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SUMMARY

This tutorial reviews methods for testing independence between discrete levels of a dose and an ordered
categorical response variable. The tests are designed to be powerful for cases in which the response improves
monotonically as dosage level increases. First, we show how to apply some standard tests for doubly-
ordered contingency tables. Then, we show how to construct tests as part of a model-building strategy.
Other topics discussed include generalizations to stratified data, small-sample methods, and sample size and
power considerations. ( 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The exploration of dose—response relationships is the focus of many studies in toxicology1 and
genetic toxicology.2 This topic occupies an equally important place in animal growth promotion
studies3 and in the pre-marketing clinical testing of new drugs. In a typical pre-marketing
dose—response study, a control and several doses of the drug are randomly assigned to the study
subjects, with each subject receiving only one dose throughout the study (this is called the
parallel-group design). The control is usually a placebo that provides necessary background
information.

In dose—response studies, the response can either measure the efficacy of a treatment or the risk
(side-effect) associated with an exposure. The exposure might be that to a new medication or to
a risk factor such as cigarette smoking, with the dose quantifying the amount of exposure.

Statisticians have used the phrase dose—response relationship to represent a variety of things.
Some refer to the shape of the exposure—outcome curve, no matter what that shape may be.4 For



Table I. Responses on the Glasgow Outcome Scale from a clinical trial with a placebo (control) and three
treatment groups labelled as low dose, medium dose and high dose

Treatment Glasgow Outcome Scale Total
group

Death Vegetative Major Minor Good
state disability disability recovery

Placebo 59 25 46 48 32 210
Low dose 48 21 44 47 30 190
Medium dose 44 14 54 64 31 207
High dose 43 4 49 58 41 195

some, the objectives of a study assessing exposure-associated risk are to demonstrate a continu-
ously increasing risk with increasing exposure.5 Recently, other shapes have received attention,
such as the umbrella pattern6~10 and a plateaued drug effect beyond a certain level. Among the
potential shapes, the monotone one is by far the most commonly discussed in the literature.

A rich literature exists on the exploration of dose—response relationships for the parallel-group
design. The literature refers almost exclusively, however, to normal or binary response variables.
The main purpose of this article is to summarize methods one can apply for ordinal responses
— that is, responses measured with a set of ordered categories. Most of these methods were
originally proposed for other applications, but are appropriate for dose—response relationships.
The article assumes that the reader has familiarity with basic ideas of statistical inference,
regression and ANOVA modelling, and chi-squared tests. Section 4 also assumes previous
exposure to logit modelling, but otherwise the article does not require previous background in
specialized methods for categorical response data.

Ruberg11,12 noted that dose—response studies routinely ask four questions: (i) Is there any
evidence of a drug effect? (ii) Which doses exhibit a response different from the control response?
(iii) What is the nature of the dose—response relationship? (iv) Which is the optimal dose? One
approaches the questions in this order, the later ones being more specific. In the drug develop-
ment process, information obtained from dose—response studies is often used to select doses for
subsequent confirmatory registration trials.

This article primarily focuses on the first question. Clearly, though, answers to the other
questions are ultimately more informative. Though we occasionally refer to them as well, for lack
of space we defer a detailed account to a follow-up paper. We summarize methods designed to
detect an effect on an ordinal response when there is prior belief of a monotone dose—response
relationship, expressed in the vague notion that a higher dose tends to produce a more desirable
outcome. This prior belief relates to a monotone alternative to the ‘no effect’ hypothesis. We
present the methods in the context of efficacy evaluation, though they also apply to risk
assessment with a reversal in the direction of association. Strict monotonicity is not required, and
we use ‘monotone’ interchangeably with ‘non-decreasing’. This includes cases having only
a high-dose effect or a constant drug effect at all the non-zero dose levels.13

Table I illustrates the type of data considered in this article. In Table I, five ordered categories
ranging from ‘death’ to ‘good recovery’ describe the clinical outcome of patients who experienced
trauma. In the literature on critical care, these five categories are often called the Glasgow
Outcome Scale (GOS). Table I includes four treatment groups, with a vehicle infusion serving as
the control. The three intravenous doses for the investigational medication are labelled as low,
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medium and high. The original data have been modified somewhat to protect the identity of the
trial. One study objective was to determine whether a more favourable GOS outcome tends to
occur as the dose increases. This example and others in this article deal with fixed doses
determined prior to the studies. As a result, levels of dose are treated as fixed rather than random.
This is natural, since a pharmaceutical sponsor needs to justify its choice of the recommended
dose in the new drug application for the compound. Furthermore, the availability of dosing
strengths is often influenced and limited by manufacturing considerations.

Though Table I is simply a two-way contingency table, standard tests of independence for
two-way tables such as the Pearson chi-squared test are inappropriate for testing against an
ordered alternative. Those tests treat both classifications as nominal scale (unordered). When
a monotone trend truly exists, methods designed to detect it are more powerful than such
nominal-level procedures.

One possible approach dichotomizes the response and employs methods for binary responses.
This approach is reasonable if the response categories are clearly divided into desirable and
undesirable groups. Otherwise, this approach suffers from the lack of a clear choice for the
collapsing and, as we see in Section 6, a loss of information and power.

The organization of this article is as follows: Sections 2 and 3, the heart of the article, present
several tests of independence between dose and an ordinal response that are sensitive to the
alternative of a monotone relationship. Section 2 discusses non-model-based tests while Section
3 focuses on model-based inference. Section 4 mentions generalizations to handle stratification.
Section 5 discusses small-sample and sparse-data inference, and Section 6 comments on sample
size and power. The final section summarizes and provides recommendations for conducting such
an analysis.

2. SIGNIFICANCE TESTS FOR A MONOTONE DOSE—RESPONSE RELATIONSHIP

This section reviews significance tests for detecting monotone dose—response relationships.
Section 3 discusses related tests for models for the relationship. Non-model-based inference,
though less informative, is often considered simpler from a regulatory perspective because the
tests do not need to validate any modelling assumptions;14 however, we shall note in Section 3
that some tests from this section are equivalent to tests for certain models. This section presents
four approaches: (i) tests based on association measures, including generalized Cochran—
Mantel—Haenszel procedures; (ii) an adaptation of the Jonckheere—Terpstra test; (iii) adaptations
of methods for continuous responses, including order-restricted inference; and (iv) treating the
response distributions as survival distributions.

