method extends to
certain multinomial logit models, such as ones using baseline-category logits.
For many years the use of exact methods was hindered by the lack of suitable software.

The reference set of tables on which the conditional distribution is deBned may be di5cult
to generate or it may be enormous. For instance, a 4× 4 table with only 20 observations
can have over 40000 tables with the same margins, and with 100 observations it can have
about 7× 109 such tables. Various computational solutions have been proposed. One of these
computes the characteristic function of the statistic of interest using a recurrence relation and
then inverts it using a Fourier transform to obtain the relevant distribution [10]. A series
of papers in the past 15 years by Cyrus Mehta, Nitin Patel and various co-authors showed
how to use an alternative approach, the network algorithm. They developed software that
provides several exact methods (for example, StatXact and LogXact, distributed by Cytel
Software in Cambridge, MA). Modules from StatXact are available in SAS (for example,
PROC FREQ and PROC STATXACT) and in SPSS. A variety of problems can be handled,
including tests of independence in two-way tables with ordered or unordered categories, tests
of conditional independence and of homogeneous odds ratios in several 2× 2 tables, and
inferences for parameters in logistic regression. Exact inferences for multinomial logit models
will apparently be available in an upcoming revision of LogXact.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722

 10970258, 2001, 17-18, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.738 by U
niversity O

f Florida, W
iley O

nline L
ibrary on [29/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2712 A. AGRESTI

Even with modern computing power, exact methods are sometimes computationally un-
feasible. Algorithms that provide total enumeration of the conditional reference set of tables
are time consuming and inadequate for large problems. However, Monte Carlo methods can
estimate precisely the results of many exact inferences, by randomly sampling from the con-
ditional distribution [11–14].
Although the conditional approach is versatile, it does have limitations. For binary data,

for instance, it does not apply except for logit models. One cannot use it to conduct exact
inference about the diOerence of proportions or other parameters that do not occur in logit
modelling. Also, the relevant conditional distributions can be highly discrete, which leads to
conservativeness in inference, as discussed in Section 5. Further details about this approach
are available in recent survey articles [1; 2; 4; 5].

3. AN EXACT UNCONDITIONAL APPROACH

When a contingency table consists of independent samples within rows, only {ni+} are natu-
rally Bxed. Some Bnd the conditional approach, which also Bxes {n+j}, artiBcial. An uncon-
ditional approach eliminates nuisance parameters using a ‘worst-case’ scenario. The P-value
is a tail probability maximized over all possible values for the nuisance parameters. Such a
test uses the original (unconditional) distributions.
We illustrate with the comparison of binomial parameters for two independent samples. The

null hypothesis is H0:�1|1 =�1|2. Given the common value (under H0) of �=�1|1 =�1|2, let
P�(T¿t) denote the null probability that the test statistic T is at least as large as the observed
value t. Since � is unknown, one can form a P-value using [15] P-value= sup06�61 P�(T¿t).
For the usual decision framework, rejecting H0 if P-value6�, the test guarantees that the
actual size is no greater than �. Because of this and since it does not require estimating
unknown parameters, it can also be called an ‘exact’ method. It has been proposed in various
forms (for example, references [16–18]).
In principle this approach is more general than the conditional one, since it does not

require models with reduced su5cient statistics. However, it is a computational challenge to
extend it to the wide variety of problems to which the conditional approach has been applied,
particularly those with several nuisance parameters. Also, taking the supremum over unknown
parameters itself leads to conservatism. This discussion illustrates that there is more than one
possible ‘exact’ approach. Moreover, each method has quite diOerent ways of performing it.
For instance, one can deBne P-values in diOerent ways, one might use a likelihood-ratio,
Wald, or score statistic as the test statistic, and one can construct conBdence intervals by
inverting two separate one-tailed tests or a single two-tailed test.
Statisticians have been critical of both of these approaches to contingency table analysis.

Criticisms of the conditional approach partly refer to using a sample space consisting only
of tables having exactly the same response margins as the observed table. Proponents of it
respond that it is unnatural to consider samples that are quite diOerent from the observed one
in terms of characteristics (such as marginal distributions) that provide little or no information
about the association. In addition, in many biomedical applications one does not truly have
multinomial or independent binomial samples. For the observed sample one can still then use
Fisher’s exact test through a permutational argument, considering all ways the subjects could
have been assigned to the two samples, as a way of checking whether the observed results

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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EXACT INFERENCE FOR CATEGORICAL DATA 2713

are unusual. For instance, suppose a test refers to comparing drug with placebo and the null
is true that the drug has no eOect, providing the same success probability as placebo; then the
same total number of successes would have occurred no matter how subjects were assigned
to the two groups.
Other statisticians have argued that the unconditional approach is artiBcial because it av-

erages what happened in the observed sample with hypothetical response distributions, some
of which are much diOerent than observed. For instance, Fisher [19] argued that only the
sampling distribution of samples of the same type can supply a rational test of signiBcance.
Opinions on this issue have been expressed in su5cient detail [16; 17; 20–28] that we will
not further address the arguments here. In our opinion, much of the disagreement on this
issue is in6amed by the quite diOerent results the methods can provide when the relevant
distribution is highly discrete. We return to this issue in Section 5.

