This article discusses strategies for modeling a categorical variable when subjects can
select any subset of the categories. With ¢ outcome categories, the models relate to a c-
dimensional binary response, with each component indicating whether a particular cat-
egory is chosen. The strategies are the following: (1) Using logit models directly for the
marginal distribution of each component; this accounts for dependence among the com-
ponent responses but does not treat the dependence as an integral part of the model.
(2) Using logit models containing subject random effects to generate the dependence among
the components; this approach is limited by implying nonnegative associations having a
certain exchangeability. (3) Using loglinear modeling; quasi-symmetric ones are useful
but are limited to estimation of within-subject effects. Marginal logit models less fully de-
scribe the dependence patterns for the data but require fewer assumptions and focus
more directly on the effects of greatest substantive interest.
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1. INTRODUCTION

Surveys sometimes contain qualitative variables for which the
respondents may select any number of the outcome categories. For
instance, the Gallup organization has periodically asked people their
reasons for supporting or opposing the death penalty (see, e.g., their
poll release of February 24, 2000, at their Web site and the January/
February 1985 issue of Gallup Report). Those favoring the death
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penalty could select from reasons such as revenge (an “eye for an
eye”), acts as a deterrent, costly to keep them in prison, keeps them
from killing again. In such surveys, subsequent analysis can then
model the selections in terms of the recorded explanatory variables.

Loughin and Scherer (1998) recently provided an example of such
data and proposed certain analyses. They quoted a study (Richert et al.
1993) that asked 262 pig farmers in Kansas questions about their vet-
erinary information sources. For the question “What are your primary
sources of veterinary information?” the response categories were (A)
professional consultant, (B) veterinarian, (C) state or local extension
service, (D) magazines, and (E) feed companies and reps. Farmers
sampled were asked to select all categories that were relevant. Table 1
shows the response counts for the outcome categories cross classified
with two explanatory variables, the farmers’ achieved education
(whether they had at least some college education), and the number of
pigs they marketed annually (less than 1,000, 1,000 to 2,000, 2,000 to
5,000, more than 5,000). We refer to these explanatory variables as
“education” and “size of farm.” This 2 X 4 X 5 contingency table con-
tains 453 positive responses of categories from the 262 farmers.

For these data, let Y= 1 if a subject selects category k (k=1,...,5),
andlety =0 otherwise.Lety=(y,,y,, ...,y,) denote the response pro-
file on the five categories, and note that 0 < Zkyk < 5. Ateach combina-
tion of education and size of farm, there are 2° possible (yl, Yy o e o ys)
profiles, according to the (yes, no) outcome for the selection of each
outcome category. Thus, the selection of outcome categories is most
fully viewed as a cross classification of five binary components: vari-
able A indicating whether the respondent said “yes” to source A, vari-
able B indicating whether the respondent said “yes” to source B, and
so forth. For instance, among the farmers with no college education
and less than 1,000 pigs marketed annually, Table 1 indicates that two
farmers received information from source A. In fact, one of these
farmers reported source A only (i.e., y = [1,0,0,0,0]), and the other
farmer reported all five sources (i.e., y = [1,1,1,1,1]). The complete
data set is the 2 X 4 x 2° contingency table showing the counts of the
possible profiles y for each combination of levels of X, = education
andX2 = size of farm; that is, theXl X X,XAXBxCxDXE cross clas-
sification. Table 2 shows this table. Table 1 is marginal to Table 2,
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TABLE 1: Farmers’ Veterinary Information Sources by Education and Number of Pigs
Marketed Annually, for 262 Kansas Pig Farmers

Information Source Total Total
Number Number of  Number of

Education of Pigs A B C D E Responses Subjects
No college < 1,000 2 13 18 22 17 72 42

1,000-2,000 2 15 10 1 15 53 27

2,000-5,000 7 10 10 14 11 52 22

> 5,000 13 10 7 14 7 51 27
Some college < 1,000 3 16 21 33 22 95 53

1,000-2,000 2 10 15 22 10 59 42

2,000-5,000 1 7 7 7 6 28 20

> 5,000 14 9 7 8 5 43 29
Total 4 90 95 131 93 453 262

SOURCE: Data supplied by Dr. Thomas Loughin, Kansas State University.
NOTE: Information sources are as follows: A = professional consultant; B = veterinarian; C =
state or local extension service; D = magazines; and E = feed companies and reps.

referring to counts of the yes responses in the marginal distributions of
the components at each educational level.

This article discusses three ways to use existing methods to model
outcome variables such as this that have multiple potential responses.
All three strategies analyze the data in the complete form of Table 2,
but they differ in terms of the level of aggregation of the probabilities
to which the models refer. Section 2 discusses logit models expressed
directly in terms of the marginal distributions of the five components,
that is, in terms of the distributions for which Table 1 summarizes
counts for the yes category. The models deal with distributions that are
marginal to the joint distribution for Table 2, for instance, focusing on
how the probability of selecting a particular veterinary information
source depends on education and size of farm. Section 3 presents logit
models with normal random effects that account for nonnegative asso-
ciations among components of the joint distribution. Those models
refer to subject-specific distributions for which Table 2 is marginal but
again focus on effects of explanatory variables on the choices of cate-
gories. Section 4 discusses loglinear models for the joint distribution
of Table 2 itself. Connections exist among the model types; we see, for
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instance, that when a logit model with random effects holds, then so
must a quasi-symmetric loglinear model.

For the pig farmer data, Loughin and Scherer (1998) proposed a
weighted chi-square test and a bootstrap test of the hypothesis that the
probability of selecting any given veterinary information source is
identical among levels of a predictor variable. As a by-product of pre-
senting modeling strategies, we show in Section 5 how model compar-
isons provide simpler chi-square tests of this hypothesis. Section 6
compares the modeling strategies, summarizes connections among
them, and makes recommendations. The final section suggests possi-
ble extensions of the models. Throughout the article, we discuss the
use of software, illustrating with SAS, for performing the analyses.

2. A MARGINAL LOGIT MODEL APPROACH

Let Y denote the qualitative response variable, having ¢ categories
with multiple potential choices among them. We refer to the ¢ separate
component binary variables that determine the outcome of Y as items.
A 2° contingency table cross classifies the items, and each subject’s
response profile (y,, y,, . . ., y ) contributes to a cell count in this table.
Let X denote a column vector of predictor variables. At each of the €
possible combinations of settings of X, we assume an independent
multinomial distribution for the counts in the cells of the 2° response
profiles. At X =x, let 7 (x) denote the probability that item k is in the set
of categories selected, that is, the probability of responding “yes” on
the kthitem,k=1,...,c. Then, {(nk(x), 1 —nk(x)),k= 1,...,c}arethec
one-dimensional marginal distributions for the 2° cross classification
of responses at X = x. Table 1 contains sample information corre-
sponding to these one-dimensional margins. For instance, for X = (no
college, < 1,000 pigs), &t (x) = 2/42 = .048, . . . t5(x) = 17/42 = .405.
Note that ¥, 7 (x) can take value between 0 and ¢, not 0 and 1.