Let I denote the number of treatment groups, and let J denote the number of categories of the
response variable, which is denoted by ½. Let x

ij
denote the number of individuals in the ith

treatment group whose response falls in the jth category, let n
i
"+

j
x
ij

denote the number of
subjects in that group and let N"+n

i
denote the total sample size. We treat the counts in separate

rows as independent multinomial samples. We arrange the I treatment groups from the lowest
(i"1) to the highest dose group (i"I), with d

i
representing the dose level for the ith group, and

the response categories from the least favourable ( j"1) to the most favourable ( j"J).
Let ½

i
denote a response at dose i. Let F

ij
"P(½

i
) j). The null hypothesis of no difference

among the I treatment groups is

H
0
:F

1j
"F

2j
"2"F

Ij
for all j. (1)
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One way to operationalize the alternative hypothesis of ‘monotone dose-response relationship’
is in terms of a monotone stochastic ordering among the I cumulative distributions. This
means that

H
1
: F

1j
*F

2j
*2*F

Ij
for all j (2)

with strict inequality for at least one j. Since higher response categories represent more favour-
able outcomes, this alternative implies a tendency for more favourable outcomes as the dose
increases.

Since significance tests relate to particular hypotheses, they are confirmatory rather than
exploratory in nature. The use of significance tests relates not to exploring the nature of the
dose—response relationship, but rather to determining the probability of results at least as extreme
as those observed in the direction of a monotone relationship, if the variables were truly
independent. As a result, testing for a monotone relationship only makes sense when the
pharmacology of the drug suggests that, within the safety limits, higher drug exposure results in
efficacy that is at least as good as that at lower exposure. We suggest combining such formal
analyses with informal checks of this prior belief, such as by plotting sample cumulative
distributions. The modelling approaches in Section 3 have the advantage of a built-in goodness-
of-fit check.

2.1. Tests based on association measures

Table I has ordered rows (the doses) and ordered columns (the ordinal response). The doses are
quantitative, and one can treat the response scale as quantitative by assigning scores to the
categories. Correlation-type association measures then summarize the linear component of the
dose—response relationship. This strategy is reasonable if one expects roughly a linear trend
on the chosen scales. Yates15 presented a large-sample single-degree-of-freedom chi-squared
test statistic based on this approach, essentially squaring the ratio of the sample correlation
to its standard error. To form a P-value for the one-sided alternative of a positive trend, we
use the signed square root of this statistic and refer to the right-hand tail probability from
the standard normal curve. For binary responses, the closely related Cochran—Armitage16 test is
designed to detect a linear trend in a response proportion. Mantel17 extended Yate’s test to the
stratified case.

A potential disadvantage of this strategy is the necessity of assigning scores. Normally, one
would assign the actual dosage level or the log dose to the dose categories. Usually, the choice of
response scores has little effect on the conclusion about whether an effect exists. It may have an
effect, however, when the data are highly unbalanced, such as when some categories have many
more observations than other categories.18

An alternative approach with correlation measures avoids the responsibility of selecting scores
and uses the data to form them automatically. Specifically, one assigns ranks to the subjects and
uses them as the category scores. For all subjects in a category, one assigns the average of the
ranks that would apply for a complete ranking of the sample. These are called midranks. Let
x
`j

"+
i
x
ij

denote the number of subjects in the sample who make response j. The midrank for
category j equals

w
j
"x

`1
#2#x

`, j~1
#x

`j
/2, j"1, 2 , J.

The use of midrank scores for the responses and midrank scores for the drug doses yields
a generalization of Spearman’s rho for contingency tables with ordered categories.
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The use of rank-based scores seems appealing, since one does not need to select arbitrary
scores, but midrank scores do not necessarily provide distances between categories that correspond
to a ‘reasonable’ metric.18 In particular, for highly unbalanced response frequencies, adjacent
categories having relatively few observations necessarily have similar midrank scores, even if they
seem far apart in practical terms. For example, suppose few subjects fell in the first three
categories on the scale (death, fair, good, very good, excellent); midranks then have similar scores
for the categories ‘death’ and ‘good’. It is usually better to use one’s judgement by selecting scores
that reflect perceived distances between categories. When uncertain about this choice, one should
perform a sensitivity analysis, selecting two or three ‘sensible’ choices and checking that the
conclusions are similar for each; for instance, for the scale just mentioned, one might compare
results for scores (0, 1, 2, 3, 4), (0, 5, 7, 9, 10) and (0, 7, 8, 9, 10). Equally-spaced scores often provide
a reasonable compromise when the category labels do not suggest any obvious choices, such as
the response categories (worse, no change, better).

The test statistic for the fixed-score or rank-score correlation approach is a special case for
a single table of a generalized Cochran—Mantel—Haenszel (CMH) statistic for testing conditional
independence with several I]J contingency tables.19 That chi-squared statistic, having d.f."1,
summarizes correlation information between two ordinal variables, combined over several strata.
For a single table such as Table I, it equals (N!1) r2, where r denotes the sample correlation for
the chosen scores. It is available in SAS (PROC FREQ) as the ‘non-zero correlation’ test,
generated using option CMH1 in that procedure; one can use either fixed scores selected by the
user or midrank scores. Table II shows SAS code for analysing Table I using (i) scores (1, 2, 3, 4)
for dose and (1, 2, 3, 4, 5) for outcome and (ii) midrank scores. The signed square root of this
generalized CMH statistic, M"J(N!1) r, is a standard normal test statistic that is sensitive to
the direction of trend.

The correlation-based test applied to Table I has M"3·10 using any sets of equally-spaced
scores for the rows and the columns and M"3·07 using midrank scores, both having one-sided
P-values of 0·001. The response scores (0, 1, 6, 9, 10), which may reflect a more reasonable
assessment of distances between outcome categories, yield M"3·59(P(0·001) when used in
combination with equally-spaced row scores; the response scores 0, 0, 1, 3, 10, which give much
more weight to the most favourable outcome, yield M"2·35 (P"0·009). Each statistic provides
strong evidence against the hypothesis of identical response distributions at the various dose
levels.

A similar association test strategy, but not requiring any scores, bases the test on a measure that
strictly uses ordinal information. Examples include the generalizations of Kendall’s tau for contin-
gency tables that utilize the numbers C of concordant and D of discordant pairs in summarizing
information about an ordinal trend (Agresti,20 pp. 22, 34). The standard measures fall between
!1 and #1, have expectations of zero under the null hypothesis, and have approximate
large-sample normal distributions. One can form a z test statistic (that is, having a standard
normal null distribution) by dividing any such measure by its large-sample standard error.

