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SUMMARY

This article discusses random effects models for within-subject comparisons of repeated responses

on the same categorical scale. The models account for the correlation that normally occurs between

repeated responses. The standard way of fitting such models maximizes the marginal likelihood

after integrating with respect to a distribution for the random effect. An alternative nonparametric

approach does not assume a distributional form for the random effects. Recent literature shows that

for certain simple logit models, this approach yields essentially the same model parameter estimates

as conditional maximum likelihood. Moreover, these estimates also result from fitting corresponding

quasi-symmetric loglinear models. For simple data sets in which primary interest relates to subject-

specific comparisons of the repeated responses, one can easily obtain the estimates with standard

software for loglinear models. Examples include data from cross-over designs and from comparisons

of treatment and control groups regarding the change between baseline and follow-up observations.

Key words: adjacent-category logit; cross-over designs; cumulative logit; item response models;

marginal homogeneity; matched pairs; ordinal data; overdispersion; proportional odds; quasi sym-

metry; Rasch model; square contingency tables; subject-specific effects.
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1 INTRODUCTION

Suppose n subjects make T repeated responses on the same categorical scale, with r categories.

For instance, each subject may be classified on a scale (mild, moderate, severe) relating to severity

of some chronic condition, before and after receiving treatment for it. Or, each subject might be

classified by T different observers regarding whether a particular disease is present. Normally there

are also explanatory variables. For instance, one might compare the change in severity of disease for

two treatments, or for treatment and control groups. To simplify, we suppress explanatory variables

in our notation until we consider specific examples.

For subject i and response measurement j, j = 1, ..., T , let φhij denote the probability of response

outcome in category h, h = 1, ..., r, so
∑

h φhij = 1. The notation reflects allowances for within-

subject and between-subject heterogeneity. Let φh.j denote the marginal probability of outcome h

for response j, for a subject randomly selected from the population of interest (The ‘.’ notation

represents averaging over the population of subjects).

Table 1, from Matthews and Farewell1 (p. 64), is an example of the simplest setting for such

data, with T = r = 2. Here, T = 2 pathologists examined the same n = 100 tumors and classified

each tumor in one of r = 2 categories, malignant or benign. How does one describe the difference

between the pathologists’ evaluations? For instance, consider estimation of θ in the conclusion, “The

odds that pathologist B judges a malignancy are θ times the odds for pathologist A.” One estimate

is (18/82)/(10/90) = 1.98, based on the ratio of sample odds in the marginal distributions. This

estimates θ = exp(β2 − β1) in the population-averaged model

logit(φ1.j) = α+ βj , j = 1, 2. (1)

The effect θ refers to the odds of pathologist B judging a malignancy for a tumor from a randomly

selected member in the population of interest, relative to the odds of pathologist A judging a

malignancy for a tumor from another randomly selected member.

Alternatively, one might prefer an interpretation that relates to the same tumor evaluated by
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each pathologist. Such effects refer to estimating θ = exp(β2 − β1) in the subject-specific model

logit(φ1ij) = αi + βj , j = 1, 2. (2)

For this model the usual sample estimate of θ is the ratio of the “discordant” counts2, 9/1 = 9 in

Table 1, and the related test of the hypothesis of no effect is McNemar’s test.

Parameters in population-averaged models describe differences in marginal distributions of the

repeated response purely in terms of the marginal probabilities. By contrast, parameters in subject-

specific models describe differences in a way that directly incorporates the dependence of repeated

responses in the joint distribution. If a subject-specific model holds of logistic form (2), the im-

plied population-averaged model for the marginal distributions is not necessarily of logistic form.

This is because the marginal probability φ1.j is the expectation with respect to αi of φ1ij =

{1 + exp[−(αi + βj)]}
−1, which need not have form {1 + exp[−(α + βj)]}

−1. An exception is

when the subject parameters are identical, in which case the population-averaged model holds with

the same effects. Ordinarily, when we fit both models, between-subject heterogeneity results in

population-averaged effect estimates that are closer to zero than subject-specific effect estimates,

with greater heterogeneity producing more of a discrepancy.

This distinction does not occur for the usual linear models for normally distributed responses.

For matched pairs (T = 2), for instance, the mean of the paired differences (a subject-specific

effect) is the same as the difference of the two means (a population-averaged effect). Neuhaus3

et al. and Zeger4 et al. gave interesting discussions of relationships between subject-specific and

population-averaged effects. In this article, we focus on simple ways of estimating subject-specific

effects.

Subject-specific models are often used to account for overdispersion that may result from un-

controlled factors or dependence or clustering in a sample. For instance, mice from different litters

subjected to the same experimental conditions might have different “success” probabilities for a

binary response, and results for different mice from the same litter might have dependent responses.

Either condition results in counts of successes displaying greater variation than expected with the

binomial sampling model for independent, identical trials. Models with random effects terms for

subjects or clusters can reflect such departures from the usual simple assumptions, and they can also

represent effects of omitted explanatory variables or measurement error in the explanatory variables.

Chap. 6 of Collett5 gives a good introduction to random effects models for the binary-response case.
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The psychometrics literature reports an enormous body of research relating to random effects

models for subject-specific comparisons of repeated responses, and referred to as item-response

models. Suppose n subjects respond to T questions (items), each having a correct response (1)

and an incorrect response (2). A basic item-response model, the Rasch model6,7, states that the

probability of correct response by subject i on item j depends on subject abilities {αi} and item

difficulties {βj} through the equation

logit(φ1ij) = αi − βj . (3)

In item response models, interest may focus on estimating the subject abilities, the item difficulties,

or both. A complication in fitting the models is that the number of parameters increases as the

sample size increases. Regularity conditions needed to ensure consistency of maximum likelihood

(ML) estimators do not apply8. The degree of bias can be substantial. For model (2), for instance,

the ordinary ML estimator of β converges in probability to 2β (Andersen9, p.244).

For purposes of estimating item parameters, there are two common ways of dealing with this

complication. The first, a fixed-effects solution, treats the subject effects as nuisance parameters

and conditions on sufficient statistics for them. One maximizes the resulting log likelihood, which

depends only on the parameters of interest (e.g., {βj} in model (3)). For T = 2 this conditional ML

approach leads to the estimate quoted above based solely on discordant pairs. Andersen’s9 text is a

good reference for the conditional approach.