The representation of the data in the 2° response profile form of
Table 2 converts the original ¢ responses, which are not exclusive or
exhaustive as shown in Table 1, into a set of responses that are exclu-
sive and exhaustive. This is necessary because one can use counts in
Table 2 but not in Table 1 to estimate the joint multinomial probability
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distribution defined at the 2° cells for (y,, y,, . . ., » ) at each setting of X
and consequently the dependence among response choices. In most
applications, however, the multinomial probabilities for the £ separate
2¢ tables that underlie data in the form of Table 2 are not of primary
interest. Rather, one would like to describe how X affects whether one
selects any given category. This focus relates to the marginal probabil-
ities {m (x)} directly.
Logit models for the marginal probabilities have the form

Og(MJ=ak+ka,k=l,...,c, )

l_nk(.x)

where B3, denotes a row vector of parameters. For a fixed k, this is an
ordinary logit model for one component of the c-variate binary
response. In this general form, the effect of X varies according to the
outcome category k, but in some applications it may be plausible to
have the same effects for a certain subset of those categories.

2.1. SIMULTANEOUS MARGINAL LOGIT MODELING

It is simple to fit a particular component of this model (for fixed k)
with ordinary software for logit modeling. It is more challenging to fit
all components simultaneously. The complete likelihood function
refers to the € X 2° multinomial cell probabilities, but the model itself
applies to the marginal probabilities {7 (x)} for the items. Yet, fitting
the models simultaneously is preferable since (1) some parameters
may be common to the separate equations, (2) that fit provides fitted
values for Table 2 that are of use for forming residuals and for checks
of overall goodness of fit that apply to the entire set of models for the
various items, and (3) one can then easily perform inferences that
compare parameters for the logit models for different items, taking
into account the common sample for those models.

One approach to fitting model (1) maximizes the multinomial like-
lihood for the € X 2¢ table having the form of Table 2 while treating the
model formula (1) as a set of constraint equations. Aitchison and
Silvey (1958), Haber (1985), and Lang and Agresti (1994) have pre-
sented numerical algorithms for maximizing multinomial likelihoods
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subject to constraints. The latter two articles apply the algorithm to
generalized loglinear models having the matrix form

Clog A = X. @)

In this context, 7 is the vector (with € X 2¢ elements) of the € sets of
multinomial probabilities, one set for each level of X, and B is the
entire vector of model parameters; for instance, when model (1) con-
tains distinct parameters for each k, then B = (ct;, B,, &, B,, . . . O, B.)".
The matrix A contains 0 and 1 entries in such a pattern that when
applied to m it forms the relevant marginal probabilities {m,(x)} to
which the model applies; the matrix C contains O and 1 and -1 entries
in such a pattern that when applied to the log marginal probabilities, it
forms the marginal logits for the models. Ordinary loglinear models
are the special case of model (2) in which C and A are identity
matrices.

Unfortunately, the popular statistical software packages do not yet
have procedures available for maximum likelihood (ML) fitting of
generalized loglinear models of form (2). However, specialized pro-
grams are available. For the results quoted below, we used a function
developed by and available from Prof. Joseph B. Lang of the Statistics
Department, University of Iowa, for the S-PLUS software (marketed
by MathSoft, Inc.; see www.mathsoft.com/splus). The algorithm
works best for categorical predictors with small to moderate values for
c and €. In that case, one can also test the model fit using ordinary
chi-square statistics comparing the observed counts in the € x 2° table
to the fitted values for the model. For the case of fully categorical pre-
dictors, one can approximate this ML fit using a simple weighted least
squares algorithm, such as PROC CATMOD in SAS provides for (2).
This approach breaks down, however, when the data are sparse, with
many of the marginal totals being less than about 5.

A computationally simpler approach for estimating parameters in
marginal models uses the methodology of generalized estimating
equations (GEE) (Liang and Zeger 1986). This method is a multivariate
extension of quasi-likelihood methods, in which the estimates are
solutions of estimating equations that resemble likelihood equations
but need not be, as the method does not fully specify the distribution of
the data. With the GEE approach, one must provide structure only for
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how the variance depends on the mean and for the correlation structure
of the ¢ binary responses, without stating a particular distribution. A
simple version of this method exploits the fact that good estimates of
model parameters can result even if one naively treats the component
responses as independent; that is, in this context whether a respondent
selects outcome category A is treated as independent of whether the
respondent selects outcome category B, and so forth. Although the
parameter estimates can be fine under the naive independence
assumption, standard errors are not. More appropriate standard errors
result from an adjustment the GEE method makes using the empirical
dependence for the sample data.

More generally with the GEE approach, rather than using estimates
based on treating component responses as independent, one can make
a “working guess” about the likely correlation structure of the item
responses but again adjust the standard error to reflect what actually
occurs for the sample data. For instance, an “exchangeable” working
correlation structure under which correlations for all pairs of
responses are identical is more flexible and realistic than the naive
independence assumption. Even more realistic is an “unstructured”
working correlation that permits a separate correlation for each pair of
components. When c is large, however, this approach may suffer some
efficiency loss because of the large number of extra parameters. In our
experience, when the correlations are modest, all such working corre-
lation structures usually lead to similar GEE estimates and standard
errors, as the empirical dependence has a large impact on adjustment
of the “naive” standard errors. Unless there is reason to expect dra-
matic differences among the correlations, we recommend using the
exchangeable working correlation structure because this is a way of
recognizing the dependence at the cost of a single extra parameter.

The GEE method is not likelihood based; that is, it does not specify
a particular distribution for the € x 2¢ table. Thus, likelihood-based
methods are not available for testing fit, comparing models, and test-
ing hypotheses about parameters. Instead, inference uses Wald statis-
tics constructed using the asymptotic normality of the estimates
together with their estimated covariance matrix. For instance, an esti-
mate divided by its standard error is a Wald statistic for testing that a
parameter equals O; this test statistic has an asymptotic standard nor-
mal null distribution, and its square has an asymptotic chi-square
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distribution with df = 1. In SAS, PROC GENMOD (the procedure for
generalized linear modeling with a variety of response distributions,
including binomial and Poisson) can implement the GEE approach for
a variety of working correlation structures for the dependence among
the c items.