These measures describe the extent of monotonicity in the relationship, without focusing on
a particular aspect of it, such as linearity. An example is Goodman and Kruskal’s gamma, which is
(C!D)/(C#D). Gamma equals the difference between the proportion of concordant pairs and
the proportion of discordant pairs, out of the untied pairs. Somers’ d, which treats the variables
asymmetrically, is the difference between these proportions out of those pairs of observations
falling at different dose levels. For instance, Somers’ d equals 1·0 if, for each dose level, every
response at that dose level exceeds every response at every lower dose level.
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Table II. Example of SAS code for performing various analyses with Table I

data cmh;
input dose outcome count @@;
group"1;
cards;
1 1 59 1 2 25 1 3 46 1 4 48 1 5 32
2 1 48 2 2 21 2 3 44 2 4 47 2 5 30
3 1 44 3 2 14 3 3 54 3 4 64 3 5 31
4 1 43 4 2 4 4 3 49 4 4 58 4 5 41
;
proc freq; weight count; * CMH with scores entered in data;

tables group * dose * outcome / cmh1;
proc freq; weight count; * CMH with mid-rank scores;

tables group * dose * outcome / cmh1 scores"ridit;
proc freq; weight count; * association measures such as gamma;

tables dose * outcome / measures;
proc catmod order"data; weight count; * mean response model;

population dose;
response 1 2 3 4 5; direct dose; * uses scores (1, 2, 3, 4, 5);
model outcome"dose;

proc logistic; freq count; * proportional odds model (ML);
model outcome"dose;

proc catmod; weight count; * proportional odds model (WLS);
response clogits; direct dose;
model outcome"

~
response

~
dose;

proc catmod; weight count; * adjacent cat. logit model (WLS);
response alogits; direct dose;
model outcome"

~
response

~
dose;

run;

Formulae for standard errors of the extensions of Kendall’s tau are quite complex. The
measures and their estimated standard errors are available in standard software, such as SAS
(PROC FREQ), as illustrated in Table II. For Table I, gamma"0·118 and has a standard error
of 0·038, leading to test statistic z"3·11 and P"0·001; Somers’ d provides similar results, its
value of 0·092 having a standard error of 0·030.

As in other contexts, the non-null expected values of various score-based correlation measures
or ordinal association measures depend on the distribution of subjects to the various dose levels;
the measures tend to increase with greater dispersion in the dose values. The test statistics based
on them provide a simple way of summarizing trend information, even though the sample
measure may not be used to estimate a particular population parameter.

2.2. Jonckheere—Terpstra test

For any pair a(b of doses, the midranks for response levels for the 2]J table formed from these
two treatment groups equal

w
(ab)j

"(x
a1
#x

b1
)#2#(x

a, j~1
#x

b,j~1
)#(x

aj
#x

bj
)/2, j"1, 2, J.

The Jonckheere—Terpstra (JT) test21 statistic sums the I(I!1)/2 one-sided Wilcoxon—
Mann—Whitney statistics for comparing pairs of treatment groups, in the order given by the
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doses. In other words, the test statistic is based on

JT"

I
+
b/2

b~1
+
a/1

+
j
Aw(ab)j

x
bj
!

n
b
(n

b
#1)

2 B.
For large samples, the standardized value z"[JT!E (JT)]/[var(JT)]1@2 provides a test statis-

tic. Again, the variance formula is complex (see StatXact,22 p. 614). The StatXact software, which
provides a great variety of small-sample and asymptotic analyses for categorical data, can
conduct this test. The same comments apply to this strategy as to the rank-based association
measure approach presented in the previous subsection. For Table I, z"3·10, having one-sided
P-value of 0·001.

2.3. Tests treating the response as continuous

A common approach for analysing ordinal data is to assign scores to the response categories and
use standard normal-theory methods, such as regression and analysis of variance. From our
experience, treating ordinal data as continuous with constant variance can provide a useful
approximation when the number of response categories is large, but may be inadequate when that
number is less than five. At the highest dose or at the no-dose level, responses often fall mostly in
one category, yet are more dispersed at other dose values. Though this can cause problems for
model building, for instance with predicting means or cell probabilities, it is less problematic for
significance testing. For testing with small samples in the two-sample case, Heeren and
D’Agostino23 showed that the actual level of the t-test may not exceed the nominal level by much,
but it can be considerably less than the nominal level.

When predictors are categorical, one can account for non-constant response variance by
basing regression parameter estimates and standard errors explicitly on multinomial rather than
normal assumptions for the response distribution. See, for instance, the mean response model
discussed by Grizzle et al.24 and Agresti20 (Section 9.6). A weighted least squares (WLS) solution
is simple to implement for this method using SAS (PROC CATMOD), as illustrated in Table II.
When the data do not display widely varying dispersion or when the model fits well, the two
approaches (ordinary and weighted least squares) provide very similar results.

For Table I, using the dose scores, the regression t-test for a normal response has t"3·12
(P"0·001) for equally-spaced response and dose scores, and t"2·35 (P"0·009) for response
scores (0, 0, 1, 3, 10). The corresponding results using the methodology of Grizzle et al. are z"3·10
(P"0·001) and z"2·25 (P"0·012). For response scores (1, 2, 3, 4, 5), the prediction equation for
the mean response is 2·699#0·138 (dose) both using ordinary and weighted least squares. For the
scores (0, 0, 1, 3, 10), they are 2·089#0·256 (dose) and 2·099#0·248 (dose).

This approach has the advantages of fully utilizing the inherent quantitative nature of the
variables and directing the focus toward model-building rather than significance testing. A disad-
vantage, compared to models discussed in Section 3, is that conclusions disregard the categorical
nature of the response scale. For instance, models that treat the response as categorical provide
predicted probabilities of response in each category.

2.4. Order-restricted tests treating the response as continuous

For the monotone stochastic ordering alternative, the approximate approach of treating the
ordinal response as normal with constant variance can also utilize methods developed for testing
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equality of normal means against order-restricted alternatives. We now review some methods in
this class.