The second approach treats the subject terms as random effects, assuming some distribution

for them, such as normal with unknown standard deviation. One integrates the likelihood with

respect to that distribution to obtain a marginal likelihood. One then maximizes the marginal

likelihood, which depends also on the parameters of the random effects distribution. For discussion

of this marginal ML approach, see, Anderson and Hinde10, Bock and Aitkin11, Conaway12, Laird13,

Stiratelli14 et al., Thissen15, and also many articles listed in the annotated bibliography of Ashby16

et al.. An advantage of marginal ML is that it is applicable also for models with non-canonical links

such as the probit or log-log, for which sufficient statistics do not exist and conditional ML cannot

be used. Another disadvantage often quoted for the conditional ML approach is its computational

complexity. However, the marginal ML approach is also somewhat complex, because of the necessity

of integrating out the random effect. This normally requires numerical integration in coordination

with an algorithm such as the EM algorithm11, or at least Gibbs sampling17 or some type of Monte
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Carlo method18. One can obtain such estimates using specialized software or subroutines, such as

in NAG and IMSL.

The main purpose of this article is to show that for logit models that describe subject-specific

effects with repeated categorical responses, it is actually easy to obtain conditional ML estimates for

some standard types of data sets. We review recent literature showing that conditional ML estimates

are also ordinary ML estimates for certain loglinear models. Hence, one can use existing software

such as SAS and GLIM to obtain the conditional estimates. In addition, it is possible to check model

adequacy using residuals and goodness-of-fit tests for the corresponding loglinear model.

An advantage of the conditional approach is that it is unnecessary to assume a distribution for

the subject random effects. The analysis is distribution-free, and hence one fewer basic assumption

needs to be satisfied for the resulting estimators to be consistent. In addition, the conditional ML

estimates are identical to estimates obtained for an extended form of marginal maximum likelihood

that makes no assumption about the random effects distribution. Thus, the estimates are also

nonparametric marginal ML estimates. We illustrate how to obtain the estimates for three distinct

models for three data sets analyzed recently in this journal. The first is a logit model for a repeated

binary response obtained from a cross-over experiment with three treatments. The second is an

adjacent-categories logit model for an ordinal response observed at a baseline and at follow-up, for

control and treatment groups. The third is a cumulative logit model for an ordinal response observed

in a cross-over experiment. There is a need for additional research to extend this approach to more

complex types of repeated measurement data, in order to handle complications such as missing data

and time-varying covariates.

2 THE BINARY RASCH MODEL AND QUASI SYMME-

TRY

We first discuss the Rasch model (3), its connection to the loglinear model of quasi symmetry, and its

application to modeling repeated binary responses. The term αi common to all responses by subject i

represents the effects of characteristics of that subject, net of any explanatory variables in the model,

that could affect the response. This term represents a latent variable, and for a given subject i with

fixed {αi}, the model’s “local independence” assumption treats separate responses as independent.

We also assume that responses by different subjects are independent. The relative similarity of
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different responses by the same subject, reflected by the {αi}, implies that joint distributions of

pairs of responses (averaged over subjects) have positive associations.

Section 1 expressed subject-specific models in terms of an r×n×T array of probabilities {φhij}.

Upon elimination of the subject terms, marginal and conditional ML analyses refer to a rT cross-

classification of the T responses by each subject. Let (h1, ..., hT ) denote a potential response pattern

for the T responses, where the outcome hj for the j
th response is an integer between 1 and r, for j =

1, ..., T . Let n(h1, ..., hT ) denote the number of subjects in the sample having this response pattern,

and let m(h1, ..., hT ) denote its expected frequency. We treat {n(h1, ..., hT )} as a multinomial sample

of size n, with cell probabilities proportional to {m(h1, ..., hT )}.

For binary responses (r = 2), Tjur19 showed a connection between conditional ML estimates for

the Rasch model (3) and standard ML estimates for a loglinear model for {m(h1, ..., hT )} in the

2T cross classification of the subjects’ T responses. We next outline his argument, omitting the

technical details. Tjur first described a nonparametric marginal ML approach. One considers the

probability of a particular response pattern (h1, ..., hT ), for a given α. Integrating this probability

with respect to an unspecified distribution F (α) for that subject effect leads to the likelihood used

in the nonparametric marginal ML solution. This likelihood involves complicated functions of the

parameters. Tjur noted, however, that an extended version of this likelihood that is slightly more

general (in terms of allowing additional values for parameters) has simple form, and is equivalent to

the likelihood for a certain loglinear model. Tjur referred to this loglinear model for the “extended”

likelihood as the “extended random model.” He also noted that one can decompose the likelihood for

that loglinear model as the product of a function of {βj} and a function of the remaining parameters,

in such a way that the function of {βj} is the conditional likelihood function for the Rasch model;

that is, it is the likelihood obtained by conditioning on sufficient statistics for {αi}. Thus, Tjur

noted that ML estimates of {βj} and their estimated standard errors are identical for the loglinear

model and the conditional Rasch model.

It follows that one can obtain conditional ML estimates of {βj} in the Rasch model by fitting

a loglinear model. Blackwood20 and Darroch and McCloud21 provided alternative motivation for

the connection between the models. Following Tjur’s work, others (e.g., Fienberg17) noted that his

loglinear model is simply the quasi-symmetry model, and the conditional ML estimates of {βj} relate

to ordinary ML estimates of main effects for that model. Also, de Leeuw and Verhelst22 showed that
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when F (α) is unspecified but has an infinite number of points of increase, the ordinary nonparametric

marginal ML estimators of {βj} are identical to Tjur’s extended marginal ML estimates (and hence

the conditional ML estimates) with probability converging to 1 as n → ∞. Thus, one can also

interpret the conditional ML estimates as nonparametric marginal ML estimates, being free of any

assumption about the form of the distribution for the random effects. See Cressie and Holland23

and Lindsay24 et al. for related remarks, and Conaway25,26, Darroch and McCloud21, and Kenward

and Jones27 for extensions of Tjur’s result to generalized logit models for r unordered categories.