2.2. EXAMPLE OF SIMULTANEOUS
MARGINAL MODELING

We now illustrate by applying marginal models to Table 2. For a
farmer with education i and size of farm j, let 7t (i) denote the proba-
bility of responding “yes” on the kth item. For a baseline, we begin
with the null logit model,

" ( 7 (i)

g l—nk(ij)]=0""i=1’2’j=1""’4’k=1""’5' 3)
This states that for each item k, the probability of responding “yes” on
that item is the same for each (education, size of farm) combination.
The standard chi-square goodness-of-fit tests comparing the counts in
Table 2 to the fitted values that maximize the likelihood for model (3)
yield likelihood-ratio (deviance) statistic G* = 78.3 and Pearson statis-
tic X* = 73.4; these each have df = 35 since model (3) describes 40
logits, namely, logits for the 5 items at each of the 8 (education, size of
farm) combinations, by 5 parameters. Both statistics provide strong
evidence of lack of fit. Table 2 is very sparse, so we make this conclu-
sion cautiously, but in any case one would want to consider more com-
plex models that include explanatory variables. Table 3 summarizes
results for several such models.
Consider first the model

)
%8 1-m ()

having additive education and size of farm effects for each item.
Identifiability requires constraints such as B3, = Bj, for all k. This
model assumes a lack of interaction between education and size of
farm in their effects on the choice of each item but allows those effects

}:akwﬁwﬁ,, 4)
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TABLE 3: Comparison of Fits of Several Marginal Models for Table 2; Differences Re-
ported in Likelihood-Ratio Statistic (deviance) and indf Are Relative to Base-
line Model With no Effects of Education or Size of Farm

Effects Deviance df  Change in Deviance Change in df
None 78.3 35 — —
lin.S 345 30 43.8 5
E 69.4 30 8.9 5
linS+E 26.3 25 520 10
linS+E+linS*E 20.7 20 57.6 15
S 272 20 51.1 15
S+E 18.7 15 69.6 20
S+E+S*E 0.0 0 78.3 35

NOTE: S = size of farm, E = education, lin.S = linear effect of size of farm.

to differ for each item. It appears to fit relatively well (G*=18.7 and X *=
17.8, df=15). The more complex model permitting interaction is satu-
rated (df = 0) since it requires 15 parameters to describe the interac-
tion, (2 —1) X (4 — 1) =3 for each item. The model deleting the educa-
tion terms from (4) has G* = 27.2 (df = 20), so there is only modest
evidence of an education effect, controlling for size of farm (change in
G*=8.4,df=5, p value =.13). By contrast, the model deleting the size
of farm terms from model (4) has G*> = 69.4 (df = 30), so there is very
strong evidence of a size of farm effect.

Inspection of the {B fk} for model (4) suggested roughly a linear
trend across size of farm levels (j = 1,2,3,4) for each item. Thus, we
next fitted the special case of (4),

@) | E_.qgS.
IOg(l_nk(U))_ak"'sz+ﬁkxj' )

using the equally spaced scores {x; =j} for size of farm. This model
also fits relatively well (G* = 26.3, df = 25), with change in G* equal to
7.6 with df = 10 compared with the model (4) treating size of farm as
qualitative rather than quantitative. Adding interaction terms permits
the linear size of farm effects to vary by educational level but does not
provide a significantly improved fit.
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Again, there is not serious damage from deleting the education
effects from model (5); the resulting fit has G*=34.5 and X* =31.6 (df=
30). Table 4 shows the parameter estimates and standard errors for that
model. There is a strong positive size effect for item A (professional
consultant), with the probability of selecting that category increasing
substantially with size of farm. The estimated probability of selecting
A changes from exp(-4.493 + 1.069(1))/[1 + exp(—4.493 + 1.069(1))] =
.03 for the smallest farms to exp(—4.493 + 1.069(4))/[1 + exp(—4.493 +
1.069(4))] = .45 for the largest; by contrast, the change is from .30 to
.40 for item B (veterinarian), .41 to .29 for item C (state or local exten-
sion service), .57 to .43 for item D (magazines), and .41 to .28 for item
E (feed companies and reps), with only the last of these four changes
approaching statistical significance in the usual sense.

Similar results occur with the computationally simpler GEE
approach. Model parameter estimates and standard errors are very
similar to those using ML, but model comparison is not as convenient
because of the lack of a likelihood function. Table 4 also shows the
GEE estimates for the model with linear size of farm effects and no
education effect. These estimates resulted from the exchangeable
working correlation structure, but very similar results occurred using
either the independence or unstructured working correlations. In fact,
the estimated working correlation matrix in the unstructured case has
correlation estimates varying only between —0.004 and 0.212. Table 5
shows SAS code (PROC GENMOD) for the GEE analysis.

Since the education effects are nonsignificant, one could also esti-
mate the size of farm effects by fitting the linear trend models after col-
lapsing Table 2 over education. Results are substantively similar to
those reported in Table 4.

2.3. SIMULTANEOUS VERSUS
SEPARATE FITTING OF MARGINAL MODELS

Since ML fitting of these models simultaneously for the various
items requires special software, one might question whether it is
worth the trouble compared with simply fitting ordinary logit models
separately for the five items. Indeed, fitting them separately, one
obtains estimates that provide the same conclusions; for instance,
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TABLE 4: Estimates for Marginal Model and Random Effects Model With Linear Size

of Farm Effects
Marginal Model Random Effects Model
ML Estimates GEE Estimates
Standard Standard Standard
Parameter Estimate Error Estimate Error Estimate Error
o, —4.493 .566 —4.499 .646 -4.780 616
o, -0.978 274 -0.828 .281 -0.885 312
oy -0.211 267 -0.153 274 -0.147 .304
o, 0.475 256 0.487 .270 0.555 298
Ol -0.151 265 -0.081 274 -0.068 305
Bls 1.069 174 1.081 .198 1.144 191
Bf 0.147 .106 0.079 110 0.080 123
[3‘3s -0.168 .109 -0.189 112 -0.214 125
Bf -0.185 102 -0.221 .108 -0.248 119
ng -0.204 .106 -0.239 113 -0.268 126

slope estimates are similar to those reported in Table 4. There is a
slight efficiency loss, as standard errors of ML estimates are 1% to 2%
larger for the separate fitting. Presumably, this efficiency loss could be
larger if responses on the five items were more strongly correlated.

An advantage of simultaneous fitting using ML or the GEE
approach is having the capability of common parameters for different
items. To illustrate, the estimates in Table 4 suggest that the linear size
of farm effect is similar for items C, D, and E. The model that has this
common effect and a null education effect is slightly more parsimoni-
ous than model (5) but has essentially the same values for goodness-
of-fit statistics (G* = 34.5, df = 32). The common ML slope estimate of
B3 =PBj =BS is —.184, and the standard error of .063 compares with
standard errors of about .11 for the separate-effects model.

2.4. PAIRWISE COMPARISONS OF
CATEGORY SELECTION PROBABILITIES

So far, we have estimated effects of explanatory variables on
whether any particular response category is chosen. One may also
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TABLE 5: Example of SAS Code for Using PROC GENMOD to Implement GEE
Method for Marginal Model and PROC NLMIXED to Implement ML for
Random Effects Model With Linear Size of Farm Effects

data example;
input case educ size a b c d e response;
datalines; * 5 lines for each subject, for (a, b, c, d, €) outcomes;

1 1 1 1 o o o0 o 1
1 1 1 0 1 o 0 0 1
1 1 1 0 0 1 [V 1
1 1 1 0 0 0 1 0 1
1 1 1 0 0o 0 0 1 1
262 2 4 1 o 0 o0 O 0
262 2 4 0 1 0o 0 O 0
262 2 4 0 0 1 0o 0 0
262 2 4 0 0o o0 1 0 1
262 2 4 0 o o0 o0 1 0

proc genmod data=example; class case;
model response =ab cd e a*size b*size c*size d*size e*size
/ dist=bin noint; * binomial distribution, no intercept;
repeated subject=case / type=exch corrw; * exchangeable corr;
run;

proc nlmixed data=example;
eta = lambda + alphal*a+alpha2*b-+alpha3*c+alphad4*d-+alpha5*e
+betal *size*a+beta2*size*b+beta3*size*c+betad *size*d+betaS*size*e;
p =exp(eta)/(1 + exp(eta)); * specifies logit link, since logit(p)=eta;
model y ~ binary (p) ;
random lambda ~ normal(0, sigma*sigma) subject=case;
run;