Bartholomew25,26 proposed one of the earliest order-restricted methods. Denote the true mean
and the sample mean of the ith dose group by k

i
and yN

i
. Assuming normality, one obtains the

maximum likelihood (ML) estimates MkL
i
N subject to the constraint k

1
)k

2
)2)k

I
by con-

structing the finest possible partition MR
l
N of treatment groups M1, 2 , IN so that

+
i|R

l

n
i
yN
i

+
i|R

l

n
i

is strictly increasing in l. For all i in R
l
, kL

i
are identical and equal a weighted sample mean. The

solution of order-restricted mean estimates is called the isotonic regression of yN
i
with respect to the

simple order on the row means Mk
i
N, with Mn

i
N as the weights.27 The partition is easily determined

with the pooling adjacent violators algorithm.27,28
Denote the jth observation in the ith group by y

ij
. When the population variance is unknown,

Bartholomew26 proposed the test statistic

EM 2"
+

i
n
i
(k̂

i
!yN )2

+
i
+

j
(y

ij
!yN )2

(3)

where yN "(+n
i
yN
i
)/N is the overall sample mean. The large-sample distribution of EM 2 is non-

standard, being the same as that of a weighted average of beta random variables. Relatively large
EM 2 values provide evidence against the null hypothesis. Robertson et al.28 (Chapter 2) discussed
this test, and Brunden29 prepared an SAS program that computes the weights and supplies
critical values.

For the equally-spaced response scores (1, 2, 3, 4, 5), the sample means are 2·852 (placebo), 2·947
(low dose), 3·116 (medium dose) and 3·256 (high dose). The sample means satisfy the order
restriction, and EM 2"0·0122. The sample means for the second choice of scores (0, 0, 1, 3, 10) are
2·429, 2·553, 2·686 and 3·246, again satisfying the order restriction, and EM 2"0·0081. The upper
5th and 1st percentiles of the null EM 2 distribution (Brunden29) are 0·0056 and 0·0096, respectively,
so the P-value is less than 0·01 for the equally-spaced scores and less than 0·05 (about 0·025) for
the unequally-spaced scores.

A small P-value for an order-restricted test suggests strong evidence against the null hypothe-
sis, but just as with previously mentioned tests, this does not imply that monotone ordering holds
perfectly in the population of interest. Small P-values can occur when the expected order is
violated somewhat in the sample, but the test statistic would be sufficiently unusual under the
null. To illustrate, consider Table III, showing responses (worse, same, slightly better, much
better) to three doses (placebo, low and high) for a hypothetical sample of 123 subjects. The
sample means under the equally-spaced response scores (1, 2, 3, 4) are 2·72 (placebo), 2·62
(low dose), and 3·05 (high dose), violating the order restriction. The isotonic regression of
these sample means with respect to the increasing order on the row means provides mean
estimates of 2·67 (placebo and low dose) and 3·05 (high dose), and EM 2"0·038. The sample
means under another choice of scores (!3, 0, 2, 5) are 1·63, 1·36 and 2·39, again requiring
pooling adjacent violators to obtain order-restricted mean estimates, which are 1·49, 1·49 and
2·39, and for which EM 2"0·033. The upper 5th and 1st percentiles of the null EM 2 distribution with
three treatment groups (Brunden29) are 0·031 and 0·055, respectively, so the P-value is a bit less
than 0·05 for both choices of scores. For either choice of scores, the mean for the high dose group
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Table III. Example that violates order restriction but yields
small P-value

Treatment Response category
group

Worse Same Slightly Much
better better

Placebo 3 15 12 10
Low dose 4 17 12 9
High dose 2 8 17 14

is sufficiently large that, if there were truly no effect, it would be unusual to obtain such a large test
statistic value.

When all Mn
i
N equal some constant n and the objective is to compare several doses with

a zero-dose control, Williams30 proposed the test statistic

tN"
k̂
I
!yN

1
J(2s2/n)

(4)

where s2 is an unbiased estimator of error variance. Williams tabulated the distribution of this
statistic and generalized it31 when each treatment sample size is a constant multiple of the control
group sample size. Williams noted that tN has higher power than (3) when a constant drug effect
occurs (k

2
"2"k

I
), and showed its role in sequential testing to determine the lowest dose at

which evidence exists of a drug effect. In other cases, (3) and other statistics that incorporate more
of the sample information are likely to perform better. Capizzi et al.32 reported a simulation study
that further compared these two procedures with an adjustment of a trend test proposed by
Tukey et al.33 They found that the adjusted trend test tends to be more powerful than the other
procedures, although circumstances exist where either Bartholomew’s34 or Williams’31 test
appears superior.

For Table I, we equated n to the arithmetic mean of n
i
, since the study intended to assign the

same number of patients to each treatment group. Williams’ test yields tN"2·877 for equally-
spaced scores and 2·367 for the unequally-spaced scores. From Williams,30 the upper 5th and 1st
percentiles of the null distribution for tN are 1·739 and 2·377. Thus, the P-value is less than 0·01 for
equally-spaced scores and barely exceeds 0·01 for the unequally-spaced scores. As for Table III,
with n

i
set to 41, Williams’ test yields tN"1·881 for the equally-spaced scores and 1·748 for the

unequally-spaced scores. The upper 5th and 1st percentiles of the null distribution for the case of
three treatment groups are 1·731 and 2·400, so the P-values are similar to those obtained with the
EM 2 statistic for this example.

Shirley35 proposed a Wilcoxon-type version of Williams’ test, with emphasis on comparing
increasing doses of a substance with a zero-dose control. Hothorn1 studied the robustness of
Williams’ and Shirley’s35 procedures as applied in toxicology studies. He concluded that Shirley’s
procedure tends to behave better when assumptions underlying the analysis of variance are
violated. For additional discussion of order-restricted inference, see Robertson et al.,28 Cohen
and Sackrowitz,36 Hayter,37 Silvapulle and Silvapulle,38 and the references therein.

For an ordinal response, the approaches just discussed are somewhat unsatisfactory, since they
treat the response as normal with constant variance rather than multinomial. One might prefer an

DETECTING MONOTONE DOSE—RESPONSE RELATIONSHIP 2607

Statist. Med., 16, 2599—2618 (1997)( 1997 by John Wiley & Sons, Ltd.

 10970258, 1997, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0258(19971130)16:22<
2599::A

ID
-SIM

734>
3.0.C

O
;2-9 by U

niversity O
f Florida, W

iley O
nline L

ibrary on [29/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



order-restricted test derived specifically for the monotone stochastic ordering alternative, under
the assumption of multinomial sampling. For I"2, Grove39 and Robertson and Wright40
proposed a likelihood-ratio test for testing whether two multinomial distributions are identical
against the alternative of a stochastic ordering. The large-sample distribution of the test statistic is
chi-bar squared, the distribution of a weighted average of chi-squared variates with differing
degrees of freedom. For an observed test statistic value t, the P-value has the form
+J

j/1
p
j
Pr(s2

j~1
't), where Mp

j
N are weights that are recursively calculated.

