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SUMMARY

We survey models for analysing repeated observations on an ordered categorical response variable. The
models presented are univariate models that permit correlation among repeated measurements. The models
describe simultaneously the dependence of marginal response distributions on values of explanatory
variables and on the occasion of response. We present models for three transformations of the response
distribution: cumulative logits, adjacent-category logits, and the mean for scores assigned to response
categories. We discuss three methods for fitting the models: maximum likelihood, weighted least squares, and
semi-parametric. Weighted least squares is easily implemented with SAS, as illustrated with a study designed
to compare a drug with a placebo for the treatment of insomnia.

key worps Cumulative logits Logit and log-linear models Longitudinal data
Marginal homogeneity Ordinal data Repeated measures

1. INTRODUCTION

Many studies measure a response variable for each subject repeatedly, resulting in dependent
responses. For instance, after patients begin treatment for some disease, a clinician might
periodically evaluate their response to the treatment. In health-related applications with repeated
measurement, the response variable is often categorical. Clinicians might simply evaluate whether
a treatment is successful. This article considers ordered categorical response variables, such as
evaluation of treatment success measured on a four-point scale: excellent, good, fair, poor.

Koch et al.! wrote one of the first articles to describe types of repeated categorical response data
and possible models. Recent articles such as those by Landis et al.,> Ware, Lipsitz and Speizer?
and Stram, Wei and Ware* have refocused attention on this topic. Our discussion includes models
of the sort described in these papers, plus similar ones related to log-linear models. Though the
methodology we discuss is not new, we hope that an organized presentation of potential models
and methods of fitting them will be helpful to applied statisticians. In addition, we highlight some
problems that may stimulate future research.

Table I, taken from Francom, Chuang and Landis,” is an example of repeated ordered
categorical response data. The table shows results of a randomized, double-blind clinical trial
comparing an active hypnotic drug with a placebo in patients with insomnia. The outcome
variable is patient response to the question ‘How quickly did you fall asleep after going to bed?,
using categories (<20, 20-30, 30-60, >60) minutes. Patients responded at the start and
conclusion of a two-week treatment period. The repeated measurement makes the response
bivariate, measured at levels: initial, follow-up. We refer to these levels as occasions. We regard the
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Table I. Frequency distribution of time to falling asleep (minutes), by
treatment and occasion

Initial Follow-up occasion
Treatment occasion <30 20-30  30-60 >60
Active <20 7 4 1 0
20-30 11 5 2 2
30-60 13 23 3 1
>60 9 17 13 8
Placebo <20 7 2 1
20-30 14 5 1 0
30-60 6 9 18 2
>60 4 11 14 22

Source: Francom, Chuang and Landis.’

treatments, active and placebo, as levels of a binary explanatory variable. The subjects receiving
the two different treatments are independent samples.

One approach for repeated categorical data involves analysing patterns of change for individual
subjects; by modelling cell probabilities in the joint distribution of the repeated response. Ware,
Lipsitz and Speizer® referred to this approach as transitional modelling. For descriptive and
inferential purposes, there is often less interest in the multivariate dependence among repeated
responses than in population characteristics of the response.”*% A second approach involves
analysing patterns of change for populations, by modelling marginal distributions. This permits
investigating questions such as ‘For a given treatment, does the response distribution change
across occasions?, or ‘At a given occasion, are there differences among response distributions for
the treatments?’, or ‘Is the difference for two treatments the same at all occasions? Ware, Lipsitz
and Speizer® reviewed conceptual and technical differences between marginal and transitional
approaches. In this article, we focus primarily on the marginal approach, but note instances in
which that approach is not fully informative.

We define the link to be the transformation of the response distribution that is modelled, and the
linear predictor to be the linear combination of explanatory variables that the model relates to the
link. We borrow this terminology from generalized linear models, though the usage of link here is
a multivariate generalization of the usual one.” The process of formulating and fitting a model is
one whereby we select (a) the link, (b) the linear predictor, and (c) the method for estimating
_parameters in the resulting model. Sections 2-4 present some choices in this process. Section 2
presents links for ordinal response variables, with emphasis on cumulative logits, adjacent-
category logits, and'a mean for scored response categories. Section 3 presents a hierarchy of linear
predictors for describing occasion and covariate effects. Section 4 discusses three methods for
model fitting: maximum likelihood, weighted least squares, and a semi-parametric one that more
easily handles sparse or missing data and time-dependent covariates.