NOTE: PROC GENMOD = procedure for generalized linear modeling; GEE = generalized esti-
mating equations; ML = maximum likelihood.

want to compare the probabilities of selection of various categories at
fixed values of the explanatory variables. For model (5) with null edu-
cation effects, for instance, at size of farm j, the odds of selecting cate-
gory aareexp[(ot — ) + (Bf - B,f )x}.] multiplied by the odds of select-
ing category b. To illustrate, from Table 4 the estimated odds of
selecting professional consultant (category A) are exp[(-4.493 —
0.475) + (1.069 + 0.185)j] = exp[—4.97 + 1.25j] multiplied by the esti-
mated odds of selecting magazines (category D); thus, the estimated
probability of selecting magazines is higher than the estimated proba-
bility of selecting professional consultant at all size levels except for
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the largest farms (j = 4), where the estimated probabilities are essen-
tially the same.

3. A LOGIT RANDOM
EFFECTS MODEL APPROACH

The models of the previous section apply directly to the marginal
distributions for the various items, so the effects comparing the proba-
bilities of selecting different items are “population-averaged.” For
instance, a fitted probability estimate 7t(ij) refers to all subjects at edu-
cation level { and size of farm j for item &, and the model does not
attempt to study potential heterogeneity among those subjects in this
probability. Alternatively, one can model “subject-specific” probabil-
ities and allow such heterogeneity by incorporating subject terms in
the model. We next discuss logit random effects models of this type.

3.1. MODELING WITH RANDOM INTERCEPTS

For subjects,s=1,...,n,let X, denote the value of the predictors X
and let 7t (x ; s) denote the probability that the kth outcome category is
in the selected set. A subject-specific model analog of the marginal
model (1) is

T, (xS)
logl —&28 20 =) 4o, + Jk=1,....c,
og(l_nk(xs;s)J s FO0 +Byxs ¢ ()

with a constraint such as £ A, =0. The usual approach to fitting models
of this type makes the “local independence” assumption that, given
the subject term A, the responses on the ¢ items are independent. Mar-
ginally, averaging over subjects, nonnegative dependence occurs
between responses on different items due to variability among {A,}.
For instance, subjects with a large positive value of A, have a relatively
high probability of a yes response for each item, whereas subjects with
a large negative value of A, have a relatively low probability of a yes
response for each item, resulting in overall positive associations for
the population of subjects.
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Introducing subject-specific terms increases the parameter space
dramatically. It is sensible to reduce the number of parameters by
using a random effects approach with {A }. This approach assumes a
parametric distribution for {ks} (e.g., Anderson and Aitkin 1985). The
standard assumption is that {7%} are independent from a normal N(O,
o) distribution, with ¢ an unknown parameter. Model (6) is then the
special case of a generalized linear mixed model that is referred to as
the logistic-normal model. To obtain the likelihood function, one
eliminates {A } (which are unobserved) by integrating with respect to
their normal distribution. This requires numerical integration meth-
ods, such as Gauss-Hermite quadrature, which replaces the integral by
an approximating finite sum. The likelihood function then depends on
the fixed effects parameters {o, B,} as well as the parameter o for the
random effects distribution. This is much more manageable than a
likelihood that treats {?»s} as fixed effects and has the number of
parameters on the same order as the number of subjects.

As usual, one obtains the ML estimates of parameters by maximiz-
ing the likelihood function. The estimate of G is itself of interest as a
description of subject heterogeneity. When 6 =0, the model simplifies
to an ordinary logit model that treats the c repeated responses by a sub-
ject as independent, that is, in the same way as if the observations
occurred for ¢ separate subjects. In that case, the model implies a mar-
ginal model of form (1) having the same {o., B,} parameters.

Various software can fit binary-response models containing ran-
dom effects, although few currently provide ML parameter estimates
rather than approximations that can be rather crude. We used PROC
NLMIXED in SAS, which provides ML estimates for generalized lin-
ear mixed models based on the Gauss-Hermite quadrature approxima-
tion for the likelihood function. In fitting the models reported below in
section 3.3, we assumed normally distributed random effects with
common © at each (education, size of farm) combination.

3.2. EXCHANGEABILITY FOR
CONDITIONAL ODDS RATIOS

Section 2.1 noted that the GEE marginal approach is often
employed with an exchangeable working correlation structure as a
way of representing with a single parameter the association structure
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among the component responses. The random effects approach also
has a sort of exchangeable structure but in terms of condltlonal odds
ratios rather than correlations.

For the response profile (y,, y,, . . . , ¥,) for an arbitrary subject, let
g, o, B) =TL[1 + exp(A + o + B,x)] and let F denote the N(0, o)
cumulative distribution function. For a pair of components a and b, let
t, =2y, —Y, -, For the marginal distribution (averaged over sub-
jects) at covariate values X, one can directly show that the odds ratio

between responses a and b, given the other responses, equals

[Jre?e™ 1 gon00 Brarcy [ J e 1 g0, B1arey|

[t e /500,01 B)]dF(?»)]z

Note that this depends on the other responses only through z,,. In par-
ticular, the conditional odds ratio is the same for all pairs (a, b) with a
common value of z,,, and this is true regardless of the form of the ran-
dom effects distribution F.

This basic random effects model has enjoyed much success for a
variety of types of data. However, the implications of nonnegative
marginal log odds ratios among the component responses, averaged
over subjects, and exchangeability in the conditional odds ratios can
be severe limitations. We further discuss this point in the next
subsection.

3.3. EXAMPLES OF RANDOM
EFFECTS MODELS

We now illustrate the random effects form of model for Table 2. For
farmer s having education level i and size of farm j, let 7 (ij; s) denote
the probability that the selected set of response categories includes
the kth one. The subject-specific model analog of the marginal null
model (3) is

( 4. (ij; 5)

l—nk(ij;s)J=)“ +o,,i=1,2, j=1,...,4,k=1,...,5. @)

Marginally (averaged over subjects), this model is not equivalent to
the marginal model (3) but is a special case of it since the dependence
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structure is required to result from a normal mixing on the logit scale.
It has residual df =242 since the (2°— 1) =31 multinomial probabilities
for each of the 8 (ij) combinations are predicted by five { ¢} parameters
and the oparameter from the normal random effects distribution (i.e.,
df = 8(31) — 6 = 242).