For I'2, results for order-restricted comparisons of multinomial distributions are incomplete.
Patefield41 suggested using an alternative that is a special case of a stochastic ordering, but noted
the computational complexity of maximizing the likelihood. Grove42 proposed a large-sample
chi-bar-squared test for a different type of ordered alternative. Tests for the ordinary stochastic
ordering alternative for the several groups case do not seem to appear in the literature, but one such
test is discussed in a recent technical report by Agresti and Coull (University of Florida, 1996).

2.5. Treating the response distributions as survival distributions

When response categories are ordered, such as in Table I, one can use methods that apply to life
tables. To do this, one orders the response categories from the least to the most favourable ones
and regards observations in column j like failures between times j!1 and j, the most favourable
category (for example, good recovery in Table I) representing subjects with censored lifetimes
beyond time J!1. In this formulation, R

ij
"+

b*j
x
ib

represents the number of subjects at risk
prior to time j, for dose i. The approaches discussed in this subsection have the advantage of not
requiring response scores.

For life-table analysis, Tarone43 proposed a test for a trend in hazard functions as the dose
level increases. The square of this trend statistic is a special case of the summary chi-squared
statistic proposed by Mantel17 for stratified tables with ordered levels. In this context, we express
the data as (J!1) separate I]2 contingency tables, where the jth one compares the I doses on
a binary response in which the first level is category j of the original response and the second level
combines responses in all categories higher than j. The (J!1) component tables in this
construction are independent, because the corresponding sets of ‘continuation-ratio’ binomial
variates in the component tables are independent. The statistic uses the dose scores by summariz-
ing the correlation between dose and this binary response across the (J!1) ways of forming the
binary response. One can compute this correlation-type statistic by applying the CMH1 option in
PROC FREQ in SAS to the (J!1) tables. For Table I, the chi-squared statistic equals 8·350 with
d.f."1, with a one-sided P-value (for its positive square root) of 0·002.

For this statistic, reversing the order of the response categories yields a different value of the
test statistic. For instance, applying the test in the reverse order to Table I, the chi-squared test
statistic equals 7·08, giving a one-sided P-value of 0·004. This behaviour is not true for other tests
discussed in this article, which have the same result for each of the two possible orders of
categories for the ordinal scale.

3. MODEL-BASED INFERENCE ABOUT MONOTONE DOSE—RESPONSE
RELATIONS

The tests in Section 2 are fine for detecting evidence against the null hypothesis in the direction of
a positive trend. However, they do not lend much insight about the form of the relationship.

2608 C. CHUANG-STEIN AND A. AGRESTI

Statist. Med., 16, 2599—2618 (1997) ( 1997 by John Wiley & Sons, Ltd.

 10970258, 1997, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1097-0258(19971130)16:22<
2599::A

ID
-SIM

734>
3.0.C

O
;2-9 by U

niversity O
f Florida, W

iley O
nline L

ibrary on [29/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A model-based perspective is superior for this purpose. A good-fitting model describes the nature
of the association, provides parameters for describing the strength of the relationship, provides
predicted probabilities for the response categories at any dose, and helps us to determine the
optimal dose. As a by-product, it also yields tests for the hypothesis of no effect. In fact, some tests
presented in the previous section have natural connections with models. In this section, we again
focus on the first question posed by Ruberg11 — that is, whether an effect exists; however, the
model-based approach is also well-suited for pursuing the other three questions.

The models we discuss are generalizations of logistic regression models that handle ordinal
response categories. For further discussion of these and other models for ordinal responses, see
Agresti20 (Chapters 8 and 9) and McCullagh.44

3.1. Proportional odds models

Currently, the most popular model for ordinal responses uses logits of cumulative probabilities.
A J-category response has (J!1) non-redundant cumulative probabilities, P(½

i
)j),

j"1, 2, J!1. For the dose—response problem, consider the model

logit[P(½
i
)j)]"a

j
!b

i
, i"1, 2 , I, j"1, 2 , J!1 (5)

where logit[P(½
i
)j)]"log[P(½

i
)j)/P(½

i
'j)]. This model adds effects Mb

i
N of the drug

dosages on the response to the null model that contains only parameters Ma
j
N pertaining to the

logit of each cumulative probability. It treats the effects Mb
i
N as identical for each cumulative

probability; that is, the effect does not depend on j in the model formula.
This form of model is called proportional odds.44 Independence of dose and response is

equivalent to b
1
"2"b

I
, each cumulative probability then being identical for all doses. Using

a minus sign before the effect of dose in equation (5) implies that the higher the value of b
i
relative

to other Mb
a
N, the lower the cumulative probability tends to be at dose i, and hence the higher the

response tends to be at dose i compared to other doses. The response distributions are stochasti-
cally ordered according to Mb

i
N. The case of a monotone relationship with direction (2) corres-

ponds to b
1
)2)b

I
.

A monotone relation in which the trend is linear in dose scores Md
i
N has the simpler model form

logit[P (½
i
)j)]"a

j
!bd

i
, i"1, 2 , I, j"1, 2 , J!1 (6)

with b'0 implying (2). The ordinary logistic regression model with a linear dose effect is the
special case J"2. For this ordinal model, the odds that the response falls above any given
category are multiplied by exp(b) for each unit increase in dose.

The ML fit of any model of this type yields estimated cumulative probabilities at each dose, and
hence predicted numbers of observations (fitted values) in the cells of the table. One can test the fit
using Pearson or likelihood-ratio chi-squared statistics that compare the observed cell counts to
the model’s fitted values. The adequacy of these goodness-of-fit tests improves as the cell counts
increase in size, the Pearson test being preferred if the cell counts are relatively small.

Model (6) treats the doses as ordinal, whereas model (5) treats them as nominal. To increase
power for testing independence when one expects a monotone trend, it is better to use model (6) as
the alternative rather than (5). This leads to single degree-of-freedom chi-squared tests for testing
independence (b"0 in this model).

