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Abstract

This article presents a survey of ways of statistically modeling patterns of observer agreement

and disagreement. Main emphasis is placed on modeling inter-observer agreement for categorical

responses, both for nominal and ordinal response scales. Models discussed include (1) simple cell-

probability models based on Cohen’s kappa that focus on beyond-chance agreement, (2) loglinear

models for square tables, such as quasi-independence and quasi-symmetry models, (3) latent class

models that express the joint distribution between ratings as a mixture of clusters for homoge-

neous subjects, each cluster having the same “true” rating, and (4) Rasch models, which decompose

subject-by-observer rating distributions using observer and subject main effects. Models can address

two distinct components of agreement – strength of association between ratings, and similarity of

marginal distributions of the ratings.
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1 Introduction

Suppose several observers measure a response variable for the same set of subjects. Regardless of the

nature of the response variable, different observers need not make the same response for a given sub-

ject, because of several types of “measurement error” that can occur. This is particularly true when the

response variable has a subjective rating scale, as is often the case for categorical responses. Discrep-

ancies between ratings can be attributable not only to classification errors by the observers, but also to

the categories not having an objectively precise definition. Different observers may simply have differ-

ent perceptions about what the categories mean. Even if there is a common perception, measurement

variability can occur. For instance, repeated observations by the same observer of a given subject may

exhibit variability. Issues that arise in analyzing inter-observer agreement apply also to the analysis of

intra-observer agreement.

The study of observer agreement is very important in many medical applications. Measurement

scales dealing with the presence of a symptom or the severity of a disease are often quite subjective,

especially when the scale is ordinal. For instance, presence of a symptom might be measured using

a categorical scale having labels such as (no, unlikely, somewhat likely, probable, very probable, yes);

severity of disease might be measured as (none, slight, moderate, severe). Landis and Koch1, in a highly

informative survey of methods (circa 1975) for analysis of observer reliability studies, discussed several

medical applications in which the observer may be an important source of measurement error. One of

the earliest types of application in which observer variation was studied concerned interpretation of film

results in chest radiography2. Similar issues arose in applications involving estimating the precision of

measuring instruments in laboratories3, and estimating observer reliability in psychiatric evaluation and

educational testing4,5,6. The degree of observer agreement is also an important consideration in many

non-medical contexts, such as in the study of interviewer reliability in sample surveys7.

To illustrate methods for modeling agreement, later in the article we shall analyze Table 1, based

on data presented by Landis and Koch8. Seven pathologists separately classified 118 slides in terms of

carcinoma of the uterine cervix, using a five-point ordinal scale with categories (1) negative, (2) atypical

squamous hyperplasia, (3) carcinoma in situ, (4) squamous carcinoma with early stromal invasion, and
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(5) invasive carcinoma. Few observations occurred in the fifth category, and Table 1 combines that one

with the fourth category. Table 1 contains data for the first two observers, A and B.

Most of the early statistical research dealing with analyzing observer agreement focused on the devel-

opment of summary measures of agreement. The object was to develop a statistic that indicated whether

the degree of agreement between two observers was (almost perfect, substantial, moderate, fair, slight,

poor)1,9 . The most popular measure of this type, Cohen’s kappa, gives a number on a scale for which 0

indicates agreement no better than would be expected if the ratings were statistically independent, and

1 indicates perfect agreement. For Table 1, for instance, this measure equals 0.49, indicating “moderate”

agreement. Discussion of such summary measures is not the primary focus of this article. Instead, we

survey ways of modeling patterns of observer agreement and disagreement. With the modeling approach,

one can more fully describe agreement. For instance, one can often (1) provide a parsimonious represen-

tation for the joint distribution of observers’ ratings, (2) provide residuals that compare the frequency

with which certain types of agreements or disagreements occurred compared to what would be expected

with some predicted pattern, and (3) estimate conditional probabilities such as those involving ratings

by one observer given ratings by other observers, those involving ratings by an observer given a “true”

rating, and those involving the “true” rating given ratings by several observers.

2 Modeling Agreement on a Categorical Scale

We discuss the case in which a fixed set of d observers rate the same n subjects, giving special emphasis

to d = 2. The measurement could be (1) binary, such as an evaluation about whether a subject has a

particular disease, (2) nominal scale, such as classification into mental illness types, (3) ordinal scale,

such as classifications regarding the stage or severity of a disease, or (4) interval scale, such as a serum

cholesterol level. For continuous interval-scale responses, a common approach uses analysis of variance

(ANOVA) models, with intraclass correlations to describe strength of agreement1,10,11. Dunn’s article in

this issue discusses this case. Our primary emphasis concerns models for categorical responses – cases

(1)-(3) and case (4) with a highly discrete or grouped continuous response.