4. RECENT RESEARCH ON EXACT INFERENTIAL METHODS

We now turn our attention to some recent developments. This section summarizes a few of
the main areas that have seen signiBcant progress in the past 5–10 years, primarily based on
the exact conditional approach.
Three-way contingency tables are common in practice, for instance for cross-classifying a

categorical response by some factor separately at levels of a possibly confounding factor or
for the centres at which data are collected; for example, such a table might relate dosage
of drug (placebo, low dose, high dose) and response (success, partial success, failure) for
subjects stratiBed by clinic. Two hypotheses of interest are (i) conditional independence of
treatment and response, and (ii) homogeneity of eOects (for example, odds ratios) across
levels of the stratifying factor. The StatXact software is limited to stratiBed 2× 2 tables for
the latter (Zelen’s [29] test) and stratiBed 2× c tables with ordered columns [30; 31] for the
former.
Many possible alternative hypotheses can apply for tests of conditional independence in

stratiBed r× c tables. For instance, the test statistics for the large-sample chi-squared tests
given by PROC FREQ in SAS can be derived as score statistics about conditional association
parameters in log-linear models for ordinal or nominal variables or a mixture of the two [32].
Although software is not available for exact inference, it is straightforward to use Monte Carlo
methods to approximate exact results for these alternatives by sampling from the product
multivariate hypergeometric distribution that applies after conditioning on row and column
totals in each stratum [32]. For ordinal variables a related approach uses test statistics obtained
by expressing the alternative in terms of various types of monotone trends, such as uniformly
non-negative values of ordinal odds ratios of various types [33]. When c=2, this reduces
to comparing r binomial parameters (in each stratum) against an alternative in which the
parameters are monotone increasing [34].
For the null hypotheses of independence and conditional independence, the relevant condi-

tional distribution is simple, which is why ordinary Monte Carlo applies so easily. This is not
true of more complex hypotheses, such as quasi-independence, quasi-symmetry, and others
for square and triangular contingency tables that were until recently given little attention in
the exact literature. A group of statisticians at Southampton (U.K.) have developed alterna-
tive methods, such as Markov chain Monte Carlo (MCMC), to approximate precisely exact

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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2714 A. AGRESTI

P-values for such cases [35–40]. Their MCMC approach applies more generally to log-linear
and logit models [41] including log-linear models for rates [42].
Booth and Butler [14] provided an alternative computational approach using a general

simulation method for exact tests of goodness-of-Bt for log-linear models. Their Monte Carlo
approximation utilizes an importance sampling method based on a crude normal approximation
to the Poisson. They illustrated their approach with a wide variety of log-linear models,
including quasi-symmetry and related models for square tables, mutual independence in a
three-way table and uniform association for ordinal tables. One can use their methodology,
for instance, to generalize the Zelen [29] test of homogeneity of odds ratios for stratiBed 2× 2
tables to stratiBed r× c tables, by treating the test as one of goodness-of-Bt for the model
of no three-factor interaction. Although their primary focus was testing goodness-of-Bt, in
which case large-sample chi-squared approximations are often poor for sparse data, they also
showed how to simulate exact tests with unsaturated alternatives. In all their examples the test
d.f.¡20, and they noted that the importance sampling method breaks down for large values
of d.f.; in that case, MCMC methods [41] seem to be the method of choice.
Among the other areas in which the conditional approach has seen much recent attention are

inference about an assumed common odds ratio in several 2× 2 tables [43–48] including an
improved conBdence interval for a common odds ratio [49], inference for two-way tables with
ordered categories [14; 50–53], log-linear models for multi-way tables [14; 54; 55], logistic
regression [1; 41] and polytomous extensions of logistic regression [56], power and sam-
ple size calculations [45; 57–63], and alternative algorithms for implementing exact methods
[3; 10; 54; 64–67]. The past decade has also seen much research on higher-order improve-
ments of large-sample methods [68] to make results more closely agree with those using exact
methods. This work includes a resurgence of interest in saddlepoint methods for approximat-
ing conditional distributions [69–74]. Another approximate method with substantial promise
for improving on standard asymptotics is the iterated bootstrap [75]. When Monte Carlo is
feasible, however, it has the advantage that estimated P-values necessarily converge to the
actual exact ones as the number of simulations increases.
The unconditional approach has also seen new results. For testing equality of two binomial

parameters, Berger and Boos [76] recently answered a primary criticism of it by restricting
the supremum search over the unknown success probability � to those values compatible with
the data. Letting C� denote a 100(1− �) per cent conBdence interval for �, where � is very
small (for example, 0.001) and arbitrary, they deBned