Section 5 illustrates some models, using the cumulative logit link to analyse Table I. Sections 6
and 7 present similar analyses using adjacent-category logits and a mean response. Section 8
analyses Table I using transitional models. Section 9 discusses software availability for the
models, and illustrates use of SAS to perform analyses reported in Sections 5-7. The final section
outlines a more fully multivariate approach, one that describes changes in marginal distributions
at the subject level rather than population level, and suggests future research for fitting such
models.
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2. LINKS FOR ORDINAL RESPONSES

Suppose each subject may be observed at d occasions, and let (1, 2,...,r) denote the r possible
response categories at each occasion. The data can be described by a contingency table with r?
cells, containing counts of possible multivariate response profiles. Let

ﬂj wnhj:(.]l’).]d)
denote the probability that a randomly selected subject makes response j, at occasion ¢,
1<j,<r, g=1,...,d. Let the + subscript denote summation over an index. Then
§Bs kb thr K= bye < r}, where k is in position g, is the marginal distribution of the

response at occasion g. Denote these marginal probabilities by {pgr k=1,..., 7}, with
%, ¢4 =1. Denote the response for a randomly selected subject at occasion g by Y, so that

bu=P(Y,=k), k=1,...,r

We discuss models that apply some selected link to each marginal distribution. The logit link is
defined for binary responses, but can be applied with > 2 response categories. There are r — 1 non-
redundant logits of any given type. We take order of response categories into account by
constructing logits for cumulative probabilities

loglt[P(Yggk)]=10g[(¢g1+ = s +¢gk)/(¢g,k+1+ B E +¢gr)]a k:1 3 wimey r'_la
called cumulative logits, and for adjacent-response probabilities
logit[P(Y,=k|Y,=k or k+1)]1=log[dg/ Pgs+1]; k=1,...,r—1,

called adjacent-category logits.

For categorical (nominal or ordinal) explanatory variables, models for adjacent-category logits
are equivalent to log-linear models with scores assigned to levels of ordinal variables.®
McCullagh® popularized models using cumulative logits. This logit is one member of a family of
cumulative links, strictly monotone functions that transform the (0, 1) scale for cumulative
probabilities onto the real line, the scale for linear predictors. Though we specify models using
logits, the models also make sense for other links. For instance, for the probit link one models
@ 1[P(Y,<k)] or @ '[P(Y,=k|Y,=k or k+1)], where ® is the standard normal CDF.

When there are covariates x, we allow a separate distribution

{mi(x), 1<j,<r, g=1,...,d}

at each level of x. For Table I, for instance, d=2, r=4, x is the binary classification (active,
placebo), and the table consists of two r? (=4 x 4) components. We then denote the marginal
distributions by {¢,(x), k=1, ..., r}, and apply the link to them at each x.

The next section formulates models that apply simultaneously to r—1 transformations of
response probabilities at each occasion. For the cumulative logit link, we motivate the models by
appealing (as in Anderson and Philips'®) to a regression model for an underlying continuous
response. Let Y* denote an underlying continuous variable having CDF G(y—n), where 17 is a
location parameter dependent on the occasion and covariate through n(x) = u, + f'x. Suppose we
cannot observe Y*, but —oo=0y<a;<...<a=o0 are such that

Y=k ifo_ <Y*<oy.
The {o, } are called cutpoint parameters. Then at occasion g

P(Y<k)=P(Y*<o)=Goo— ptg—B'x}.
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Thus a model for cumulative probabilities holds with link equal to G~!. For instance, if
Y*=p,+p'x+e, with ¢ having a logistic distribution, then G~' is the logit transform, and
the proper model utilizes cumulative logits.

As a consequence of this construction, in cumulative logit models we use linear predictors in
which effects of occasions and explanatory variables are the same for each cutpoint; that is, {1y}
and B do not vary according to k. In models with adjacent-category logit link, we also use effects
that are constant by cutpoint. Such behaviour occurs whenever there is an underlying normal
response with constant variance and the categories are equally spaced. This follows from
Goodman,!! who showed that a related model for two-way tables is a discrete analogue of the
bivariate normal distribution.

3. A HIERARCHY OF LINEAR PREDICTORS

We now give linear predictors that describe simultaneously how the marginal distribution
changes across occasions g=1, . . ., d for fixed x, and how it depends on x for fixed g. The linear
predictors are hierarchical, describing occasion and covariate effects with varying degrees of
generality. Interpretations depend on whether the difference between marginal distributions for
any two covariate values is the same for all occasions; that is, on whether there is a lack of
‘occasion x covariate interaction’. For a given model, we define the residual degrees of freedom
(d.f) as the difference between the number of response functions (for example, the total number of
cumulative logits at the various combinations of g, k, and x) and the number of parameters in the
model.

We begin with the simple case of no covariates. That is, we model the behaviour over d
occasions of a single population. The marginal distributions of the contingency table formad xr
table of {¢,, } values. Let L, denote the linear predictor for the link evaluated at cutpoint k of the
marginal distribution at occasion g. The model of marginal homogeneity is

Ly=t  g=1,. . udk=1,...,r—1. (1)

The saturated model for the marginal distributions, Ly, =, permits marginal heterogeneity.
It is sensible to model potential heterogeneity, such as by

Lgk = o(k + .ug' (2)

For identifiability, we impose a constraint on the {,}, such as p,=0. The cutpoints {0} are
nuisance parameters, and the occasion effects are described by {y,}. There are d(r—1) marginal
link values, and model (2) has (r—1)+(d—1) parameters, so the residual df.=(d—1) (r—2).
Model (1) of marginal homogeneity has residual df=(d-1) (r—1).