The quasi-symmetry model has form

logm(h1, ..., hT ) =
T∑

j=1

βj(hj) + λ(h1, ..., hT ) (4)

where the term λ(.) is identical for all permutations of its argument; for instance, for T = 3 and

r = 2, λ(1, 1, 2) = λ(1, 2, 1) = λ(2, 1, 1) and λ(1, 2, 2) = λ(2, 1, 2) = λ(2, 2, 1). This model is a

generalization of the complete symmetry model that permits different main effect parameters for

each response28,29. The conditional ML estimates of {βj} in the Rasch model (3) are related to the

ordinary ML parameter estimates in this model by

β̂b − β̂a = (β̂b(2)− β̂b(1))− (β̂a(2)− β̂a(1))

The conditioning argument that results in elimination of the subject parameters in the Rasch model

yields the symmetry parameters in (4), whereby subjects who have the same total ‘score’ on the T

responses (i.e., the same number of hj = 1) have the same interaction term.

To illustrate this approach, we use Table 2, previously analyzed by Jones and Kenward30. The

data refer to a three-period cross-over trial designed to compare placebo (treatment A) with a

low-dose analgesic (treatment B) and high-dose analgesic (treatment C) for relief of primary dys-

menorrhea. The subjects in the study were divided randomly into six groups, corresponding to the

six possible sequences for administering the three treatments during the three periods. At the end

of each period, each subject rated the treatment as giving either no relief (1) or some relief (2). Let

φhi(k)j denote the probability of response h (h = 1, 2) for subject i using treatment j (j = A,B,C),

where subject i is nested in treatment sequence k (k = 1, ..., 6). Let mk(a, b, c) denote the expected

frequency of outcomes a for treatment A, b for treatment B, and c for treatment C, under treat-

ment sequence k. The subject-specific logit model corresponding to a Rasch model with common

7



treatment effects for each sequence k is

logit(φ1i(k)j) = αi(k) − βj . (5)

One can estimate treatment parameters in this model by fitting the corresponding quasi-symmetry

type of model

logmk(a, b, c) = βA(a) + βB(b) + βC(c) + λk(a, b, c) (6)

where, for instance, βA = βA(2)−βA(1), and where for each k, λk(a, b, c) = λk(a, c, b) = λk(b, a, c) =

λk(b, c, a) = λk(c, a, b) = λk(c, b, a). The more general subject-specific model in which the effects

vary by treatment sequence has main effect parameters {βjk} that differ for each k, and corresponds

to a separate quasi-symmetry fit for each treatment sequence. The difference in likelihood-ratio

goodness-of-fit statistics between the two models is 12.77, based on df = 10. This suggests that the

simpler model is adequate. One can also consider intermediate models that permit certain types of

treatment-by-sequence interaction, such as period or carry-over effects, but these are insignificant

for these data. To illustrate, suppose one included the period terms

−π1I(period 1)− π2I(period 2)

in the Rasch-type model (5). For instance, the first period indicator equals 1 when {(j, k) =

(1, 1), (1, 2), (2, 3), (2, 4), (3, 5), (3, 6)}. It corresponds to including the term π1 in model (6) for

the cells for which (a = 2, k = 1, 2), (b = 2, k = 3, 4), (c = 2, k = 5, 6). The decrease in the

likelihood-ratio statistic is then 0.66, compared to model (6), based on df = 2.

The treatment effect estimates obtained from the simple model (6) are

β̂B − β̂A = 1.641 (ase = 0.338)

β̂C − β̂A = 2.230 (ase = 0.388)

β̂C − β̂B = 0.589 (ase = 0.393).

For instance, for a given subject, we estimate the odds of relief for the low-dose analgesic as

exp(1.641) = 5.2 times the odds of relief for the placebo. Substantive results are the same as

those given by Jones and Kenward using a different loglinear model, but their treatment parameters

have an awkward conditional interpretation. In a later article27, these authors showed how to fit a

Rasch-type model for an expanded version of these data in which the response has three categories.
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In the model (6) with common treatment effects for each sequence, suppose we sum expected

frequencies over k, thus collapsing the table over the treatment-sequence factor. Then we see that

the quasi-symmetry model with the same treatment parameters applies to the collapsed table. Thus,

model (6) has the same treatment effect estimates as we would obtain for the usual quasi-symmetry

model fitted to the single 23 table collapsed over treatment sequence. Representation (6) for the

uncollapsed table is useful, however, for comparing results to more general models in which the

treatment effect may vary according to period, carry-over, or other interaction effects. The lower

margin of Table 2 shows the fit of the simple model to the collapsed table. It has a likelihood-ratio

goodness-of-fit statistic of G2 =3.27, based on df = 2. There is a reduction of 53.53 in the likelihood-

ratio statistic (based on df = 2) compared to the complete symmetry model, giving strong evidence

against the hypothesis of identical treatment effects.

3 AN ORDINAL RANDOM EFFECTS MODEL

Though the literature is extensive on random effects and item response models for binary data, this

is not the case for ordinal responses. Relevant articles include Agresti31, Ezzet and Whitehead32,

Harville and Mee33, McCullagh34 and Tutz35. We shall discuss two types of ordinal models, utilizing

different types of logits. We need separate approaches to obtain distribution-free estimates for these

models, but both approaches are related to that for binary responses whereby estimates result from

the fitting of a corresponding quasi-symmetry model.

The first ordinal logit model is a special case of a model considered by Andersen36. It has the

adjacent-categories logit representation

log(φh+1,ij/φhij) = αhi + βj . (7)

Simpler models also provide structure for {αhi}, but are not relevant when main interest focuses on

estimating the subject-specific effects {βj}. In model (7), for each subject the odds of outcome h+1

instead of outcome h for response a are exp(βa − βb) times the odds for response b. We assume the

effects are identical for each pair of adjacent categories.