P-value= sup
�∈C�

[P�(T¿t)] + �

This approach also guarantees that the actual size is no greater than the nominal size. This
adjusted unconditional approach has been generalized to an analogue of the Cochran–Mantel–
Haenszel test of conditional independence for several 2× 2 tables and the trend test for 2× c
tables [77].

5. COMPLICATIONS FROM DISCRETENESS

Although some statisticians have philosophical objections to the conditional approach, the
root of most objections is their conservatism, because of discreteness. In terms of practical

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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EXACT INFERENCE FOR CATEGORICAL DATA 2715

performance the degree of discreteness is the determinant more so than whether one uses
conditioning [78].
To illustrate the basic problem, consider Fisher’s exact test with a signiBcance level of

�=0:05. For the data

3 1
1 3

the P-value for a one-sided test of H0 : =1 against H1 : ¿1 is 0.243. With these margins,
the only possible P-values are 0.014, 0.243, 0.757, 0.986, 1.00, for the observed counts
n11 = 4; 3; 2; 1; 0, respectively. Using �=0:05 as a nominal size in a test, one rejects H0 only
when n11 = 4, but under the null, the probability this happens is 0.014, so the actual P (type I
error) = 0:014. In theory, this is not a problem. One can use supplementary randomization to
achieve a desired size. If one rejects H0 when n11 = 4 and with probability 0.16 when n11 = 3,
then the actual size achieves 0.05. With such randomization, conditional tests in exponential
family models have optimality properties; for instance, the one-sided exact conditional test
for an odds ratio in a 2× 2 table is uniformly most powerful out of the unbiased tests.

In the real world, data-unrelated randomization is unacceptable, and it is rarely possible
to achieve an arbitrary size such as 0.05. Some argue that Bxing an unachievable �-level is
artiBcial and that one should either merely report the P-value, or if a decision must be made,
choose � to be a possible P-value. The discreteness has more disturbing implications, however,
for unconditional power calculations and for conBdence intervals. The usual exact conBdence
interval consists of parameter values not rejected in corresponding exact tests. Since the family
of tests all have actual size60:05 with a high percentage having actual size much less than
0.05, the true conBdence coe5cient at any particular parameter value is bounded below by
0.95 and may be substantially larger [79]. In constructing a nominal 95 per cent conBdence
interval, we know only that the actual conBdence level is at least that high; we do not know
the level, since we do not know the true parameter value.
For 2× 2 contingency tables the degree of conservativeness is usually more severe for con-

ditional than for unconditional inference, because the extra conditioning increases the severity
of discreteness [17; 25]. Generally, it may be non-negligible unless n is large or the table has
many cells with the data spread thinly. In some cases, the conditional distribution is even
degenerate, with mass concentrated at one point, so that necessarily the exact P-value=1
and this approach is uninformative. This is common in logistic regression with one or more
continuous predictors. Then the observed sequence of 0 and 1 responses may be the only one
that can have the observed values of the su5cient statistics that are Bxed for the conditional
inference.
Large-sample methods do not have the guarantee of bounds on error probabilities. They

can be conservative or liberal, and thus their results can appear quite diOerent than exact
methods. For example, for the 2× 2 table discussed above, the P-value for the Pearson chi-
squared test equals 0.157, compared to 0.486 for the two-sided exact test. A 95 per cent
large-sample conBdence interval for the odds ratio, based on the formula given below, is
(0:4; 221), compared to CornBeld’s exact interval of (0:2; 626). Although normally one would
prefer an exact method over an approximate one, when the conditional distribution is highly
discrete the choice is not so obvious. The next section illustrates this for inference about odds
ratios and proportions.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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2716 A. AGRESTI

Table I. Behaviour of 95 per cent conBdence intervals for the odds ratio, with 10000
randomly generated pairs of binomial parameters, when n1+ = n2+ = 10.