From motivation given in the previous section, model (2) assumes effects are identical for all
cutpoints k. For instance,

Lbk—Lak:‘ub—,ua, k=1,...,r—1.

For the cumulative logit link, this means the odds that a randomly selected subject at occasion b
makes response <k are exp(u, — pt,) times greater than the corresponding odds for a randomly
selected subject at occasion a.

Generalizations of model (2) describe occasion effects and covariate effects simultaneously, for
instance through the model

LX) =0t + 1, + B'x. 3)
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Table II. Summary of models with homogeneous cutpoint effects

Model L (x)= Description of model ~ Residual d.f.

L oy +p,+Box occasion x covariate (r—1) (ds—1)—(d—1)—Z,dim(8,)
interaction

2. o+ p,+px covariate and (r—1) (ds—1)—(d—1)—dim(p)
occasion effects

3. g+ fx covariate effects, (r—1) (ds—1)—dim(pB)
no occasion effects

4. a+p, occasion effects, r—1)(ds—1)—@d-1)
no covariate effects

5. o no occasion effects, r—1)(ds—1)

no covariate effects

For links of cumulative probabilities, the property

Ly(X1) — Log(X2) = (ttp — pta) + B (X1 —X3) 4

for model (3) induces an ordering of those probabilities among levels of x and occasions. Since the
ordering is the same for each k, there is a stochastic ordering of the marginal distributions at all
occasion—covariate combinations.

A generalization of model (3) replaces # by f,. This permits occasion x covariate interaction but
maintains a simple structure for the marginal heterogeneity. For fixed x, the marginal distribu-
tions are location shifts on the scale of the link. Table II lists a variety of related linear predictors
that have occasion and covariate effects independent of the cutpoint.

The explanatory variables x in models such as (3) can be continuous or discrete, though some
statistical computer packages can handle only the latter case. Suppose x is fully categorical, and
denote by s the number of settings of x at which observations occur. Then the data consist of cell
counts in a s x r contingency table. For this case, Table IT lists residual degrees of freedom for
testing model goodness of fit, where dim(f,) and dim(f) denote the dimension of the component of
the model parameter vector that describes covariate effects. These formulas are based on ds(r—1)
values of marginal links and an identifiability constraint for {u,}.

4. ESTIMATION AND MODEL FITTING

Suppose there is multinomial sampling over the r¢ possible response profiles, with independent
samples at each of the s levels of x. In other words, if z denotes the cell probabilities, then z consists
of s independent sets of multinomial probabilities. One can use weighted least squares (WLS),
maximum likelihood (ML), or semi-parametric methods to fit models.

Haber!? '3 gave iterative Newton—Raphson routines for obtaining ML estimates of parameters
in models of the form

Ar=Xp
or
A log Br=Xp. (5)

Mean response models presented in Section 7 have the first form. Models with cumulative logit or
adjacent-category logit link have the second form. For instance, for adjacent-category logits, B




1214 A. AGRESTI

contains ‘0’ and ‘I’ elements such that Bz produces the rd marginal probabilities (that is, r response
probabilities at each of the d occasions) for each level of x. For cumulative logits, B produces the
2(r—1)d cumulative marginal probabilities and their complements. In either case, the log
transform is applied to all elements in Bz, and each row of the matrix A contains ‘O’ elements
except for a single ‘1’ and ‘—1 positioned to form a particular logit.

Haber’s routines apply Aitchison and Silvey'* methods for maximizing a likelihood subject to
constraints. For the ML fit, standard likelihood methods apply for making inferences. For
example, marginal homogeneity model (1) is model (2) with p, = . . . = Ug. Twice the difference in
maximized likelihoods for the two models is a statistic for testing marginal homogeneity. Haber’s
routines are impractical when the table has a large number of cells (which happens when there are
several occasions, several levels of x, and a multipoint scale), because of the size of the matrix that
requires inversion.

Koch et al.! presented a WLS approach for repeated measures data, which we now outline.
Suppose pis the sample proportion estimate of z, and let V denote the sample covariance matrix of
p. When x has s levels, V is an s-block diagonal matrix with separate multinomial covariance
structure for each block. By the delta method the sample responses (A log Bp) for model (5) have
approximate covariance S=AD " 'BVB'D "'A/, where D is the diagonal matrix with Bp on the
main diagonal. The WLS estimate of g is b=(X'S™'X)"'X'S™! (A log Bp), and X's~ix)-t
estimates the asymptotic covariance matrix of b.

The WLS approach tests goodness of fit using the quadratic form

(A log Bp—Xb)S~' (A log Bp—Xb).

Wald statistics are used for hypothesis testing. For instance, for testing marginal homogeneity
with model (2), the WLS approach can use ¢'[Cov(c)] !¢, where

and nCov(c) is the WLS estimator of the covariance of \/;zc.