Let I denote the number of categories for a categorical response, and denote two observers by A and

B. In the population of subjects of interest, let πij = P (A = i, B = j) denote the proportion that

observer A classifies in category i and observer B classifies in category j, i = 1, ..., I, j = 1, ..., I . Their
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ratings of a particular subject agree if they each classify the subject in the same category. In the square

table {πij}, πii is the probability they agree that a randomly selected subject is in category i, and
∑

i πii

is the total probability of agreement. Perfect agreement occurs when
∑

i πii = 1.

Inter-observer agreement for categorical scales has two components – distinguishability of categories

and lack of bias. These relate to strength of association between ratings and to similarity of their marginal

distributions. A relatively large total probability of agreement requires both strong association and near

marginal homogeneity, as explained next.

Darroch and McCloud12 noted that the extent of observer agreement depends partly on how well

each observer can distinguish between each pair of categories. For a pair of subjects, consider the event

that each observer classifies one subject in category i and one subject in category j. The ratings are

concordant if they agree on which subject is in category i and which is in category j; they are discordant

if the subject that A places in category i is placed in j by B, and the one A places in category j is placed

in i by B. Conditional on the event of rating the two subjects in categories i and j, the odds that the

ratings are concordant rather than discordant are

τij = πiiπjj/πijπji, (1)

Distinguishability of categories increases as the association between the A and B classifications, as de-

scribed by the {log τij}, becomes more strongly positive. As τij increases, the observers are more likely

to agree on which subject receives each designation.

The marginal distributions {πi+ =
∑

j πij , i = 1, ..., I} and {π+j =
∑

i πij , j = 1, ..., I} describe

how the observers separately allocate subjects to the response categories. Bias of one observer relative

to another refers to discrepancies between these marginal distributions. Bias decreases as the marginal

distributions become more nearly equivalent, lack of bias meaning that πi+ = π+i for all i. We use the

term “bias” here simply to refer to marginal heterogeneity for A and B, and other types of bias may

exist; for instance, A and B may have identical marginal distributions, yet their common distribution

may differ from that of the unknown “true” rating or that of a “standard.”

Strong agreement requires both similar marginal distributions and strong positive association. For

instance, one could have identical marginal distributions, yet statistical independence in the joint distri-

bution {πij} for the ratings; in that case, one observer’s rating is unrelated to the other’s rating. Or, one
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could have strong association between ratings, yet one observer’s rating could be systematically different

from the other’s (e.g., for an ordinal scale, A’s rating might be consistently one category higher than

B’s). A difficulty in modeling agreement is that many standard models for categorical data refer to only

one of the two components. For instance, loglinear models focus on the joint distribution, and hence the

strength of association between ratings. Our discussion of each model will assess the extent to which it

addresses both components.

Though we focus on categorical responses, we first briefly discuss an ANOVA model that helps clarify

these two components of agreement. Let Yij denote the rating of subject i by observer j, i = 1, ..., n, j =

1, ..., d. Consider the model

Yij = µ + ξi + τj + εij (2)

where {τj} are observer effects and {ξi} are subject effects. Suppose {ξi} are treated as random effects,

and {ξi} and {εij} are mutually independent random variables. For given variability among the subjects,

the agreement between Yij and Yik increases as the error variability σ2
ε decreases; that is, as the correlation

between Yij and Yik increases. However, strong agreement also requires relatively little variability in the

observer effects {τj} (i.e., little inter-observer bias).

Though this article emphasizes models for agreement rather than summary descriptive measures, Sec-

tion 3 combines the two approaches. It describes simple models for cell probabilities that contain the kappa

measure of agreement as a model parameter. Section 4 describes loglinear models for joint distributions

of ratings. Loglinear models pertaining to square tables, with the same categories in each dimension, have

particular relevance. Examples include quasi-independence models that highlight agreement occurring

beyond chance, and more general quasi-symmetry models.

Section 5 discusses Rasch models, which utilize separate rating response distributions for each subject-

observer combination. They describe inter-observer bias by expressing a logit for those distributions in

terms of additive observer effects and subject effects. Rasch models are related to latent class models,

which are described in Section 6. Such models regard the joint distribution between ratings as a mixture

of distributions, one for each latent class. Each latent class consists of homogeneous subjects, having

the same “true” rating. Within each latent class, there is statistical independence between observers’

ratings. This type of model focuses less on agreement between observers than on agreement between each

observer and the “true” rating. Sections 3-6 discuss models both for nominal and ordinal measurement

4



scales. Section 7 illustrates the use of these methods for the analysis of Table 1.

3 Kappa-Based Models

Bloch and Kraemer13 noted that kappa, a measure of agreement for categorical ratings, has several

versions. For nominal scales, the most popular one seems to be Cohen’s14 kappa. Its population value is

defined as

κ =

∑
πii −

∑
πi+π+i

1 −
∑

πi+π+i
(3)

The numerator compares the total probability of agreement to that expected if the ratings were statisti-

cally independent, referred to as “chance” agreement; the denominator is the maximum possible value of

the numerator, for the given marginal probabilities.