This model has simple sufficient statistics for the subject effects, so the conditional approach

applies directly. These statistics relate to counts of subjects who have response sequences that,

apart from a permutation, are identical. Generalizing Tjur’s argument, Agresti31 noted that the

conditional ML estimates are also distribution-free marginal ML estimates. One can obtain them
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by ordinary fitting of the loglinear model

logm(h1, ..., hT ) =

T∑

j=1

βjvhj
+ λ(h1, ..., hT ), (8)

where λ(.) is permutationally invariant and {vh = h}. This is a special case of the quasi-symmetry

model (4) that has the ordinal structure for the main effects,

βj(h) = hβj .

The complete symmetry model is the further special case β1 = ... = βT . Agresti31 also discussed

models in which {vh} are arbitrary fixed scores.

The sufficient statistics for {βj} in model (8) are the mean responses in the T one-way margins

of the rT table, when one assigns equally-spaced scores to the r response categories. The conditional

ML estimates of {βj} have the same order as the sample marginal means, and an efficient score test

for the hypothesis of T identical response distributions is based on the variation in the values of

those means (see, e.g., Koch37 et al., and Meeks and D’Agostino38 for T = 2). Alternatively, one

can use a likelihood-ratio test with df = T − 1, based on comparing the fit of this model to that of

the complete symmetry model.

To illustrate this ordinal logit model, consider Table 3. These data, previously analyzed by

Francom39 et al. and Agresti40, give results of a randomized, double-blind clinical trial comparing

an active hypnotic drug with a placebo in patients with insomnia. The outcome is patient response

to the question, “How quickly did you fall asleep after going to bed?” Patients responded at the

start and conclusion of a two-week treatment period. Agresti analyzed the data using population-

averaged models. That article noted that subject-specific ordinal models provided an alternative

approach, but that likelihood methods had not been developed for them. We now conduct such an

analysis.

Let φhi(k)j denote the probability of response h (h = 1, 2, 3, 4) at occasion j (j = 1 for initial,

and j = 2 for follow-up), for subject i who is nested within treatment group k (where k = 1 for

active drug and k = 2 for placebo). The model

log(φh+1,i(k)j/φhi(k)j) = αhi(k) + βj (9)

assumes the same occasion effect β = β2 − β1 for each treatment group. For Table 3, let mk(a, b)

denote the expected frequency for outcome a at the initial occasion and outcome b at follow-up, for
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treatment group k. One can obtain the conditional ML estimate of the occasion effect by fitting the

loglinear model

logmk(a, b) = aβ1 + bβ2 + λk(a, b) (10)

where for k = 1, 2, λk(a, b) = λk(b, a) for all a and b.

The model fits relatively well, the fit also being displayed in Table 3. It has a likelihood-

ratio goodness-of-fit statistic of G2 = 15.16, based on df = 11. The ML estimate of the common

occasion effect equals β̂ = −1.365 (ase = 0.183). For each subject with either drug or placebo,

the estimated odds that time to falling asleep at the initial observation is > 60 minutes instead of

30-60 minutes (or 30-60 minutes instead of 20-30 minutes, or 20-30 minutes instead of < 20 minutes)

is exp(1.365) = 3.9 times the estimated odds at the follow-up observation. The model lacking an

occasion effect is simply the model that displays a separate complete symmetry structure for each k

(model (10) with β1 = β2). It fits much more poorly, having G2 = 117.19 (df = 12).

More general models permit the occasion effect to vary by treatment group. For Table 3, the

generalized model has G2 = 14.32 (df = 10). The estimated occasion effects are then -1.519 for the

active drug and -1.183 for placebo. The difference of 0.336 has an estimated standard error of 0.367.

There is not much evidence of a stronger occasion effect for the active treatment, based on the Wald

test ((0.336/0.367)2 = 0.84, df = 1) or the likelihood-ratio test (change in G2 of 0.84, df = 1). The

estimated occasion effect for the simpler model (10) is necessarily identical to the one obtained by

collapsing the table over the group factor.

The results for this model differ somewhat from results for population-averaged models, both in

terms of sizes of estimated effects and whether there is much evidence of interaction. For instance,

consider the model

log(φh+1,jk/φhjk) = αhk + βj

which applies to the treatment-by-occasion margins of Table 3. We fitted this model by maximizing

a product multinomial likelihood for the 16 cells in each part of Table 3, obtaining G2 = 13.00,

based on df = 5. The model that lets the effect vary by treatment (i.e., logit = αhk + βjk) has

G2 = 4.21 (df = 4). For the latter model, the ML estimated occasion effect is -0.982 for the active

drug and -0.505 for placebo, and the difference of 0.477 has an estimated standard error of 0.162.

For another example, we consider an ordinal-response version of the data analyzed in the previous

section (Table 2), reported in the later paper by Kenward and Jones27. Relief was there measured as
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(none, moderate, complete) instead of (none, some). We obtained estimates of treatment effects for

a simple subject-specific model of form (9) with k referring to treatment sequence. Estimates are the

same as those for the loglinear model (8) fitted to a 33 table that is a collapsing of their table over

the six sequences. The model fits well, with G2 = 10.35 (df = 15) compared to G2 = 69.00 (df = 17)

for the complete symmetry model. The estimated treatment effects are

βB − βA = 1.207 (ase = 0.239)

βC − βA = 1.537 (ase = 0.259)

βC − βB = 0.330 (ase = 0.221).

For instance, for a given subject, the estimated odds that relief for the low-dose analgesic is moderate

rather than none, or complete rather than moderate, are exp(1.207) = 3.34 times the estimated odds

for the placebo. As in the previous analysis, both treatments B and C clearly differ from placebo,

but there is only weak evidence that the high dose is better than the low dose. More complex models

that contain period or carry-over effects do not fit appreciably better. Use of the ordinality results

in greater parsimony than that obtained with the Kenward and Jones generalized Rasch model, but

the substantive results are the same.

4 A PROPORTIONAL ODDS RANDOM EFFECTSMODEL

Currently, the most popular model form for ordinal responses uses cumulative logits. For subject i

and response j, denote the cumulative probability at category h by γhij = φ1ij+...+φhij , h = 1, ..., r.