A disadvantage of WLS is its inefficiency in handling continuous covariates. These must be
collapsed into categorical variables in order to estimate the multinomial sampling structure at
each of the s levels of x. In addition, when there are several explanatory variables, s is large, and
there may be few observations in each table of #* possible response patterns. The WLS approach
requires a non-singular estimated covariance matrix for the ds(r — 1) sample marginal links for the
models in Section 3. There are often difficulties with tables having small sample sizes or tables that
are large and sparse, because of possible ill-defined sample links or a singular sample covariance
matrix for the sample response functions.

WLS methods are more manageable for marginal models than for transitional models for cell
probabilities in the full s x ¢ table. Even if the table interior is quite sparse, the s x r x d table of
marginal counts may not be. Thus, the WLS approach is adequate for marginal models applied to
data such as Table . WLS is an approximation for ML, which corresponds to iteratively
reweighted least squares. WLS is asymptotically equivalent to ML, when s is fixed and the sample
size grows unboundedly at each level of x.

Complications that often occur for repeated categorical measurement include missing data,
time-dependent covariates, and a sampling design more complex than independent multinomial.
For WLS analyses, Stanish, Gillings and Koch,'* Woolson and Clarke,'® and Lipsitz!” discussed
handling of missing data. For cumulative logit models, Landis et al.'® incorporated sampling
weights and design effects into test statistics, using Taylor-series approximations to obtain
weighted proportions and their covariance matrix.
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ML and WLS statistics for testing marginal homogeneity have asymptotic null chi-squared
distributions with d.f.=d—1. Standard chi-squared statistics for testing marginal homogeneity
(see Darroch'®) treat classifications as nominal, and have d.f.=(d—1) (r—1). Since the statistics
described here are directed at narrower alternatives that reflect the ordering of categories, they are
more powerful than the standard statistics when models such as (3) hold. They are reasonable
statistics for detecting location differences in marginal distributions, even when such models hold
only approximately.

Stram, Wei and Ware* proposed an alternative to ML and WLS for cumulative logit modelling
of repeated measures data. Their approach is semi-parametric, not assuming a model of
dependence among the repeated observations. One fits a cumulative logit model separately to
each of the s x r marginal tables obtained for the d different occasions. One estimates empirically
the covariance matrix of the separate estimates of covariate effects, using the approximate linearity
in the observations of the effect estimates. The separate estimates are combined in a Wald statistic
to test for occasion x covariate interaction or to estimate a common covariate effect over the
occasions.

The focus in Stram, Wei and Ware* is on estimation of covariate effects, rather than occasion
effects (such as the {1, } in model (3)). Their approach yields estimates of cutpoint parameters {otg}
for the various occasions, but they are treated as nuisance parameters. Presumably one could use
the semi-parametric methodology to obtain estimated covariances for the cutpoint estimates, and
hence to fit a structure such as o, =o,+u, and test equality of the {u,}. Also, one could in
principle use semi-parametric methodology for alternative links, such as adjacent-category logits.
This is not possible, however, with current software.

Another semi-parametric approach can be developed as an extension of the Liang and Zeger$
methodology for repeated binary responses (see also Chapter 5 of Lipsitz'?). The model
parameters are estimated as if the repeated observations were independent; that is, each subject
contributes d independent r-level multinomials to a set of estimating equations. The parameter
estimates are consistent and asymptotically normal, but the inverse of the estimated information
matrix is not consistent for the true asymptotic covariance matrix. However, one can obtain
consistency using a ‘robust’ estimate such as that proposed by Liang and Zeger.® This approach
has not yet been developed in the literature.

The ML, WLS, and semi-parametric approaches each have certain advantages. The ML and
WLS approaches have the elegance of simultaneously describing occasion and covariate effects.
Also, though the semi-parametric approaches make no assumption about dependence structure,
they may be less efficient than ML or WLS approaches in estimating effects if the multinomial
model truly holds. On the other hand, compared to ML and WLS approaches, the semi-
parametric approaches make it simpler to allow for time-dependent covariates and for missing
data. Also, they are applicable with large or sparse tables for which use of ML or WLS might be
infeasible. If the data are sparse or have many missing components or time-dependent covariates,
the semi-parametric approaches are more practical than ML or WLS. For further discussion of
the advantages and disadvantages of these approaches, see Ware, Lipsitz and Speizer.?

WLS is more accessible than ML or the semi-parametric approaches for fitting marginal models
with current statistical computer packages. Thus statisticians may find it to be the currently most
practical option for analysing simple tables such as Table I. We used SAS*° (PROC CATMOD)
to perform the WLS analyses of Table I reported in the next three sections.