Table 6 shows a variety of more complex random effects models
and the change in the deviance compared with this simple model. The
model permitting interaction does not fit significantly better than the
main effects model

og(l—nk(z];s))_x‘ +(1k +Bik +Bjk,l —1,2, J —1,..., 4,k —-1,..., 5, (8)
the change in deviance being 21.3 with df=15. As with marginal mod-
eling, size effects are adequately described by a linear trend, with the
model

T, (ij;s

1 g(l—-;i—iij;)s)sz" o +BE+BSx,i=12, j=1..,4k=1..,5 ()
having increase in deviance of 7.8 with df= 10 compared to (8). Again,
the education effects are not significant. Table 4 shows the estimates
for the model (denoted by 1in.S in Table 6) containing only linear size
of farm effects. Table 5 shows the SAS code for using PROC
NLMIXED to fit this model. For this model, the estimated standard
deviation of the random effects equals 6= .65. The estimated sizes of
farm effects and standard errors tend to be slightly larger than those for
the corresponding marginal model but provide the same substantive
results. Generally, the larger the random effects variability (and, con-
sequently, the stronger the association among the repeated responses),
the greater the differences tend to be between subject-specific and
population-averaged effects. The subject-specific ones tend to be
larger in absolute value (Zeger, Liang, and Albert 1988), but so do
their standard errors, and when the models fit decently they tend to
send similar messages regarding significance.

One can also fit random effects models that permit {A } to have a
different variance for each size of farm. For these data, results are sub-
stantively similar. Incidentally, with heterogeneous variances, the
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TABLE 6: Comparison of Fits of Several Random Effects Models for Table 2; Differ-
ences Reported in Likelihood-Ratio Statistic (deviance) and in df Are Relative
to Baseline Model With No Effects of Education or Size of Farm

Effects Deviance df  Change in Deviance Change in df
None 476.8 242 — —
lin.S 414.0 237 62.8 5
E 467.7 237 9.1 5
lin.S +E 405.3 232 71.5 10
lin.S +E +1linS *E 398.3 227 78.6 15
S 406.1 227 70.7 15
S+E 397.6 222 79.3 20
S+E+S*E 376.2 207 100.6 35

NOTE: S = ssize of farm; E = education; lin.S = linear effect of size of farm.

model without predictor effects does not satisfy model (3), whereby
there are also no effects marginally. When the random effect distribu-
tions differ at different levels of education, homogeneous conditional
distributions at a fixed level of the random effect do not imply homo-
geneous marginal distributions after averaging with respect to the sub-
ject distributions.

Unfortunately, what we have ignored so far is that all the random
effects models actually fit several cells in Table 2 very poorly. Model
(9) has goodness-of-fit statistics G> = 405.3 and X* = 455.1 (df = 232).
The data collapsed over education are less sparse, but the fit is still
poor (G* =329.6, df = 113). For example, inspection of the data shows
that none of the subjects responded “no” for all five of the source
items, whereas model (7) predicts a probability of .15 of this for each
(education, size of farm) combination.

This example shows a serious problem with the random effects
model for this sort of application, namely, a violation of the “local
independence” assumption, given the random effect. All subjects
selected at least one response category, whereas many would choose
none of them if the independence assumption truly held. By contrast,
in Table 2 the cells corresponding to a response of yes for one item and
no for the other four items occur more commonly than the random
effects models predict. Given that someone does not select a particular
four of the sources, they appear to be much more likely to select the
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fifth item than if local independence held. In most situations, respon-
dents may psychologically feel obligated to select at least one
category.

3.4. PAIRWISE COMPARISONS OF
CATEGORY SELECTION PROBABILITIES

As with the marginal modeling approach, one can also use random
effects models to compare the probabilities of selection of various cat-
egories at fixed values of the explanatory variables. For instance, from
the estimates in Table 4 for the model with only linear size of farm
effects, for farmers with the largest farms the estimated odds of select-
ing professional consultant (category A) are exp[—4.780 + 1.144(4) —
.555 + .248(4)] = 1.26 multiplied by the estimated odds of selecting
magazines (category D); again, for the other sizes of farms, category D
seems a more likely choice than category A.

4. LOGLINEAR MODEL APPROACHES

We next consider loglinear models for data of the form of Table 2,
as well as connections between them and random effects models.
Consider c items and £ independent multinomial samples with sample
sizes {n,i=1,..., €} at € levels of acomposite variable X correspond-
ing to the cross classification of predictor variables. Loglinear models
focus on the expected frequencies {lL(y,,...,y)=nP(A=y,B =
Vproves E= ych =)} for the possible sequences y = (yl, Voo e yc) of
responses.

When the null random effects model (7) with no education or size
of farm effect has 6=0, it is equivalent to the loglinear model by which
the responses on the items are mutually independent, with the same
probabilities for each (education, size of farm) combination. That is,
for each (ij) in Table 2, the probability of a sequence y of responses for
the items satisfies

PA=y,B=y,C=y,D=y,E=y/X,=i,X,=j)=
P(A=y)P(B=y,)P(C=y)P(D=y)PE=Yy,).
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This structure satisfies the loglinear model

log Wy - - y) =0+ I By, i=1,...,¢ (10)
k

For ¢ =5, this model is symbolized by (4, B, C, D, E, X) in the common
loglinear notation for the sufficient marginal distributions that deter-
mine the model fit. We mention this simplistic model purely as a base-
line since it is almost always implausible in practice. For Table 2, G*=
487.3 (df = 243).

Next, consider the random effects model with education and size of
farm effects but of a completely unstructured form. When this model
has ¢ = 0, it is equivalent to the loglinear model by which the
responses on the items are mutually independent within each level of
the predictors but with possibly different probabilities for each level.
This is the loglinear model

og Oy - Y) =0+ IPBYyei=1,..., ¢, (11)
k

that specifies conditional independence of the items given X, symbol-
ized when ¢ = 5 by (AX, BX, CX, DX, EX). For Table 2, this has G* =
387.8 (df = 208).

More complex loglinear models than these focus on the association
and interaction structure among the responses on the five items. These
are appropriate if one wishes to study such structure, but in most appli-
cations this would not be the primary focus. A disadvantage of stan-
dard loglinear models is that they do not yield simple summaries for
the effects of predictors, such as is provided by the parameters in mar-
ginal logit and random effects logit models. They also do not provide a
direct comparison of probabilities of responding yes on various items
at fixed settings of predictors, such as described in sections 2.4 and 3.4
for marginal models and random effects models.

4.1. QUASI-SYMMETRY MODELS

There is a type of loglinear model that does permit making this type
of comparison of category selection probabilities. This is the quasi-
symmetry model. Adapting an idea from Tjur (1982) that was discussed
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also by Agresti (1995), we derive this model starting with a random
effects approach that is not dependent on a particular parametric family
for the random effects. This model is more promising for describing
multiple selection data than any of the standard loglinear models.

We start with a random effects model without specifying the struc-
ture of the predictor effects. For subject s at setting i of a set of predic-
tors X, consider the logit model for selecting category k,

,g(_L_L]xﬁkl (12)

1-1 . (@5 5)

(Here, since no structure is yet assumed for the effects, we have
absorbed o, in the B, term, for notational simplicity in the following
argument.) Under the assumption of local independence, the
model-based probability of a particular sequence y = (y;, y5, . . ., y.) of
responses for a subject having random effect value A, = A is

Hc [ exp(A+B ;) :Iy"|: 1 ]l—y"
k=1 .