The likelihood-ratio test has chi-squared statistic given by double the difference in maximized
log-likelihoods between the fit of model (6) and the simpler independence model having b"0.
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Table IV. Example of part of SAS output (using PROC LOGISTIC) for fitting proportional odds model (6)
to Table I

Model Fitting Information and Testing Global Null Hypothesis
BETA"0

Intercept Intercept Chi-Square for Covariates
Criterion Only and

Covariates
!2 LOG L 2470·961 2461·349 9·612 with 1 DF (p"0·0019)
Score 9·429 with 1 DF (p"0·0021)

Analysis of Maximum Likelihood Estimates
Variable DF Parameter Standard Wald Pr'

Estimate Error Chi-Square Chi-Square
INTERCP1 1 !0·7192 0·1588 20·5072 0·0001
INTERCP2 1 !0·3186 0·1564 4·1486 0·0417
INTERCP3 1 0·6917 0·1579 19·1809 0·0001
INTERCP4 1 2·0570 0·1737 140·2550 0·0001
DOSE 1 !0·1755 0·0563 9·7087 0·0018

The Wald test is based on the square of the ratio of the ML estimate of b to its standard error.
A third test, the ‘efficient score’ test, is based on the derivative of the log-likelihood function at
b"0. This score test is equivalent to a generalized CMH correlation test using the dose scores for
X and midranks for categories of ½. One can perform all three tests using SAS software for this
model, PROC LOGISTIC, as illustrated in Table II. For any of these statistics, one can refer the
signed square root (that is, having the same sign as bK ) to the standard normal distribution to
construct a one-sided P-value. PROC LOGISTIC provides the ML fit of the model; PROC
CATMOD can also fit the model, but only using WLS. The two approaches give similar results
for large samples, but ML is preferred for small samples.

For Table I, the more general model (5) fitted with the constraint bK
1
"0 has estimates

bK
2
"0·118 (ASE"0·178), bK

3
"0·317 (ASE"0·175), and bK

4
"0·521 (ASE"0·178). The esti-

mates suggest a monotone increase in response as a function of dose. The likelihood-ratio test
that b

2
"b

3
"b

4
"0 has test statistic equal to 9·75 with d.f."3 (P"0·021). There is evidence of

a drug effect, though only the estimate for the high dose level shows substantial evidence of
differing from the placebo.

Table IV shows sample SAS output for the simpler model (6), using dose scores (1, 2, 3, 4). One
can compare the fit of this model to that of the model (5) with separate dose effects using the
difference of !2 log-likelihood values for the two models. Under the hypothesis that the simpler
model is adequate, this difference is an approximate chi-squared statistic with d.f. equal to the
number of dose levels !2. In this case, the test statistic comparing the models is
2461·35!2461·22"0·13 with d.f."2, indicating that the simpler model is adequate. It has
bK "0·176 (ASE"0·056) (SAS actually reports the negative of this value, since it parameterizes
the model with # rather than ! as the coefficient of the effect). The z test statistics equal
3·10"J9·612 for the likelihood-ratio test, 3·12"J9·709 for the Wald test, and 3·07"J9·429
for the score test, all having a one-sided P-value of 0·001.

These three tests tend to show similar results for large samples. They are valid for smaller
samples than one needs for performing goodness-of-fit tests for the model. In fact, even if model
(6) does not fit well (as is, in fact, the case for these data), the test statistics provide relatively
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powerful tests, compared to tests that ignore the ordering of doses or responses, as long as the
linear term in the model represents a major component of the departure from independence. That
is, one does not need to test the goodness-of-fit of the model before conducting the association
test. In this regard, the remark of Mantel17 in a similar context is instructive, ‘that a linear
regression is being tested does not mean that an assumption of linearity is being made. Rather it is
that that test of a linear component of regression provides power for detecting any progressive
association which may exist.’

Proportional odds models have several appealing properties. If the model holds for a particular
set of response categories, it holds with the same parameter effects when the response scale
is collapsed in any way. This behaviour is true, approximately, for the sample data. For instance,
if we combine the major and minor disability categories in Table I and again fit model (6),
we get bK "0·185 (ASE"0·060), compared to bK "0·176 (ASE"0·056) for the complete table.
When this model fits well, different studies using different definitions of response categories
should reach similar conclusions. In addition, it is unnecessary to assign scores to the response
categories.

Once an effect is established, the more complex model (5) is useful for comparing response
distributions at different dosage levels. For instance, the difference bK

i
!bK

j
divided by its standard

error is a standard normal test statistic for judging whether the pair of doses i and j is significantly
different. One can use Bonferroni methods for simultaneous comparisons; for instance, to
simultaneously compare all (I!1) pairs of adjacent dose levels with an overall type I error
probability of no greater than 0·05, one uses nominal size 0·05/(I!1) for each pairwise test.

3.2. Other ordinal models

Though the proportional odds model is currently a popular one for modelling ordinal response
data, one could alternatively use other ordinal models to detect a monotone dose effect. For
instance, McCullagh44 discussed transforms other than the logit for the cumulative probability,
such as the probit and ones (log-log and complementary log-log) for which the cumulative
probability approaches 0 at a different rate than it approaches 1. The probit usually provides
similar results as the logit, in terms of testing for an effect. McCullagh showed that the probit and
logit are most appropriate when an underlying continuous response is roughly bell-shaped, and
when a similar form of model holds for that continuum. For instance, if an underlying normal
response has approximately a linear relationship with dose, then the logit or the probit of the
cumulative probabilities with a linear dose effect tends to fit well. Log-log links, on the other
hand, are appropriate when an underlying response is highly skewed. All these options are
available with PROC LOGISTIC in SAS.

Other ordinal models utilize single-category probabilities rather than cumulative probabilities.
For instance, the adjacent-categories logit model with a linear dose effect has form

log[P (½
i
"j)/P (½

i
"j#1)]"a

j
!bd

i
, i"1, 2, I, j"1, 2J!1. (7)

The same dose effect b occurs for logits for each pair of adjacent response categories. Indepen-
dence is the special case b"0, and one can test this with a likelihood-ratio, Wald, or efficient
score test. The score test is equivalent to the generalized CMH correlation test using the dose
scores for X and equally-spaced scores for the response categories. One can fit models of this form
using PROC CATMOD in SAS.45 With SAS, an ML fit is possible, but it is much simpler to
prepare code for the WLS fit; see Table II. Model (7) is also equivalent to an ordinal log-linear
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model that uses these scores for the two classifications, called the linear-by-linear association
model (Agresti,20 Section 8.1).

The parameters for the effect in models (7) and (6) refer to different types of odds ratios. For
instance, exp(b) in model (7) refers to the multiplicative effect of a one-unit increase in dose on the
odds of response in the higher instead of the lower of any two adjacent categories. The two models
usually fit well in similar situations and provide similar results in the tests.