The cumulative logit alternative to model (7) is the model

log[γhij/(1− γhij)] = αhi − βj , (11)

h = 1, ..., r − 1, i = 1, ..., n, j = 1, ..., T . For each subject, the odds that the outcome for response

a falls above any fixed level are exp(βa − βb) times the odds for response b.

This cumulative logit model has the proportional odds property, for which the T response effects

are identical at each h. The model holds41 if for each pairing of subject i and response measurement

j, there is an underlying continuous variable that has a logistic distribution with mean βj , and the

observed outcome falls in category h when the underlying continuous variable falls between αh−1,i

and αhi. The model permits different subjects to use different cutpoints for determining the response
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category. For instance, for a given value for the underlying continuous scale, one subject may regard

it as part of category “good,” while a second subject regards it as “very good.” In the ordinal

models using adjacent-categories logits or cumulative logits, the distributions for the T responses

are stochastically ordered according to {βj}. For relatively larger values of βj , subjects tend to make

higher responses on the ordinal scale for response j. For r = 2, the models simplify to the Rasch

model. We refer to (11) as the cumulative Rasch model. McCullagh34,42 and Ezzet and Whitehead32

discussed related models for T = 2.

Unfortunately, the cumulative Rasch model does not have reduced sufficient statistics, so the

standard conditional approach is unavailable. There are ways, however, of obtaining distribution-

free consistent estimates of {βj}. For instance, note that for fixed h, model (11) is the ordinary

Rasch model for a collapsing of the response into binary outcomes (≤ h, > h). Thus, when the

model holds, one can estimate {βj} by obtaining conditional maximum likelihood estimates for the

Rasch model applied to the collapsed binary response scale, for any h (e.g., one could do this by

fitting the corresponding quasi-symmetry model). Such estimates are somewhat inefficient, more so

as r increases.

To obtain more efficient estimates, we suggest the following approach. Consider (r− 1) separate

2T contingency tables, in which the hth 2T table is the cross classification of responses of the n

subjects on the hth binary collapsing of the ordinal response scale, h = 1, ..., r − 1. Each subject

occurs in each 2T table. In the collapsing for cutpoint h, let n(h;h1, ..., hT ) denote the number of

subjects making collapsed response hj to item j, where 1 ≤ h ≤ r − 1, 1 ≤ hj ≤ 2, j = 1, ..., T .

Let m(h;h1, ..., hT ) = En(h;h1, ..., hT ). Agresti and Lang43 showed that one can estimate {βj} by

fitting the model

logm(h;h1, ..., hT ) =
∑

j

βjI(hj = 2) + λ(h;h1, ..., hT ), (12)

simultaneously for all h, where I(.) denotes the indicator function, and for each h, λ(h;h1, ..., hT )

is permutation invariant. For fixed h, model (12) is the ordinary quasi-symmetry model for a 2T

table. Model (12) assumes homogeneity of main effect parameters for each 2T collapsing, reflecting

the proportional odds assumption for the item effects in the cumulative Rasch model.

We cannot treat counts {n(h;h1, ..., hT )} from different 2T tables as independent, since the same

subjects occur in each table. To fit model (12), we can maximize a multinomial likelihood for the

original rT table subject to the constraint that (12) holds simultaneously for each collapsed 2T table.
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In terms of a vector of expected frequencies µ for the original rT table, (12) has generalized loglinear

form

logAµ = Xβ. (13)

The (r − 1)2T × rT matrix A, when applied to µ, forms the collapsed tables {m(h;h1, ..., hT )} of

expected frequencies. To obtain the ML fit of models of this form, we can utilize Lagrange’s method

of undetermined multipliers, such as presented by Aitchison and Silvey44, Haber45, and Agresti and

Lang43. Or, we can use some other estimation method that may be simpler to use with existing

software. For instance, SAS (PROC CATMOD) can fit models of form (13) using weighted least

squares.

One can check the adequacy of the cumulative Rasch model by ordinary goodness-of-fit tests

comparing observed and fitted counts in the original table for the generalized loglinear model. In

this model and the one for adjacent-category logits, the fitted counts in the diagonal cells (h, h, ..., h)

in the rT table are identical to the corresponding observed counts. The conditional ML estimates

of {βj} do not depend on those values. The estimates do not exist when any diagonal counts is

zero or when the counts are zero for all permutations of any cell index. When this happens, one

can add a very small positive constant (e.g., 10−8) to empty cells so the estimates exist. Then, one

should conduct a sensitivity analysis to verify that the choice of constant does not affect substantive

conclusions.

To illustrate the cumulative Rasch form of model, we analyze Table 4, from Ezzet andWhitehead32.

The data refer to a cross-over study comparing the suitability of two inhalation devices for delivering

salbutamol. The response refers to the patients’ report of clarity of leaflet instructions accompanying

the devices. The top part of Table 4 refers to patients who used device A for one week followed

by device B for another week, whereas the bottom part refers to patients who used the devices in

the reverse sequence. Let γhi(k)j denote the cumulative probability at category h for subject i using

device j (A : j = 1;B : j = 2), when subject i is nested within sequence k. In the model

logit(γhi(k)j) = αhi(k) − βj − π[I(j = 1, k = 1) + I(j = 2, k = 2)], (14)

β2 − β1 denotes the treatment (device) effect and the period effect π denotes the potential effect of

using a device first instead of second. For the response collapsed following category h, let mk(h; a, b)

denote the expected frequency of collapsed outcome a with device A and collapsed outcome b with

device B, for sequence k. We can obtain conditional estimates for model (14) by maximizing a
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product multinomial likelihood for Table 4 subject to the constraint that the generalized quasi-

symmetry model

logmk(h; a, b) = β1I(a = 2) + β2I(b = 2) + π[I(a = 2, k = 1) + I(b = 2, k = 2)] + λk(h; a, b)

holds, where λk(h; a, b) = λk(h; b, a) for all a, b, h = 1, 2, 3, k = 1, 2.