1+exp(A+B;) | [1+expA+By)

Let F(+) denote an arbitrary cumulative distribution function for A,
possibly changing form across predictor levels. Then, the marginal
probability of the sequence y, averaging over the population of sub-
jects at level i, equals

c exp(MZ;y;)}
exP(Z‘IB”‘y"){ IT, {1+exp(A+B )}

dF,(0).

Consider now the € X 2° contingency table that cross classifies the €
possible predictor values with the 2¢ possible sequence of responses y =
O, - - -» ¥.)- Since this integral depends on y only through X,y,, the cor-
responding expected frequencies {L(y;, . . . , ¥.)} in that contingency
table have structure that is a special case of the loglinear model

logu..@l,-..,yc)=a,-+§ﬁ.-kyk+v(i;);y.),i=1,.--,6. (13)

The final term of this model represents, for each i, a symmetric
interaction that takes the same value for any permutation of a possible
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sequence of responses; for instance, when ¢ = 5, this parameter takes
value v (i; 1) for each of the sequences {(1,0,0,0,0), (0,1,0,0,0),
(0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1)}. If {B, = ... =B, } for a particular
i, then the response probabilities are symmetric at that level; for
instance, when ¢ = 5, each of the sequences {(1,0,0,0,0), (0,1,0,0,0),
(0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1) } has the same probability. The y ()
interaction parameters account for the dependence among the ¢
responses. They represent the way this model generalizes the
loglinear conditional independence model (11), which is the special
case in which all these interaction parameters equal zero. The name
quasi symmetry for this model refers to the symmetric interaction pat-
tern in this model being modified by main effect terms {3, } that may
vary by k. For each level i of the predictors, this model resembles a
loglinear latent class model in the sense that it satisfies a type of
quasi-independence, conditional on the sum of the responses. In fact,
the loglinear latent class model provides a very similar approach for
these data, which we do not explore here. Also closely related is the
semiparametric approach of using random effects structure such as (6)
but with a discrete distribution having a fixed number of support points
for the random effects distribution (Lindsay, Clogg, and Grego 1991).

Identifiability of the item parameters in model (13) requires a con-
straint such as B, = O for each i; that is, the model can describe only
within-subject effects of the form {B, — B, }. For instance, one cannot
use quasi-symmetry models to describe how the probability of select-
ing a category depends on size of farm, but one can use them to
describe how, for a given size of farm, the odds of selecting one cate-
gory compares with the odds of selecting another one. In this sense,
this approach corresponds to the conditional ML approach of dealing
with the {} } subject terms in model (6), which eliminates them by
conditioning on their sufficient statistics (Rasch 1961); Tjur (1982)
also explored the connection between conditional ML and quasi
symmetry.

The quasi-symmetry model requires c¢ interaction parameters to
account for the dependence induced by subject heterogeneity, com-
pared to the single parameter (0) in the normal random effects model.
For Table 2, for instance, the quasi-symmetry model derived from the
logistic-normal null model (7) has three more parameters since it has
four more interaction parameters but one fewer main effect parameter
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(reflecting the restriction to within-subjects effects). Thus, its residual
df equals 239 instead of 242. Its fit is much better, however, with G*> =
263.4 compared with G* = 476.8 for the logistic-normal model.

We made no assumption about the random effects distribution F to
derive the quasi-symmetric model (13). Thus, marginally (averaging
over subjects), the general logistic-normal random effects model (6) is
a special case of it. The quasi-symmetry model places only the restric-
tion that the interaction structure be symmetric rather than the particu-
lar structure corresponding to a normal or any other distribution of
random effect. As a consequence, it has the potential for a much better
fit. For instance, the likelihood equations for quasi-symmetry model
(13) with ¢ = 5 imply that the fitted counts for the item response
sequences (0,0, 0,0,0) and (1, 1, 1, 1, 1) are identical to the observed
counts (at each setting of X), whereas there are large discrepancies
between observed and fitted counts for these cells in Table 2 using the
logistic-normal model.

Table 7 summarizes goodness of fit for various loglinear models fit-
ted to Table 2. The quasi-symmetry model derived from the random
effects model (8) with main effect factors for education and size of
farm is

IOg ,J'g'(yv ey )’5) = (x;j + %Bu + jk)yk

(14)
Y3 Ly i=1,2j=1,...,4.
k

It has G*=150.7 (df = 188) compared with G*=397.6 (df =222) for the
logistic-normal model. The model deleting the education effects fits
essentially as well (G* = 153.1, df = 192). The sizes of farm effects
obtained with this simpler model are necessarily the same as those
obtained if we collapse the table over education and then fit the
quasi-symmetry model

log P«,-()’p ce Y= o + gﬁjkyk"' Y Us %yk)’j= L...,4 (15)

which has G*=90.1 (df = 88). This model fits the table well except for
3 of the 128 cells that have adjusted residuals exceeding 3 in absolute
value. As in other cases, an even simpler model having linear effects
for size of farm fits essentially as well (G* = 92.8, df = 96).
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TABLE 7: Goodness of Fit of Several Loglinear Models for Table 2, With X, = Education,
X, = Size of Farm, and X = the 8-Category Composite of X, and X,

Effects Deviance df
(A BCDEX 4873 243
(AX, BX, CX, DX, EX) 387.8 208
Quasi symmetry with none 263.4 239
Quasi symmetry with X, 153.1 192
Quasi symmetry with X, + X, 150.7 188

4.2. PAIRWISE COMPARISONS OF
CATEGORY SELECTION PROBABILITIES

Compared with standard loglinear models that concentrate on sum-
marizing association and interaction structure, a model such as (15)
has the advantages of parsimony and {f3 jx } estimates that provide
simple comparison of the items within each size of farm category. For
the constraint B =0 for all j, Table 8 reports the {B }. For instance,
for farmers with the largest farms, the estimated odds of selecting pro-
fessional consultant (category A) are exp(1.32 — 0.98) = 1.40 multi-
plied by the estimated odds of selecting magazines (category D). The
corresponding estimate using the linear trend model is 1.42. By con-
trast, again for other sizes of farms, category D seems much more
likely than category A.

Although at first glance quasi-symmetry models seem to have
unusual form, it is straightforward to fit them with software for gener-
alized linear models. Table 9 illustrates, showing the use of SAS
(PROC GENMOD) to fit model (14) and the related model with null
education effects.

5. TESTING INDEPENDENCE BETWEEN A
PREDICTOR AND A MULTIRESPONSE VARIABLE

Loughin and Scherer (1998) developed a large-sample weighted
chi-square test and a small-sample bootstrap test of the hypothesis that
the probability of selecting any given category is identical among the
levels of a predictor. In the context of the models presented in this



Agresti, Liu/ MODELING A CATEGORICAL VARIABLE 427

TABLE 8: [Estimates of Within-Subject Item Comparisons {B, - B,}, by Size of Farm j
(number of pigs), for Quasi-Symmetry Model (15)

Size of Farm B By By B

< $1,000 -4.13 -0.53 0.00 0.63
1,000-2,000 -2.97 0.00 0.00 0.46
2,000-5,000 -1.47 0.00 0.00 0.42
> $5,000 1.32 0.74 0.25 0.98

NOTE: Estimates obtained setting B;s =0, so refer to differences between eachitem and item 5.