Criterion Large-sample Exact Mid-P

Mean coverage probability 0.977 0.990 0.970
Minimum coverage probability 0.941 0.970 0.938
Minimum coverage probability, ¡20 0.949 0.970 0.938
Median expected length 61 228 118

6. EXAMPLES OF CONSERVATISM OF EXACT METHODS

For 2× 2 tables, a large-sample conBdence interval for the log-odds ratio is

log(n11n22=n12n21)± z(n−1
11 + n−1

12 + n−1
21 + n−1

22 )
1=2

where z is the appropriate standard normal percentile (for example, 1.96 for 95 per cent
conBdence). Table I illustrates the behaviour for small samples of this interval (transformed to
the odds ratio scale) and CornBeld’s exact conditional interval. For 10000 pairs of parameter
values randomly selected over the triangular region 06�1|26�1|161 in which ¿1:0 and
for binomial sampling with {ni+ =10}, for both methods we calculated the true coverage
probability and the expected length of the nominal 95 per cent conBdence interval. Table I
reports the minimum and the mean coverage probability and the median of the expected
lengths. To illustrate the behaviour for the portion of the parameter space usually dealt with
in practice, Table I also reports the minimum coverage probability for the probability pairs
for which ¡20.
Table I shows that the exact method can be quite conservative for small n. Here, the

large-sample interval performs surprisingly well. Because of tail behaviour, diOerences in
coverage probability can translate to large diOerences in expected interval length. (This is
especially so on the odds ratio scale; by contrast, the median expected log lengths were
4.5, 5.9 and 5.1.) Based on similar evaluations [80] for various sample sizes, it seems that
if one can tolerate the minimum coverage probability dipping slightly below the nominal
conBdence level, then the large-sample interval is adequate. This interval has defects and can
be improved. For instance, if one nij=0, it covers the entire parameter space but it is more
appropriate then to provide a lower or an upper bound. Such evaluations show, however,
that in highly discrete problems the choice between exact and approximate methods is not
necessarily obvious.
Another example where small n has a severe impact of discreteness is interval estimation

for a binomial parameter, �. The most commonly cited exact method, the Clopper–Pearson
interval [81], is based on inverting two single-tailed binomial tests. For nominal 95 per cent
conBdence based on binomial outcome x with index n and sample proportion �̂= x=n, the
endpoints are the values of � that satisfy

n∑
k=x

(
n
k

)
�k(1− �)n−k =0:025 and

x∑
k=0

(
n
k

)
�k(1− �)n−k =0:025

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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EXACT INFERENCE FOR CATEGORICAL DATA 2717

Figure 1. Mean coverage probability as a function of sample size for the nominal 95 per cent exact (E),
score (S) and Wald (W) conBdence intervals.

except that the lower bound is 0 when x=0 and the upper bound is 1 when x= n. Large-
sample intervals utilize the approximate normality of �̂. A good 95 per cent interval has
endpoints that are the values of � that satisfy 1:96= (�̂ − �)=√{�(1− �)=n}. The test in-
verted for this interval is the score test, which uses the null standard error. A much poorer
interval results from inverting the Wald test (W) with estimated standard error (that is, giv-
ing �̂± 1:96

√{�̂(1− �̂)=n}, which is the method commonly taught in elementary statistics
textbooks).
Let Cn(�) be the actual coverage probability, for a binomial with n trials and parameter

�. The exact method guarantees inf� Cn(�)¿0:95; but Cn(�) may seriously exceed 0.95 for
most �. For large-sample methods, inf� Cn(�)¿0:95 is not true even as n→∞. Here, we
compare methods by plotting in Figure 1, as a function of n, the mean

∫ 1
0 Cn(�) d� of the

coverage probabilities for the Clopper–Pearson exact interval (E), the interval based on the
score test (S), and the interval based on the Wald test (W). This Bgure shows the poor
behaviour of the large-sample Wald interval but the slow disappearance of conservatism for
the exact one as n increases. According to this criterion, the large-sample score interval
performs well even for small n.
To be fair, reporting only the mean coverage does not reveal how poorly large-sample

intervals can behave. For instance, the score interval has narrow regions for � near 0 and
near 1 where Cn(�) is poor (about 0.84) even for large n, but, the coverage probability for
that method is closer to 0.95 than for the exact method over more than 90 per cent of the
parameter space, for a variety of sample sizes [82]. Better methods exist of forming exact

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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2718 A. AGRESTI

intervals for a proportion than the Clopper–Pearson method [83], but the conservativeness
issue persists.
Most analyses with categorical data are more complex than these single-parameter problems

just discussed, typically referring to a multi-way table with many nuisance parameters. In
such cases, the degree of discreteness is often negligible and the adequacy of large-sample
methods is highly questionnable, so an exact method is preferable. An example is testing Bt
of several degree-of-freedom log-linear or logit models using chi-squared statistics with sparse
data. Exact methods are also preferred when it is necessary to ensure the nominal size as a
lower bound, as it might be in a drug approval process or a lawsuit. Thus, regardless of the
occasional problems caused by discreteness, there is even then an important niche for exact
methods.