This cumulative Rasch model fits Table 4 reasonably well. The likelihood-ratio statistic of G2 =

8.16 (df = 4) is not very reliable because of the table sparseness. To investigate more finely the lack of

fit, we computed adjusted residuals based on differences between observed and fitted counts, divided

by estimated standard errors. Such single-degree-of-freedom statistics can be somewhat informative

even when more complex goodness-of-fit statistics are unreliable. When expected frequencies are very

small, the distributions of the adjusted residuals are typically highly discrete and skewed to the right.

Though we cannot interpret individual values too literally, absolute residuals exceeding about 2 or 3

can indicate potential problems with lack of fit. For Table 4, none of the 32 adjusted residuals exceeds

2.0. The conditional estimates for the cumulative Rasch model equal β̂2 − β̂1 = 1.385 (ase = 0.224)

and π̂ = 0.121 (ase = 0.224). The estimated treatment effect is 1.385 - 0.121 = 1.264 when device A

is used first, and 1.385 + 0.121 = 1.506 when device B is used first. The simpler model without the

period effect has G2 = 8.45 (df = 5) and an estimated treatment effect of 1.392 (ase = 0.224). Table

4 shows the fit of this model. For a given subject, the estimated odds that the response for device A

falls below any particular category is exp(1.392) = 4.02 times the corresponding estimated odds for

device B. The simpler model that also lacks a treatment effect fits poorly (G2 = 47.7, df = 6), and

the change in G2 indicates extremely strong evidence of a treatment effect. For these data, Ezzet

and Whitehead used a marginal ML approach with normally distributed random effect. They also

indicated that the likelihood-ratio test showed a highly significant treatment effect. They reported

estimates for a slightly more complex model, for which their estimated average treatment effect was

1.17.

For the insomnia data of Table 3, cumulative Rasch models provide similar conclusions as we

obtained in the previous section using adjacent-categories logits. The model having the same change

from baseline to follow-up for each treatment group fits well (G2 = 5.98, df = 5), and has an

estimated effect of -2.080 (ase = 0.256). The model with separate effects fits only slightly better

(G2 = 5.14, df = 4), with effects of -2.286 (ase = 0.352) for the active drug and - 1.813 (ase = 0.377)

for placebo, for which the difference of 0.473 has ase = 0.708.
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5 SOME SPECIALIZED RESULTS FOR ORDINAL MATCHED

PAIRS

This section considers separately the special case T = 2 of a bivariate response, which occurs for

matched-pairs data. In this case, quasi-symmetry models used to fit subject-specific models have

logit representations, and computations are especially simple.

The quasi-symmetry model for T = 2 is

logm(a, b) = β1(a) + β2(b) + λ(a, b) ,

where λ(a, b) = λ(b, a). It has logit form

log{m(a, b)/m(b, a)} = τb − τa

for all a and b, where τh = β2(h)− β1(h). In this logit form, the model is often called the Bradley-

Terry model. We fit the logit random effects model (7) for adjacent categories using quasi-symmetry

model (8), for which this logit representation is especially simple. Letting β = β2 − β1, the logit

characterization is

log{m(a, b)/m(b, a)} = β(b − a). (15)

In fact, we can also fit the ordinal model using software for logistic regression models. For instance,

to estimate the assumed common occasion effect in applying model (10) to Table 3, we can fit the

logit model

log{mk(a, b)/mk(b, a)} = β(b − a). (16)

We then treat {nk(a, b), a < b} as binomial counts with sample sizes {nk(a, b) + nk(b, a)}.

Next, for the cumulative Rasch model (11) with T = 2, let (Yi1, Yi2) denote the responses for

subject i. By independence,

log[
P (Yi1 ≤ h, Yi2 > h)

P (Yi1 > h, Yi2 ≤ h)
] = logit(γhi1)− logit(γhi2) = (β2 − β1) (17)

Collapsibility conditions imply that the same relationship holds for the joint distribution for the r2

table averaged over subjects. For instance, for Table 4, let mk(a, b) denote the expected frequency

under cross-over order k for outcome a with device A and outcome b with device B. The estimates

for model (14) result from maximizing a product multinomial likelihood for Table 4, for the logit

model

log[

∑
a≤h

∑
b>h mk(a, b)∑

a>h

∑
b≤h mk(a, b)

] = β + π[I(k = 2)− I(k = 1)] (18)
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for h = 1, 2, 3 and k = 1, 2, where β = β2 − β1. It is easy using SAS (CATMOD) to obtain a

weighted least squares fit of this model applied simultaneously for the (r − 1) values of h.

For the cumulative Rasch model with T = 2, suppose we naively treated counts from different

2× 2 tables with different cutpoint collapsings as independent, even though the same subjects occur

in each table. When we use standard software to fit model (12), the estimate of β = β2 − β1 equals

the estimate obtained for the 2 × 2 further collapsing of this table, collapsed over the cutpoint

dimension. But this estimate is simply the log of the ratio of the two discordant counts in that

table. In terms of cell counts {nij} for the original r × r table, this estimate equals

β̃ = log{[
∑

i<j

(j − i)nij ]/[
∑

i>j

(i− j)nij ]}. (19)

Assuming the model holds, this is a consistent estimator of β, even though it is based on naive

assumptions. This follows since we can express exp(β̃) such that the numerator is an average of the

cell counts in row 1 and column 2 for the different collapsings, and the denominator is a corresponding

average of the counts in row 2 and column 1. Each such collapsing has ratio of discordant counts that

is itself consistent for exp(β), being the conditional ML estimator for a particular binary response.

The estimate (19) is simple to compute and intuitively appealing. In using it, however, it would

not be sensible to use a standard error that assumes the different 2 × 2 tables are independent.

An estimated asymptotic variance for β̃ that is based on the more reasonable assumption that the

original data {nij} are a multinomial sample has form

V̂ (β̃) =
∑

i<j

(j − i)2nij/[
∑

i<j

(j − i)nij ]
2 +

∑

i>j

(i− j)2nij/[
∑

i>j

(i − j)nij ]
2. (20)

We can base a simple test of marginal homogeneity for ordinal matched-pairs data on the ratio of β̃

to its estimated standard error.

The naive estimator β̃ seems to perform well, being nearly as efficient as much more complex

ones. For instance, for the simple model without a period effect applied to Table 4, we can estimate

the treatment effect by computing (19) for the 4 × 4 table collapsed over the cross-over sequences.