5. EXAMPLE, USING CUMULATIVE LOGIT LINK

In this section we analyse Table I using models with cumulative logit link fitted by WLS. Table IIT
contains the sample marginal distributions for the four combinations of treatment and occasion.
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Table III. Observed and (in parentheses) fitted marginal proportions for cumulat-
ive logit model

Response

Treatment Occasion <20 20-30 30-60 >60
Active Initial 0-101 0-168 0-336 0-395
(0-102) (0-184) (0-303) (0-411)

Follow-up 0-336 0-412 0-160 0-092
(0-385) (0-303) (0-200) 0-111)

Placebo Initial 0-117 0-167 0-292 0-425
(0-098) (0-179) (0-301) (0-421)

Follow-up 0-258 0-242 0-292 0-208

0239)  (0286)  (0273)  (0-202)

The treatments have similar distributions at the initial occasion. From the initial to follow-up
occasion, the sample distribution of time to falling asleep shifts downwards for both treatments.
The degree of shift seems greater for the active drug, though, indicating possible interaction. Since
there is only a single covariate (treatment), we replace L,,(x) by the simpler notation L., where i
indexes treatment.

We allow for interaction with the model

Lgkizak+.ug+ﬂi+r]gi’ g=1:2’ k=1:2’ 3: l=1’ 2, (6)

where we constrain p,=8,=n,,=1#,, =1,,=0. The WLS fit gives f; = —1-05 (asymptotic
standard error =0-16), §, =0-69 (ase=0-23), and 7, ; = — 0-65 (ase =0-25). There is strong evidence
of interaction. At the initial occasion, the odds that falling asleep is below any fixed level is
estimated to be exp(0-69 —0-65)=1-04 times as high for the active drug as for the placebo; at the
follow-up, the effect is exp(0-69) = 2-0. At the latter occasion, subjects taking the active drug tended
to fall asleep more quickly than those taking placebo.

Model (6) implies marginal homogeneity over occasions for the active treatment when
Hy+11,=0, and for the placebo when u; =0. There is substantial evidence of heterogeneity for
each treatment. For the placebo, for instance, 4, /(ase)=6-6. For the placebo treatment, the odds
that time to falling asleep is below any fixed level is estimated to be exp(1-05)=2-9 times as high at
the follow-up occasion as at the initial; for the active treatment, the effect is exp(1-05 +0-65) = 5-5.
The model gives a simple and economical description of variation among the four marginal
distributions. It has a residual chi-squared statistic of 7-4, with degrees of freedom equal to 6,
since there are 12 cumulative logits (3 for each marginal distribution) and 6 parameters
(a1, s, o3, fy, By, n1,). Table III also contains the fitted marginal distributions. Lack of fit
occurs for response 20-30 for the active treatment and follow-up occasion, the dispersion in
response times being somewhat less than predicted by the model.

6. ADJACENT-CATEGORY LOGIT MODELS

Goodman® used adjacent-category logits in models for a single response. Those models are
equivalent to log-linear models for ordinal variables.!! Adjacent-category logit models for
marginal probabilities {¢,(x)} have similar log-linear model representations. For instance,
suppose there is a single covariate. Let G denote @,(x) for level i of x. Model (3), applied with
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Table IV. Sumrﬁary of results for logit models fitted to Table I (ase values in

parentheses)
Adjacent
Cumulative categories
Model Effect logit logit
No interaction Treatment 0-37 (0-20) 0-20 (0-11)
Occasion —1-29 (0-13) —0-67 (0:07)
Residual y? 14-5,df.=7 154,df =7
Interaction Treatment 0-69 (0-23) 0-38 (0-13)
Occasion —1:05 (0-16) —0-55 (0-09)
Treat x Cond. —0-65 (0-25) —036 (0-14)
Residual y? 7-4,df=6 83,df =6
adjacent-category logits, is
108 (Pgri/ By, i+ 1,1) =04+ g+ B ()

The ds marginal distributions are stochastically ordered according to the values of {n,+ B}
Model (7) is equivalent to log-linear model

log(¢gu)=p+ Ag+ AT+ A+ A —a i —

with a,=k and o, =AR— AR, ,, where O =occasion, R =response, and X =covariate. This log-
linear model applies to the d x s x r marginal probabilities of the original s x r? contingency table.
Because of the dependence in responses across occasions, it cannot be fitted using standard log-
linear methods for three-way tables.

Table IV summarizes WLS fitting of Table I by model (7) and the related interaction model. We
interpret results for the latter model as follows. Initially, the odds that time to falling sleep is <20
minutes instead of 20-30 minutes (or 20-30 minutes instead of 30-60 minutes, or 30-60 minutes
instead of > 60 minutes) is estimated to be exp(0-38 —0-36)=1-01 times as high for the active drug
group as for the placebo group; at follow-up, the effect is exp(0-38)=1-46. For the active drug, the
odds that time to falling asleep is in category k instead of k+1 (k=1, 2, 3) is estimated to be
exp(0-55+0-36)=2-5 times as high at follow-up as at the initial observation; for the placebo, the
effect is exp(0-55)=1-7. Table IV also summarizes results for the cumulative logit models. The
results are substantively the same for either link. Parameter estimates are larger for the cumulative
logit. This is expected since effects for that link refer to a broader response range.