TABLE 9: Example of SAS Code for Quasi-Symmetry Model (14) and Corresponding
Model Without Education Effects

data gs;
input educ size a b c d e count ;
sym=a+b +c +d +e; * defines symmetric interaction factor;
datalines; * 1 line for each of 256 counts in Table 2;

0 1 1 1 1 1 1 1

0 1 1 1 1 0o 1 0

0 1 1 1 0 1 1 0

1 4 0 0 1 0 0 2
1 4 0 0 O 1 0 4
1 4 0 0 O 0 0 O

proc genmod data=gs; * fit quasi symmetry model (14);
class sym size;
model count = symleduclsize sizela sizelb sizelc sizeld sizele
educla educlb educlc educld educle
/ dist=poi link=log; * Poisson loglinear model;
run;
proc genmod data=gs; * Previous model without education effect ;
class sym size;
model count = symleduclsize sizela sizelb sizelc sizeld sizele
/ dist=poi link=log;
run;

article, one can test this hypothesis directly by likelihood-ratio tests
comparing models with and without the predictor effect.

We illustrate by testing the hypothesis that, for each item, the prob-
ability of selection is independent of education. One cannot do this by
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applying ordinary chi-square statistics to Table 1 collapsed over size
of farm (number of pigs) since the 453 entries in that table are not inde-
pendent. One can, however, conduct a likelihood-ratio test comparing
the marginal logit model

EICH I
]Og(l_nk(i))~ak+Bik7l_1’27k—1,...,5, (16)

(with the constraints {B,,=0,k=1,..., 5}) to the simpler model in
which also Bfk =0,k=1,...,5. The test statistic, which is the differ-
ence in G* goodness-of-fit statistics for the two models, equals 9.1
with df =5 (p = .11). It corresponds to testing independence simulta-
neously in each of the five 2 X 2 marginal tables obtained by cross
classifying education with each of the (yes, no) possible responses for
the items.

Alternatively, one could conduct a subject-specific test of this
hypothesis by comparing the random effects model

DN P
log(l_nk(i;s))_;\'s+ak+Bikvl_1¢2>k—1,...,5, amn

to the simpler model with B, =0,k=1,..., 5. The test statistic equals
9.2 withdf=5 (p=.10). The separate models have G*=295.6 (df=51)
and G? = 304.8 (df = 56). Like the random effects analyses discussed
previously, this one is hampered by the poor fit of the more complex of
the two models.

Finally, yet another approach is based on comparing the quasi-
symmetry model

IOgu.'(yu'"’ys):'at"';ﬁikyk""Y(;yk)’i:1’2’k=1""’5’ (18)

to the simpler model replacing each B, by B, . The difference in G* sta-
tistics of 8.5 again has df = 5 (p = .13). In summary, all three
approaches provide similar results regarding the statistical signifi-
cance of the effect of education on these items. For further discussion
of tests of this sort using marginal models, see Agresti and Liu (1999).
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6. COMMENTS AND COMPARISONS
OF MODELING STRATEGIES

This article has discussed models that apply at three quite different
levels of aggregation. Subject-specific models, such as the random
effects model (8), operate at the finest level. Averaging over subjects
yields data in the form of Table 2, to which loglinear models apply.
Averaging further to obtain certain two-way marginal tables yields
data in the form of Table 1, to which the parameters in marginal mod-
els such as (4) apply. Of the three model types, which offers the great-
est promise for analyzing categorical variables allowing multiple cat-
egory choices? This section discusses the pros and cons of each model
type and makes a recommendation. First, we summarize relationships
and connections among the models.

In general, a random effects model of logit form does not imply a
marginal model of logit form and vice versa. In fact, if a logit random
effects model holds with ¢ > 0, then the implied marginal model does
not have logit form, although there are approximate relationships
between their parameter estimates (Zeger, Liang, and Albert 1988).
The only time they are exactly compatible is when the random effects
model holds with 6 = 0, in which case marginally the responses are
independent, and the same parameters apply as in the logit model.
This special case also implies a quasi-symmetry model without the
interaction parameters, or simply a loglinear model of conditional
independence of the item responses, given the predictors. In practice,
when the random effects model has a relatively small value of G, esti-
mates and standard errors are very similar from the three approaches.
Regardless of the value of G, in our experience the substantive results
are the same with each approach.

The random effects models of section 3 have the advantage that
they provide a mechanism for generating a joint distribution for the
dependence among responses on the various items. Because of their
simple joint distribution, they have relatively few parameters for the
contingency table of form Table 2. A disadvantage, however, is that
this simple structure for the joint distribution may be inappropriate for
most applications of this type. Subjects who respond positively to one



430  SOCIOLOGICAL METHODS & RESEARCH

item may be less likely to respond positively to others, whereas ran-
dom effects models imply independence locally and nonnegative
associations marginally.

The marginal models of section 2 have the advantage that, in not
assuming subject-specific structure to generate a joint distribution,
they are applicable even if assumptions such as local independence are
violated. The GEE version of the marginal approach does use a work-
ing correlation matrix for the item responses to attempt to improve
efficiency, but typically similar results occur for the model estimates
and standard errors regardless of the choice for that matrix. The ML
version of the marginal approach need not make any assumption at all
about the joint distribution, although it is possible to do so to make the
model more parsimonious (Lang and Agresti 1994). When the ML
marginal approach does not include a model for the joint distribution,
it does still account for the dependence among the item responses in
obtaining estimates and standard errors; it essentially uses a saturated
structure for it, and thus it has a much lower value of residual df than
for the random effects models (compare, for instance, df values in
Tables 3 and 6).

The quasi-symmetric loglinear models of section 4 do not impose
such severe structure as the random effects models on the joint distri-
bution of the items. Thus, they often tend to provide a better fit, as we
observed for the data analyzed in this article. However, they are lim-
ited to describing within-subject effects, which is a severe limitation
not shared by the marginal and random effects models. One cannot use
them to describe how the probability of selecting a particular category
depends on values of the explanatory variables. Moreover, although
the quasi-symmetry model was motivated beginning with a logit ran-
dom effects model, in its loglinear form it is not obvious how to inter-
pret its parameters, and it takes careful thought to see how those
parameters relate to those in the logit model. Thus, we do not believe
‘that loglinear models are as useful as logit random effects models,
even though some of them often fit better.

In our opinion, overall the marginal models are the most useful of
these three types. They are simplest in the sense of treating the joint
distribution as a nuisance and not spending much effort in modeling
it. Unlike the random effects models, marginal models can fit well
when local independence is badly violated. Unlike the quasi-
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symmetric loglinear models, one can use marginal models also for
describing effects of predictors. Perhaps most important, they seem to
focus on the matters of primary importance: Does the probability of
choosing a particular category depend on certain explanatory vari-
ables? For fixed values of those predictors, how do the probabilities
compare of selecting the various categories? Also, the overall (i.e.,
population-averaged) rates would seem more relevant in most appli-
cations than the subject-specific ones.

Of the two ways of fitting marginal models, we have a slight prefer-
ence for the ML approach. With it, one has a likelihood function and
the consequent related methods such as likelihood-based tests and
confidence intervals and goodness-of-fit tests. However, the GEE
approach is computationally much simpler and more widely available
in current software. It provides the simplest tool at present for attack-
ing this problem.