This gives β̃ = 1.369 and an estimated standard error of 0.237, compared to 1.392 and 0.224 for the

ML approach of the previous section. For the model with common occasion effect applied to the

insomnia data of Table 3, we obtain β̃ = 2.084 and estimated standard error of 0.259, compared to

2.080 and 0.256 reported previously for the ML approach.
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6 EXAMPLES OF SOFTWARE USE

A positive feature of the logit models discussed in this article is that they are easy to fit with existing

software. One can obtain conditional ML estimates and equivalent distribution-free marginal ML

estimates by fitting loglinear models that have the same likelihood in the response effects.

To illustrate, Table 5 illustrates the use of GLIM for fitting the quasi-symmetry model to obtain

the results quoted for the Rasch model applied to Table 2. The factor called ‘sym’ has levels

corresponding to the cells that have the same terms for the complete symmetry model; specifically,

cells having indices that are permutations of each other (such as (1,1,2), (1,2,1), and (2,1,1)) have

the same level of this index. Quasi symmetry is the model that also has main effect terms. The

calculate ($calc) directives for period effects add indicator variables that equal 1 for the cells in which

the treatment for that period is at its second level. For instance, p1 has the values (0,0,0,0,1,1,1,1)

for the 8 cells with k = 1 or 2 (when treatment A occurs in the first period), (0,0,1,1,0,0,1,1) when

k = 3 or 4 (treatment B in the first period), and (0,1,0,1,0,1,0,1) when k = 5 or 6 (treatment C

in the first period). A Poisson error assumption generates the same estimates and standard errors

as our multinomial assumption. See Kenward and Jones27 and Hatzinger46 for related examples of

using GLIM and SAS for these types of models, for nominal responses.

Table 6 uses GLIM to fit to Table 3 the quasi-symmetry model that corresponds to the adjacent-

categories logit model described in Section 3. The symmetry factor (sym) generates a separate

symmetry structure for each group. In some packages, it would be easier to fit the model using

logit model software (such as PROC LOGISTIC or CATMOD in SAS) for the logit representation

(16). Table 6 also uses GLIM to obtain estimates for the adjacent-categories logit model fitted to

the ordinal-response version of Table 2 reported by Kenward and Jones. This fits a version of the

model in which the treatment effects are identical for each treatment sequence, which has the same

estimates as those for the 33 table collapsed over treatment sequence.

To obtain the fit reported for the cumulative logit model applied to the data in Table 4, one

can use software that can fit generalized loglinear models of form (13) or can maximize a likelihood

subject to constraints. Table 7 shows how to use SAS (CATMOD) to fit the model as expressed in

form (18). The model is expressed as a generalized logit model of form C logAµ = Xβ, corresponding

to generalized loglinear model (13). The model uses logits for each of the three collapsings of a 4× 4

table to a 2 × 2 table. The ‘response’ statement specifies the 6 × 12 matrix C and the 12 × 32
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matrix A that are applied to the cell counts to construct the six logits, three for each cross-over order.

The ‘model’ statement contains the 6 × 2 model matrix X that is applied to the two parameters

(β2 − β1, π). To fit the simpler model with no period effect, one deletes the second column of X .

One must add a small constant to all zero counts so that SAS treats them as sampling zeroes rather

than structural zeroes. SAS provides a weighted least squares fit, which is more severely affected

by small counts than the ML fit. For Table 4, substantive results are similar, however. The effect

estimate is 1.275 (ase = 0.224), and the period estimate is 0.052 (ase = 0.224).

7 REMARKS

For any model discussed in this article, the unidimensionality of the subject effect suggests that

the model is likely to fit decently only when the responses are different indicators of a common

trait, rather than indicators of quite different traits. Also, the models assume that, conditional

on the subject parameters, different responses are independent. In some applications involving

measurements at different times or different locations, lack of fit may occur because of residual

dependence between responses nearby in time or space, and one must include terms in the model to

account for this25,26.

Both forms of ordinal logit model tend to fit well in similar situations, since both imply stochastic

orderings of responses. The cumulative logit model has a natural connection to a regression model for

underlying continuous response variables. Moreover, if it holds for that underlying response, it holds

with the same effects no matter how one collapses the response scale into discrete categories. The

adjacant-categories logit link has the advantage of sufficient statistics and hence a direct conditional

solution. Another factor that can influence the choice of model relates to whether one prefers odds

ratio interpretations referring to the entire response scale (as in the cumulative logit model) or to

pairs of categories (as in the adjacent-categories logit).

We specified models permitting different subjects to use different response cutpoints. There was

no sacrifice in doing so, since the analyses in the examples estimated within-subject effects. Different

approaches are necessary if one wants to make between-subjects comparisons of independent samples

at fixed occasions. In addition, it is of interest to investigate the degree to which the methods of

this article can be generalized to handle more complex forms of repeated measurement data. Ex-

amples include cases in which there is missing data or not the same number of repeats per subject,

time-varying covariates or more complex covariate structure. The generalized estimating equations

approach4 is well-suited for handling such complications or for more general regression-type model-
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ing of repeated measurement data.
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Table 1. Example of repeated responses for a binary variable.

Pathologist B
Pathologist A Malignant Benign Total

Malignant 9 1 10
Benign 9 81 90

Total 18 82 100

Table 2. Data for crossover study comparing treatments for relief of primary dysmenorrhea.

Treatment Response pattern for (A, B, C)
sequence 111 112 121 122 211 212 221 222

A B C 0 2 2 9 0 0 1 1
A C B 2 0 0 9 1 0 0 4
B A C 0 1 1 8 1 3 0 1
B C A 0 1 1 8 1 0 0 1
C A B 3 0 0 7 0 1 2 1
C B A 1 5 0 4 0 3 1 0

Total 6 9 4 45 3 7 4 8

Fit 6.00 9.63 5.34 43.04 1.04 8.34 4.63 8.00
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Table 3. Distribution of time to fall asleep, by treatment and occasion.