7. MEAN RESPONSE MODELS

The models discussed next, proposed by Koch et al.,' are simpler to interpret than logit models
but are structurally more controversial. They require assignment of scores i, .y O
response categories. The models describe the mean response, which for occasion g and covariate
X is

Mg(x) = z"Ic('lkqs_qk(x)'

The models formulated in Table II also make sense for mean responses, substituting M ,(x) for
L,,(x) and deleting the k subscript from the « term. Unlike logit models, mean response models do
not characterize marginal distributions in their entirety, but only through a measure of location.
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Table V. Follow-up response independent of treatment, given initial

response
Follow-up
Treatment Initial Low Medium High Total
Active Low 30 15 0 45
Medium 10 20 10 40
High 0 5 10 15
Total 40 40 20
Placebo Low 10 5 0 15
Medium 10 20 10 40
High 0 15 30 45
Total 20 40 40

Thus, for d.f. values in Table II to apply to mean response models, we must replace r—1 by 1. For
r=2, mean response models are equivalent to linear probability models. At each occasion, such
models assume a linear influence of X on the probability of either response. This assumption is
structurally unsound, since one can obtain probabilities outside the [0, 1] range. It is less
problematic as r increases, if we regard the scores merely as approximations for a discrete version
of an underlying continuous scale.

We fitted mean response models to Table I using WLS, with response scores {10, 25, 45, 75} for
time to falling asleep. There are four response means and four parameters for the interaction
model, so it is saturated; the fitted marginal means equal the observed ones. The initial means were
500 for the active drug group and 503 for the placebo, and the difference in means between the
initial observation and the follow-up was 22-2 for the active drug and 13-0 for the placebo. The
difference between these differences of means equals 92 (ase=3-0), indicating a significantly
greater change for the active drug.

8. COMPARING TREATMENT EFFECTS, CONTROLLING FOR INITIAL RESPONSE

Let us consider further the case, illustrated by Table I, of d=2 occasions. At each level of initial
response, suppose the conditional distribution for follow-up response is identical for active and
placebo treatments. Then if the marginal distributions for initial response are identical for both
treatments, the follow-up marginal distributions are also identical. If the initial marginal
distributions are not identical, however, the difference (on some scale) between the follow-up and
initial marginal distributions may differ for active and placebo treatments. The artificial data in
Table V illustrate this point. For the active treatment, the follow-up distribution is stochastically
higher than the initial distribution; the reverse is true for the placebo treatment, even though the
conditional distribution for follow-up response is identical for the two treatments.

Though models for marginal distributions can be useful for describing longitudinal effects when
the initial marginal distributions differ, they may not tell the whole story. It is also informative to
construct transitional models, which describe subject-wise patterns of change. Let L, denote the
cumulative logit when the cutpoint for follow-up response is at category k, for treatment i with
baseline (initial) observation j. Let {x;} be fixed scores for the baseline levels. The model

Lijkzak+ﬂi+ﬂxj (8)

uses {f;} to compare follow-up distributions, controlling for baseline observation. This is an
analogue of an analysis of covariance model, in which the response and covariate are ordinal
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rather than continuous. The transitional approach is less straightforward when responses occur at
more than two occasions.

The joint distribution of initial and follow-up responses modelled in (8) is much more sparse
than the marginal distributions. For instance, Table I has two ‘0’ counts and four ‘1’ counts,
whereas the smallest marginal count is 11. Hence, we recommend using ML to fit model (8).
Because of sparseness, goodness-of-fit statistics give only rough indices of quality of fit, though
they are more adequate for comparing models. We report values of the likelihood-ratio goodness-
of-fit statistic, denoted by G.

Applying model (8) to Table I with cumulative logit link and scores {10, 25, 45, 75} for time to
falling asleep, we obtain a likelihood-ratio statistic of G?=134-8 based on d.f.=19. Adding a y;x;
interaction term gives only a slightly better fit, with G*=30-8 based on d.f.=18. Inspection of
Table I reveals that for the first two baseline levels, the two treatments have similar sample
distributions of time to fall asleep at the follow-up; at higher baseline levels, the active treatment
seems more successful than the placebo.

We next fitted the interaction model

L=+ Bi+d;+7;

in which B;=9;=0 for all i and j, and (11, V12, V13> V14> Y21 Y22, V23> Y24)=(1, T, A+ 0, 4, 7,7, 0, 0).
With this parameterization, there are four identical follow-up distributions, for active and placebo
treatments at the first two levels of initial response. The difference between follow-up distributions
for active and placebo treatments at the highest two levels of initial response is identical (1). This
model has ML estimates = 3-17 (ase =0-38), 2= 1-30 (ase =0-29), and 6 =116 (ase = 0-29). At the
two highest levels for initial response, the odds that time to falling asleep is below any fixed level is
estimated to be exp(1:30) = 3-7 times higher for the active treatment than for the placebo. At those
levels, the ratio 1:30/0-29 =4-5 gives strong evidence that follow-up time to falling asleep is lower
for the active treatment than the placebo. This model has G2?=23-5, based on d.f. =18, with lack of
fit in a couple of cells. Further fine tuning improves the fit somewhat, but the improvement is
minor relative to the resulting complexity of the interpretation. Other links give similar results.
Francom, Chuang and Landis® gave an alternative transitional model for Table I, a log-linear
model. Ware, Lipsitz and Speizer® described a way of generalizing the cumulative logit
transitional model when the number of occasions is greater than 2.