For instance, with Table I, the estimated effect in model (7) is bK "0·070, with standard error
0·023. The z test statistic versions of the Wald and likelihood-ratio statistics equal 3·09 and 3·11,
again giving one-tailed P-values of 0·001. The model fits fairly well (Pearson goodness-of-fit
statistic"15·8, d.f."11). Both it and the proportional odds model (6) show some lack of fit in the
second column for the last row, the response count of 4 in this cell being significantly smaller than
the value of nearly 14 that the model predicts.

Finally, the continuation-ratio logit model with common effect for each logit has form

log[P(½
i
"j )/P(½

i
*j#1)]"a

j
!bd

i
, i"1, 2 , I, j"1, 2 , J!1. (8)

A score test for this model is equivalent to the test of Tarone43 for survival data discussed in
Section 2.5; that is, it is a generalized CMH test based on the sets of probabilities used in these
logits. The statistic value and resulting P-value differs from the ones using continuation-ratio
logits of form log[P(½

i
"j#1)/P (½

i
)j )].

4. GENERALIZATIONS FOR STRATIFIED DATA

Typically, one studies dose—response relations while controlling for factors that could influence
the relationship. For instance, one might display the relationship separately for men and for
women, for different age groups, for different centres from which the data are obtained, or for
different stages or levels of severity of the medical condition being treated. To illustrate, Table V is
a stratified version of Table I that classifies subjects according to the trauma severity at the time of
study entry. The study was designed to enroll about the same number of mild versus moder-
ate/severe patients, and the randomization was carried out with severity grade as a stratifying
factor. In general, the stratification can be part of the study design or represent post-study control
to form more homogeneous subgroups.

For a stratified table, interest focuses not only on the effect of the dose on the response within
each stratum, but also on whether there is interaction. Does the dose effect vary according to the
stratum?

4.1. Models for the stratified case

The model-building approach can easily accommodate stratified data. We illustrate this with the
proportional odds model. For level h of S strata, let ½

hi
denote a response for a subject at dose

level i. The proportional odds model

logit[P (½
hi
)j )]"a

j
!bS

h
!bD

i
, h"1, 2 , S, i"1, 2 , I, j"1, 2, J!1 (9)

has dose effects MbD
i
N and stratum effects MbS

h
N, but assumes a lack of dose-by-stratum interaction.

That is, the effects of the doses on the response are assumed to be the same in each stratum. The
special case of this model replacing bD

i
by bDd

i
for the dose scores Md

i
N is relevant for detecting

a particular type of monotone trend. One can then construct single-degree-of-freedom
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Table V. Data from Table I stratified by trauma severity

Trauma Treatment group Glasgow Outcome Scale
severity

Death Vegetative Major Minor Good
state disability disability recovery

Mild Placebo 2 4 29 43 26
Low dose 2 4 25 39 23
Medium dose 1 3 23 49 24
High dose 0 1 21 47 26

Moderate/
severe

Placebo 57 21 17 5 6
Low dose 46 17 19 8 7
Medium dose 43 11 31 15 7
High dose 43 3 28 11 15

chi-squared statistics (or, taking square roots, z statistics) testing whether bD"0 using the
likelihood-ratio, Wald, or score approaches, in the same way as just discussed for two-way tables.

To illustrate, applying the simpler model with a linear dose effect and dose scores (1, 2, 3, 4) to
Table V, we get bK "0·205 (ASE"0·058). The Wald chi-squared statistic equals 12·5, and the
likelihood-ratio statistic comparing this model to the simpler one without the dose effect equals
the difference in !2-log-likelihood values for the two models, which is also 12·5 (z"3·53). The
P-value is less than 0·001.

More generally, one could extend model (9) or the simpler one with the linear effect by
permitting dose-by-stratum interaction. The model simply then adds cross-product terms of the
dose and strata variables (or dummy variables). One can test the hypothesis of no interaction by
comparing the !2 log-likelihood values for this model and the corresponding model without
interaction. When the degree of interaction seems substantively important, one can estimate and
test the effect separately in each stratum using the dose effect estimates pertaining to that stratum,
or one could simply fit the original model (for example, 6) separately to each stratum to obtain the
separate effects. (This approach is not equivalent, because it estimates intercept parameters
separately with each fit.) On the other hand, when the dose effects do not vary much among the
strata, the overall test based on a lack of interaction tends to be much more powerful, and the
overall estimate tends to be more efficient, since they summarize information across the strata.

In fact, there is some evidence of interaction in Table V. For the models with linear dose effect,
the likelihood-ratio statistic comparing the model with separate slopes to the model with a single
slope equals 3·85 with d.f."1. The model with separate slopes has estimates bK "0·099
(ASE" 0·082) for the mild trauma group and bK "0·327 (ASE"0·082) for the moderate/severe
trauma group. Hence, there is a strong evidence of a dose effect only for the latter group. There
are other approaches one could use both to check for interaction and to describe the separate
effects, but we do not discuss them here because of space limitations.

4.2. Non-model-based approaches for the stratified case

The CMH approach generalizes naturally to combining information from several strata; in fact,
the original statistic presented by Mantel and Haenszel46 was designed specifically for the
stratified case with two groups and a binary response. For the case of several doses and an ordinal
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response, the correlation statistic (Mantel17) provides a large-sample chi-squared statistic
with d.f."1 for detecting a linear trend in the effect. One can, as usual, treat the signed square
root as a standard normal statistic. The CMH approach, like model (9), works well when the dose
effects are similar in each stratum. It is available with the CMH1 option in PROC FREQ in SAS.
For Table V, this approach used with equally-spaced scores for doses and response outcomes
yields a chi-squared statistic of 16·2 and normal statistic of 4·0, for which the P-value is less than
0·001.

Similarly, one could consider stratified versions of tests discussed in Section 2 that are special
cases of a generalized CMH test, such as Tarone’s test.42 In principle, this type of construction
could also be used with other sorts of statistics, such as the Jonckheere-Terpstra statistic.

5. SMALL-SAMPLE AND SPARSE-DATA INFERENCE

The test statistics presented in this article are large-sample statistics. For chi-squared statistics,
the convergence to chi-squared distributions tends to be faster for statistics having smaller values
of d.f., such as the single-degree-of-freedom statistics.

For any particular statistic referring to the two-way contingency table of dose by ordinal
response, one can construct a small-sample ‘exact’ test using the generalized hypergeometric
distribution that results from conditioning on the row and column totals. This approach
generalizes Fisher’s exact test for 2-by-2 tables, with the conditioning argument yielding a distri-
bution not depending on unknown nuisance parameters. Exact tests are available in StatXact22
for several statistics, including the Jonchkeere—Terpstra statistic and correlation-type statistics
with fixed or rank scores.47 (The correlation-type statistics use the ‘linear-by-linear’ option in
StatXact.) Currently these tests are restricted to the single-stratum case.