Initial Follow-up occasion
Treatment occasion < 20 20-30 30-60 > 60

Active < 20 7 4 1 0
7.0 3.1 0.9 0.1

20-30 11 5 2 2
11.9 5.0 5.1 1.2

30-60 13 23 3 1
13.1 19.9 3.0 2.8

> 60 9 17 13 8
8.9 17.8 11.2 8.0

Placebo < 20 7 4 2 1
7.0 3.7 0.5 0.1

20-30 14 5 1 0
14.3 5.0 2.0 0.7

30-60 6 9 18 2
7.5 8.0 18.0 3.3

> 60 4 11 14 22
4.9 10.3 12.7 22.0

Note: Fitted values refer to model (10).

25



Table 4. Data on clarity of instructions, for inhaler study using crossover design.

Inhaler B
Order Inhaler A 1 2 3 4

A then B 1 59 35 3 2
59.0 36.1 2.5 2.7

2 11 27 2 1
9.8 27.0 1.6 1.3

3 0 0 0 0
0.0 1.0 0.0 0.0

4 1 1 0 0
0.5 0.5 0.0 0.0

B then A 1 63 40 7 2
63.0 40.9 5.7 1.6

2 13 15 2 0
12.0 15.0 1.6 0.0

3 0 0 1 1
0.0 1.6 1.0 1.0

4 0 0 0 0
0.0 0.7 0.0 0.0

Note: Category 1 = easy, 2 = only clear after rereading, 3 = not very clear, 4 = confusing. Fitted

values refer to model (14).
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Table 5. GLIM code for fitting Rasch-type models to Table 2.

$units 48

$data count $read

0 2 2 9 0 0 1 1 2 0 0 9 1 0 0 4 0 1 1 8 1 3 0 1

0 1 1 8 1 0 0 1 3 0 0 7 0 1 2 1 1 5 0 4 0 3 1 0

$calc a = %gl(2,4): b = %gl(2,2): c = %gl(2,1) $ ! Generates levels of treatments

$calc seq = %gl(6,8) $ ! Generates levels for six treatment sequences

$ass sym = 1,2,2,3,2,3,3,4,5,6,6,7,6,7,7,8,9,10,10,11,10,11,11,12,13,14,14,15,14,15,15,16,

17,18,18,19,18,19,19,20,21,22,22,23,22,23,23,24 $ ! Generates levels of symmetry term

$fac a 2 b 2 c 2 sym 24 seq 6 $

$yvar count $err pois

$fit sym + a + b + c $ ! Model with same main effects for each sequence

$fit + a.seq + b.seq + c.seq $ ! Different main effects for each sequence

$calc p1 = (%eq(seq,1) + %eq(seq,2))*%eq(a,2) + (%eq(seq,3) + %eq(seq,4))*%eq(b,2) + (%eq(seq,5)

+ %eq(seq,6))*%eq(c,2) $

$calc p2 = (%eq(seq,3) + %eq(seq,5))*%eq(a,2) + (%eq(seq,1) + %eq(seq,6))*%eq(b,2) + %eq(seq,2)

+ %eq(seq,4))*%eq(c,2) $

$fit sym + a + b + c + p1 + p2 $ ! period effects

$end

$units 8 ! Now consider table collapsed over sequence

$data a b c count

$read

1 1 1 6 1 1 2 9 1 2 1 4 1 2 2 45

2 1 1 3 2 1 2 7 2 2 1 4 2 2 2 8

$ass sym = 1, 2, 2, 3, 2, 3, 3, 4 $

$fac a 2 b 2 c 2 sym 4

$yvar count $err pois

$fit sym : + a + b + c $ ! Fits complete symmetry, then quasi symmetry

$dis e s r ! Displays estimates, std. errors of differences, fit and residuals
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Table 6. GLIM code for fitting adjacent-categories logit models to Table 3 and expanded ver-

sion of Table 2.

$units 32

$data count $read ! Data from Table 3

7 4 1 0 11 5 2 2 13 23 3 1 9 17 13 8

7 4 2 1 14 5 1 0 6 9 18 2 4 11 14 22

$calc i = %gl(4,4): f = %gl(4,1) $ ! generates levels for initial and follow-up

$ass sym = 1, 2, 3, 4, 2, 5, 6, 7, 3, 6, 8, 9, 4, 7, 9, 10,

11, 12, 13, 14, 12, 15, 16, 17, 13, 16, 18, 19, 14, 17, 19, 20 $

$fac sym 20 $

$yvar count $err pois

$fit sym : + i + f $ ! Fits complete symmetry and model (10)

$end

$units 27

$data count $read ! Data from Kenward-Jones expansion of Table 2

6 4 5 3 13 10 1 8 14

2 3 2 1 3 1 2 1 2

1 0 2 0 0 0 1 1 0

$calc a = %gl(3,9): b = %gl(3,3): c = %gl(3,1) $

$ass sym = 1,2,3,2,4,5,3,5,6,2,4,5,4,7,8,5,8,9,3,5,6,5,8,9,6,9,10 $

$fac sym 10 $

$yvar count $err pois

$fit sym: + a + b + c $ ! Fits complete symmetry and model (8)

$end
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Table 7. SAS code for fitting cumulative Rasch model to Table 4.

data culogit;

input cell $ count @@; if count=0 then count=1e-10;

cards;

1 59 2 35 3 3 4 2 5 11 6 27 7 2 8 1

9 0 10 0 11 0 12 0 13 1 14 1 15 0 16 0

17 63 18 40 19 7 20 2 21 13 22 15 23 2 24 0

25 0 26 0 27 1 28 1 29 0 30 0 31 0 32 0

;

proc catmod order=data; weight count;

response 1 -1 0 0 0 0 0 0 0 0 0 0, 0 0 1 -1 0 0 0 0 0 0 0 0,

0 0 0 0 1 -1 0 0 0 0 0 0, 0 0 0 0 0 0 1 -1 0 0 0 0,

0 0 0 0 0 0 0 0 1 -1 0 0, 0 0 0 0 0 0 0 0 0 0 1 -1

log

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0;

model cell = (1 -1, 1 -1, 1 -1, 1 1, 1 1, 1 1)/pred;
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