9. USE OF STATISTICAL COMPUTER PACKAGES FOR MODEL FITTING

For single-response models, the ML approach can be implemented in SAS using the
supplementary procedure LOGIST. For instance, LOGIST can be used to fit transitional models
(such as model (8)), but not models for marginal distributions.

The WLS approach can be implemented for all models discussed in this article using procedure
CATMOD is SAS. Table VI presents SAS code (Version 6 for the PC) for fitting a cumulative logit
model to the margins of Table I. RESPONSE CLOGITS is a new option that specifies cumulative
logits. Users not having version 6 of SAS with the CLOGITS option can use a RESPONSE
statement to construct cumulative logits at each setting of x, in an analogous way to that described
in the next paragraph for adjacent-category logits. The MODEL statement gives the design
matrix for the linear predictor relating the margins of INITIAL (initial time to fall asleep) and
FOLLOW (follow-up time to fall asleep) to cutpoint parameters (the first three columns), a
treatment effect (column 4), an occasion effect (column 5), and interaction (column 6).

Table VII presents SAS (CATMOD) code for the adjacent-category logit model. The
RESPONSE statement constructs adjacent-category logits for the margins, using the (A log Bp)
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When applied to p,
the other block for
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Table VI. Using SAS to fit cumulative logit model to margins of Table I

INPUT TREAT $ INITIAL$ FOLLOW § COUNT @;

IF COUNT=0 THEN COUNT =0.0

A1 1 7 A1 2
A 2 1 11 A 2 2
A 3 1 13 A 3 2
A 41 9 A 4 2
P11 7 P12
P 21 14 P 22
P i3 26 P 3 2
P 4 1 4 P 4 2

PROC CATMOD ORDER = DATA;

POPULATION TREAT;
RESPONSE CLOGITS;
MODEL INITIAL+*FOLLOW =(

SO OO ~RO0oO~ROO ~

(1 2 3="CUTPOINTS’, 4="TREAT,

4 A1 3
5 A 23
23 A 3 3
17 A 4 3
4 P13
5 P43
9 P~ 353
11 P 4 3

Lo

COOR LR HO OO =
8=

Sl e e == N
— OO~ OO0~ OO~OO
CO OO O M i -

\=)

5="0OCCAS’, 6=

00001; CARDS;

1 A1 4 0
2 A 2 4 2
3 A 3 4 1
13 A 4 4 3
2 P 1 4 1
1 P 24 0
18 P 3 4 2
14 P 4 4 22

WEIGHT COUNT;

‘TREAT+OCCAS);

having form

1 —1
0.1
0 o0
0 0
0 o0
0 o0

— OO oo O~O
CoOoOOoO—~O~0O0
SCoOoO~0c0Oo~0O
oS —OoCcOoO~—~,0oO
_—- 00O OoO=0o

0 .00
L.0. 0.0
Lsed, 0.0
0 0 1 —1
0-..0--.0. .1
0 0 0 o

ock diagonal matrix with two blocks,

SO O~ oo
SCO—~,O~ROO O
SO OoO~=mOo0OO
—_— 00O~ 00O0O

one block forms the eight marginal proportions for the active treatment, and
ms the marginal proportions for the placebo treatment. Similarly, the A matrix
al matrix with two components, each having form

0 0
0 0
(U
0 o
-1 0
1 —1
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Table VII. Using SAS to fit interaction model to margins of Table I, using adjacent-category logits

PROC CATMOD ORDER =DATA; WEIGHT COUNT;
POPULATION TREAT,;

RESPONSE 1 -1 0 00 0 0 0,
0 1 -1 00 0 0 0,
0 0 1 -1 0 0 0 0
0 0 0 01 -1 0 0o
0 0 0 0 0 1 -1 0,

0 0 0 00 0 1 -1 LOG
1111 0000O0O0O0O0O0OTO0TO0O
00001 11100UO0O0O0GO0GQO00O
0000O0O0OO0OO0OT11T1TT1T1TO0OO0OTO0O
0000O0OO0OO0OO0OO0OOOOT1T1T 11,
15790 50 041 0:50-0 10070 =1.-0 0 0,
0 A0:0::0:50::3.0::0. 0. 100 0:0.:1- 0,0,
001 00O0O10O0O0OT1O0TU0TO0T10,
000100O0O1O0O0OO0OTL1O0OO0OTOT
MODEL INITIAL*FOLLOW=(1 0 0 1 1 1,
01011 1,
00111 1,
1 001 00
0101 00,
001100
1:°0 00170
010 0 1 0
0::0 .10 1540,
1 00 0 0 0O
01 00 0 O,
00100 0

(1 2 3="CUTPOINTS’, 4="TREAT’, 5="OCCAS’, 6= INTERACTION’)/PRED;

Table VIIL. Using SAS to fit interaction model to margins of Table I, using mean responses