For stratified data, only the case of two dose groups is currently addressed by standard
software, using the CMH correlation type approach for a set of fixed or midrank response scores
(StatXact). In principle, though, the methodology of small-sample exact tests extends directly to
the more general case of several dose groups.48 Specialized FORTRAN programs exist for these
analyses.

6. SAMPLE SIZE AND POWER

Whitehead49 discussed sample size formulae for an ordered categorical response with the
proportional odds model, though only for the case of two groups (for example, two doses).
Suppose we want power 1!b in an a-level test for detecting an effect of size b

0
in that model. The

sample is to be allocated to the two groups in the ratio A to 1, and pN
j
denotes the anticipated

marginal proportion in response category j. Whitehead49 stated that the required sample size for
a two-sided test is then approximately

N"3(A#1)2(za@2#zb)2/[Ab2
0
(1!+ pN 3

j
)]

where z
a
is the 100(1!a) percentile of the standard normal distribution.

This requires anticipating the marginal proportions as well as the size of the effect. Setting
pN
j
"1/J provides a lower bound for N. Whitehead49 showed that the sample size does not depart

much from this bound unless a single dominant response category occurs. Hilton and Mehta50
provided a somewhat different approach to sample size determination, based on evaluating the
exact conditional distribution with a network algorithm, or simulating that distribution.
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With equal marginal probabilities, Whitehead’s49 formula is useful for showing the effect of the
choice of number of response categories. The ratio of the sample size N(J) needed for J categories
relative to the sample size N (2) needed for two categories is

N (J)/N(2)"0·75/[1!1/J2].

Relative to a continuous response (J"R), using J categories provides efficiency (1!1/J2). The
loss of information from collapsing to a binary response is substantial, but there is little gain from
using more than about five categories. For fixed J, equal allocation (A"1) produces the smallest
sample size.

The case of I'2 groups does not seem to have been considered. However, various rather ad
hoc ways exist of approaching the problem. For instance, many tests discussed in this article are
based on asymptotically normal statistics, such as a measure of association (for example,
correlation, gamma) or an estimate of a model parameter (bK for the proportional odds model). Let
hK denote a generic asymptotically normal estimator of a parameter h, with variance of the form
»/N. Then, for a fixed non-null value h

0
of h, standard arguments show that the required sample

size for a one-sided test is

N"(za#zb)2»/h2
0
.

To use this formula, the steps are to: (i) choose an anticipated set of non-null cell probabilities;
(ii) find the value of h

0
corresponding to those probabilities; (iii) find » for those probabilities, and

(iv) substitute » into this formula using the required size and power. In some cases » has closed
form, based on the delta method, and in some cases it requires iterative methods. Even when it has
closed form, though, the formula is typically messy computationally. A simple approach to
determining » (and h

0
) enters the anticipated probabilities as data into standard software, in

which case » equals the square of the reported asymptotic standard error.
For illustrative purposes, suppose we had anticipated probabilities proportional to the counts

in Table I. For the proportional odds model, we observed bK "0·1755 and a standard error of
0·0563 for these data having a sample size of 802. Setting »/802"(0·0563)2 yields »"2·542. To
have power 0·90 in an a"0·05 level one-sided test of b"0 when the true relationship has
b
0
"0·1755 requires a sample size of about N"(1·645#1·282)2(2·542)/(0·1755)2"707.
For stratified data, Whitehead49 noted that logistic regression and an ordinal extension such as

the proportional odds model may require a somewhat increased sample size to preserve the
desired power. However, the variation among strata in the category probabilities has to be quite
extreme before sample size is greatly affected.

SUMMARY AND RECOMMENDATIONS

We have presented a variety of tests for detecting a monotone relation between dose and an
ordinal response. Of the non-model-based methods, the tests based on the correlation seem the
most flexible. These connect closely with methods used for continuous reponses, which can be
regarded as a limiting case as the number of response categories and doses increases indefinitely.
Though directed toward a narrow alternative, namely linearity for the choice of scores, this
provides the advantage of good power if a strong linear component exists for the true association.

The order-restricted approach has the advantage of specifying the alternative in a broader and
more realistic manner. Disadvantages include a rather awkward limiting distribution, a lack of
a full theoretical and methodological development for a categorical response when the number of
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doses exceeds two or the data are stratified, and potential power loss compared to a linear trend
statistic when the true relation has a strong linear component. Some preliminary power studies by
one of the authors for a separate project suggest that the order-restricted approach has better
power than the linear trend test if the response is essentially identical for all positive dose groups
but those groups have better response than the control group. On the other hand, for other
patterns of monotone increase that do not depart so drastically from linearity, the linear trend
statistic is more powerful.

Section 2 addressed the dose—response relationship within the significance-testing framework.
Our overall preference, however, is for a model-based approach, since it provides a fuller
description of the dose—response relationship. For instance, estimated odds ratios describe the
strength of the effect, and fitted values provide estimates of response probabilities that are
smoother and tend to have smaller mean squared errors than the sample proportions. Goodness-
of-fit tests check the model adequacy, and residuals can indicate potential departures from the
trend predicted by the model. Moreover, the fit of a model such as (5) enables us to consider the
more important follow-up questions, such as determining which doses have significantly different
responses and which dose is optimal.

Some statisticians avoid the model-building approach for fear of increasing the number of
assumptions, with the resulting test being less robust. However, many of the standard tests have
connections with models, being efficient score tests. For large samples, one obtains similar results
from a likelihood-ratio test for a model parameter as one does from a score test. For Table I, for
instance, model-based and non-model-based tests gave similar results.

Focusing on models makes one recognize the structure under which a particular test is natural.
Moreover, a model-based test can provide a powerful approach even if the model does not fit well.
For instance, for testing conditional independence in stratified tables, generalizations of the
Cochran—Mantel—Haenszel test are popular. These tests are score tests for models that assume
homogeneity of odds ratios across strata. However, one does not need to assume such homogen-
eity to use the tests, and they perform well whenever the true degree of heterogeneity is not severe.

Finally, emphasizing models has the advantage of decreasing reliance on significance tests as
the primary mode of analysis. Though this paper has surveyed a variety of such tests for detecting
monotone dose-response relationships, ultimately estimation of parameters yields more informa-
tive conclusions.
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