A limitation of all the modeling approaches is the potential compli-
cations due to sparseness of the data. Tests of model goodness of fit are
best suited to a modest number c of response categories with at most a
few categorical predictors. When the number of cells in the £ X 2° con-
tingency table is very large, goodness-of-fit statistics for models may
not have distribution close to chi-squared, but ordinary ML inference
applies reasonably well to estimating the main effect parameters and
to comparing nested models as long as the marginal counts at combi-
nations of the predictors and the response categories are not too small.
Sparseness is less of an issue for the GEE approach with marginal
models than for the other approaches discussed in this article.

7. POSSIBLE EXTENSIONS

All the modeling approaches we have discussed can handle exten-
sions of the multiple-category-choice problem. For instance, suppose
two variables each can have multiple responses, such as Y, asking what
types of movies one likes (comedy, drama, romance, horror, science
fiction) and Y, asking what types of books one likes to read (fiction,
biography, history, homemaking, self-help, other nonfiction). If ¥,
has ¢, categories and Y, has c, categories, the models then apply to a
2% x2“ contingency table at each setting of explanatory variables X.
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The marginal modeling approach applies simultaneously to study
effects of X on components of each response variable and to study
marginal associations between pairs of the components. For instance,
one might test for independence between Y, and Y, at each setting of
X, in the sense of simultaneous pairwise marginal independence
between each component of Y, and each component of Y,. The mar-
ginal modeling approach specifies independence simultaneously for
c,c, separate 2 X 2 tables, one for each such pair, at each setting of X.
One can obtain ML fitting of such a model with the methodology of
Lang and Agresti (1994) alluded to in section 2, but this becomes
infeasible as ¢, and ¢, increase or the number of variables increases. In
those cases, the GEE approach is preferable.

There are various ways of extending the random effects models for
a bivariate response with multiple possible choices for each response.
One approach uses a multivariate normal vector of ¢, + ¢, random
effects, one for each component of Y, and one for each component of
Y,. The null hypothesis specifies a correlation of 0 between each pair
of arandom effect for Y, and a random effect for Y,, whereas under the
alternative, those correlations are unspecified. If responses among
items of Y, are likely to be positively correlated and if responses
among items of Y, are also likely to be positively correlated, one could
simplify this approach by introducing a single random effect for each
componentof Y, (i.e., aspecial case of the previous model in which the
first ¢, random effects are perfectly correlated) and a single random
effect for each component of Y,. Then, one would compare the model
in which these two random effects are uncorrelated with one in which
they may be correlated. Such a simpler model has the potential for a
power improvement, if it fits reasonably well; in practice, however, it
would likely often face the lack of fit problems exhibited by random
effects models in this article. See Coull and Agresti (2000) for exam-
ples of multivariate logit models with vectors of random effects.

Finally, this article has concentrated on models that describe the
probability of selection for any particular response category. More
generally, in some applications it may be of interest to model the
actual subset of categories selected. One could construct multinomial
logit models to describe how this choice depends on explanatory vari-
ables, but when c is large, this approach is hindered by the large number
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of parameters in modeling 2° categories with 2° — 1 separate logit
formulas.

REFERENCES

Agresti, Alan. 1995. “Logit Models and Related Quasi-Symmetric Loglinear Models for Com-
paring Responses to Similar Items in a Survey.” Sociological Methods and Research
24:68-95.

Agresti, Alan and I-Ming Liu. 1999. “Marginal Modeling of a Categorical Variable Allowing
Arbitrarily Many Category Choices.”” Biometrics 55:936-43.

Aitchison, John and S. D. Silvey. 1958. “Maximum-Likelihood Estimation of Parameters Sub-
ject to Restraints.”” Annals of Mathematical Statistics 29:813-28.

Anderson, Dorothy and Murray Aitkin. 1985. “Variance Components Models With Binary Re-
sponse: Interviewer Variability.” Journal of the Royal Statistical Society, Series B 47:203-10.

Coull, Brent A. and Alan Agresti. 2000. “Random Effects Modeling of Multiple Binary Re-
sponses Using the Multivariate Binomial Logit-Normal Distribution.”” Biometrics 56:73-80.

Haber, Michael. 1985. “Maximum Likelihood Methods for Linear and Log-Linear Models in
Categorical Data.” Computational Statistics and Data Analysis 3:1-10.

Lang, Joseph and Alan Agresti. 1994. “Simultaneously Modeling Joint and Marginal Distribu-
tions of Multivariate Categorical Responses.” Journal of the American Statistical Associa-
tion 89:625-32.

Liang, Kung-Yee and Scott L. Zeger. 1986. “Longitudinal Data Analysis Using Generalized
Linear Models.” Biometrika 73:13-22.

Lindsay, Bruce, Clifford Clogg, and John Grego. 1991. “Semiparametric Estimation in the
Rasch Model and Related Exponential Response Models, Including a Simple Latent Class
Model for Item Analysis.” Journal of the American Statistical Association 86:96-107.

Loughin, Thomas M. and Peter N. Scherer. 1998. “Testing for Association in Contingency Ta-
bles With Multiple Column Responses.” Biometrics 54:630-37.

Miller, Michael E., Charles S. Davis, and J. Richard Landis. 1993. “The Analysis of Longitudi-
nal Polytomous Data: Generalized Estimating Equations and Connections With Weighted
Least Squares.” Biometrics 49:1033-44.

Rasch, Georg. 1961. “On General Laws and the Meaning of Measurement in Psychology.” Pro-
ceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability
4:321-33.

Richert, B. T., M. D. Tokach, R. D. Goodband, and J. L. Nelssen. 1993. “Integrated Swine Sys-
tems: ‘The Animal Component’—Phase 1; The Kansas State University Survey.” KSU
Swine Day 1993, 172-76.

Tjur, Tue. 1982. “A Connection Between Rasch’s Item Analysis Model and a Multiplicative
Poisson Model.” Scandinavian Journal of Statistics 9:23-30.

Zeger, Scott L., Kung-Yee Liang, and Paul S. Albert. 1988. “Models for Longitudinal Data: A
Generalized Estimating Equation Approach.” Biometrics 44:1049-60.

Alan Agresti is a distinguished professor in the Department of Statistics, University of
Florida, Gainesville. His research interests are in generalized linear modeling of dis-



434  SOCIOLOGICAL METHODS & RESEARCH

crete data, particularly methods of categorical data analysis, with emphasis on applica-
tions in the social sciences and biomedical sciences. His books include Categorical Data
Analysis (John Wiley, 1990), An Introduction to Categorical Data Analysis (John Wiley,
1996), and Statistical Methods for the Social Sciences (with B. Finlay, 3rd ed., Prentice
Hall, 1997).

Ivy Liu is a lecturer in the School of Mathematical and Computing Science, Victoria Uni-
versity, Wellington, New Zealand. She received her Ph.D. in statistics from the University
of Florida in 1995. Her research interests are in categorical data analysis for sparse
data, especially in various extended types of Mantel-Haenszel estimation methods for
stratified categorical data.