PROC CATMOD ORDER=DATA; WEIGHT COUNT;
POPULATION TREAT;

RESPONSE 10 10 10 10 25 25 25 25 45 45 45 45 75 175 175 75,
10 25 45 75 10 25 45 75 10 25 45 75 10 25 45 75
MODEL INITIAL+FOLLOW=(1 111, 1100, 1010, 1000)

(2="TREAT’, 3="0OCCAS’, 4=INTERACTION’)/PRED;

for producing the differences of logs corresponding to the six marginal logits for each treatment.
The POPULATION TREAT statement requests that these components be applied separately at
the levels of the treatment variable. Thus (A log Bx) represents the 12 marginal adjacent-category
logits, three in each margin for each treatment. The MODEL statement uses the same design
matrix as in the cumulative logit model.

The default response in CATMOD is the set of logits in which each category is paired with the
final category. Instead of using a RESPONSE statement to construct adjacent-category logits,
one can use this default by specifying the design matrix that gives the equivalent model.
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Table VIII presents SAS (CATMOD) code for the mean response model. The RESPONSE
statement in that table calculates mean responses in the margins, using scores (10, 25, 45, 75). The
MODEL statement fits the mean response model with interaction.

The semi-parametric approach is not currently available in statistical computer packages, but
Stram, Wei and Ware* provide a FORTRAN program (called MORC).

10. COMPARISON OF LINKS, AND ALTERNATIVE APPROACHES

The advantages and disadvantages of the various model links described in Sections 57 are similar
to those for the corresponding models for a single response. See Agresti?! (Chapter 11) for a
discussion of these.

Of the logit models, the cumulative logit has the advantage of a certain invariance to response
category choice. If a cumulative logit model holds for an underlying continuous response, it also
holds for any categorical measurement of the response, with the same values for the effect
parameters. For sample data, if the model fits well for a fixed set of response categories, it also
tends to fit well when we combine sets of adjacent responses, with similar ML estimates of effect
parameters. This is not true for adjacent-category logit models. Its corresponding log-linear model
assumes a scoring of response categories in which adjacent categories are equally distant; if this
holds for one set of categories, it will generally not hold when we combine some response
categories. When there is an arbitrary rather than a fixed choice of response categories,
interpretation of parameters may also be more natural for cumulative logit models, referring to the
entire response scale regardless of the cutpoints. When there is a fixed set of responses, the
adjacent-category logit is sometimes more useful, since it permits contrasts with pairs of response
categories.

Positive features of mean response models include (1) the interface with standard regression
modelling that occurs as r increases, so that the response is more nearly continuous, and (2) the
simplicity of interpretation of effects that refer to differences of means. Though such models do not
contain cutpoint nuisance parameters, this omission also has disadvantages. When the number of
response categories r exceeds 2, special cases of the model do not correspond exactly to conditions
such as marginal homogeneity or statistical independence of response and covariates. Simply
modelling a measure of location of the response does not allow comparisons of entire response
distributions, such as whether they are stochastically ordered.

We conclude by describing a more complex way of modelling repeated ordered categorical
data — onme that still focuses on marginal distributions but uses multivariate information.
Let Y,, denote the response for subject h at occasion g- We permit a separate response distri-
bution for each subject. Letting L, be the linear predictor, we consider the model

Lyn=04+ A4 +v,, )

where one could add a f'x term to allow for covariates. For n subjects, this model refers
to a dxrxn table of marginal distributions. There is a single observation at each
occasion x subject combination.

Model (9) differs from those discussed in Section 3, which refer to population change rather than
subject-wise change. For instance, model (2),

Lgkzak+l'tg’

refers to the occasion x response marginal table, collapsed over subjects. The { U, } here differ from
the {v,} in (9). For cumulative logits, we interpret

vy — v, =logit[ P(Y,, <k)] —logit[ P(Y,,<k)],
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whereas
thy — i, =logit[P(Yy, <k)]—logit[P(Y;;<k) ],

where subject & is randomly selected at occasion 1 and subject i is randomly selected at occasion 2
(that is, h and i are independent observations). The parameters do agree when there is marginal
homogeneity. If all v,=0, then all 1, =0, because of the marginal occasion x subject independence.

The distinction between testing marginal homogeneity by testing all y, =0 in (2) and testing all
v,=01in (9) parallels the distinction between two types of tests of marginal homogeneity discussed
by Darroch'® for nominal variables. The first case is similar to Bhapkar’s approach of directly
using the marginal distributions, whereas the second case approaches the data in the form used by
Cochran—Mantel-Haenszel statistics.

Unfortunately, likelihood techniques are inapplicable to fitting model (9), since the number of
parameters has the same order as the number of subjects. For d=2 and no covariates,
McCullagh?? gave a WLS solution (see also McCullagh®?). An interesting problem for future
research is to develop ways of fitting models with random subject effects for multiple occasions,
simultaneously including effects of covariates. There has been some work incorporating subjects
into models as random effects in other contexts.>*~2°
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