7. A COMPROMISE – METHODS USING THE MID-P-VALUE

For highly discrete data when large-sample methods are questionable but exact methods may
be overly conservative, one could alternatively use adjustments of exact methods based on
the mid-P-value [84]. In a test, the mid-P-value adds half (rather than all) of the observed
probability to the more extreme probabilities. Similarly, in constructing conBdence intervals,
one inverts the test using the mid-P-value [85]. Although no longer guaranteed to have error
probabilities not exceeding the nominal level, this method usually comes closer than the exact
method to the desired level. Table I shows its performance as the basis of conBdence intervals
for the odds ratio. Numerical evaluations [8; 9; 70; 85–91] for a variety of cases show that
it usually has coverage probability slightly exceeding the nominal value, but it tends to be
less conservative than ordinary exact methods. It has the advantage, compared to large-sample
methods, that it is guaranteed to work well (being ‘nearly exact’) as the degree of discreteness
diminishes.
Inference based on the mid-P-value seems to be a sensible compromise between the con-

servativeness of exact methods and the uncertain adequacy of large-sample methods. It has
some appealing properties. Its null expected value is 0.5, as is true for the P-value when test
statistics have a continuous distribution. It takes the P-value for a test with supplementary
randomization, which is the probability of a test statistic more extreme than observed plus
a uniform (0,1) random variable multiplied by the probability of the observed value of the
statistic, and replaces the uniform multiple by its expected value. Recent research showed that
it is an optimal P-value in terms of estimating a truth indicator of the null hypothesis [92].
Similar beneBts can accrue from alternative proposed P-values, but these do not have the

simplicity of the mid-P-value. One approach, useful when several tables in the conditional
sample space have a particular value for a test statistic, uses a secondary, Bner partitioning of
that space; for tables having the observed value of the test statistic, only those contribute to the
P-value that are at least as contradictory to the null in terms of the secondary statistic [49; 51].
Methods using ordinary P-values obtained with ‘approximate conditioning’ techniques may
yield similar performance [93].
Some undoubtedly would point out that another solution is to adapt a Bayesian perspec-

tive. For Bayesians the discreteness issue is not a problem; the posterior distribution for the
parameter is continuous when the prior distribution is.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2709–2722
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8. CONCLUSIONS

The eOect of discreteness on exact methods raises a dilemma for the practising statistician.
In interval estimation, for instance, is it better to use an approach that guarantees that the
coverage probabilities are at least 0.95 yet may have actual coverage probabilities of about
0.97 or 0.98 (such as an exact interval when substantial discreteness occurs), or an approach
giving narrower intervals for which the actual coverage probability could be less than 0.95 but
is usually close to 0.95? Traditionally statisticians evaluate interval estimators by the inBmum
of their coverage probabilities. Rather than insisting that the coverage probability be at least
0.95 over the entire parameter space, perhaps it is su5cient for the coverage probability to
average at least 0.95 so long as it rarely falls more than some substantive amount (say 0.02)
below that level. Acceptance of this weaker criterion suggests adaptations of exact methods
using the mid-P-value, and in some cases (for example, inference for proportions and odds
ratios) to use of certain large-sample methods.
As pointed out above, most criticisms of exact methods disappear as discreteness does, and

the advances of recent years are welcome. The complications due to discreteness point out,
though, that the choice of a statistical method is not always obvious. However, if statisticians
cannot agree how to analyse even a 2× 2 table, with no one approach being obviously ‘best’,
what hope is there for a consensus on more complex analyses? The probability is probably
decreasing to 0 with time, but we should keep in mind that in most cases diOerent methods
provide the same substantive conclusions. Distinctions such as (exact conditional=exact un-
conditional) and (Bayesian=frequentist) that may seem fundamentally important to us do not
seem all that striking to an outsider.
Finally, since submission of this article, the author has become aware of other articles of

interest for exact inference. These include work on a new and relatively simple approach
for interval estimation of a binomial proportion [94], improved conBdence intervals for the
diOerence between two proportions [95,96], a review of methods for comparing proportions
[97], and a comparison of ways of forming conBdence intervals in discrete data problems [98].
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