A related kappa measure, introduced by Scott15, replaces πi+π+i by π2
i , where πi = (πi+ + π+i)/2.

These versions of kappa are designed for nominal classifications. Much controversy has surrounded their

use, particularly regarding their dependence on the marginal distributions12,16,17,18. A difficulty is that

the same diagnostic process can yield different values of kappa, depending on the proportions of cases of

the various types. The many generalizations of kappa include weighted versions for ordinal scales and

versions for multi-observer agreement. We do not address these measures in this article, but simply note

kappa’s use in a simple contingency-table model for agreement and disagreement.

Suppose the observers are interchangeable, in the sense that the marginal distributions are identical,

with πi = πi+ = π+i, i = 1, ..., I. Then, Cohen’s and Scott’s measures are identical. Several authors13,19,20

have discussed the use of a separate kappa for each category, equivalent to

κi = (πii − π2
i )/[πi(1 − πi)] (4)

When I = 2, κ1 = κ2. When I > 2, the overall κ is a weighted average of {κi}, with weight πi(1 − πi)

for κi. For these parameters,

πii = π2
i + κiπi(1 − πi),

and κi describes the degree to which agreement for category i exceeds that expected under independence

of ratings.

When all {κi} are identical, a simple model expresses the cell probabilities in terms of the common
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value κ, namely

πii = π2
i + κπi(1 − πi)

πij = πiπj(1 − κ), i 6= j.

For this model, {πij} satisfy symmetry and quasi-independence. That is, πij = πji for all i and j, and

conditional on the ratings differing, the rating by one observer is statistically independent of the rating

by the other observer. When this model holds, κ = 0 is equivalent to statistical independence of the

ratings and κ = 1 is equivalent to perfect agreement. The joint distribution is a weighted average of a

distribution satisfying statistical independence and a distribution having perfect agreement, with weights

(1 − κ) and κ. Cohen21 used this as a model for positively associated clustering. James22 and Agresti23

also studied it. The model is overly simplistic for most applications, and does not have broad scope

because of its requirement of identical marginal distributions. However, it does represent a case in which

kappa describes both the pattern and the strength of agreement. For further discussion of kappa-based

methods and other summary measures of agreement, see Fleiss24, Fleiss and Cohen25, Kraemer26,27,

Landis and Koch1, Schouten28, and the article in this issue by Kraemer.

4 Loglinear and Association Models

Kappa summarizes agreement by comparing the probability of agreement to the baseline of chance proba-

bility of agreement. It is not possible to incorporate kappa as a parameter in non-trivial loglinear models

for {πij}. However, loglinear models can express agreement in terms of components, such as chance

agreement and beyond-chance agreement. Also, they can display patterns of agreement among several

observers, or compare patterns of agreement when subjects are stratified by values of a covariate.

Let {mij = nπij} denote expected frequencies for ratings of n subjects by observers A and B. Chance

agreement, or statistical independence of the ratings, has loglinear model representation

log mij = µ + λA
i + λB

j

For the usual Poisson or multinomial sampling models for observed cell counts {nij}, the maximum

likelihood (ML) fitted values for this model are {m̂ij = ni+n+j/n}. Normally we would not expect this

model to fit well, but its cell residuals provide information about patterns of agreement and disagreement.
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Let {pij = nij/n}. The adjusted residual29,

rij =
nij − m̂ij

[m̂ij(1 − pi+)(1 − p+j)]1/2

is useful because it has an asymptotic standard normal null distribution. Cells having large positive

residuals give strong evidence of agreement that is greater than that expected by chance.

A useful generalization of the independence model is the quasi-independence model,

log mij = µ + λA
i + λB

j + δiI(i = j) (5)

where the indicator I(i = j) equals 1 when i = j and equals 0 when i 6= j. Conditional on disagreement

by the observers, the rating by A is statistically independent of the rating by B. When δi > 0, more

agreements regarding outcome i occur than would be expected by chance. The ML fit is perfect on the

main diagonal; that is, m̂ii = nii for all i. This model, like other loglinear models we discuss, is easily

fitted using many computer packages that have programs for loglinear models, such as GLIM. For details,

see Bishop et al.30 and Agresti31.

Loglinear models are good vehicles for studying association between classifications. For them, odds

ratios are useful measures of association, since they relate to model parameters. For studying agreement,

the odds ratios {τij} defined in (1) are relevant. For model (5),

log τij = log mii + log mjj − log mij − log mji = δi + δj

for all i 6= j. The odds that the rating by A is i rather than j is exp(δi + δj) times as high when the

rating by B is i than when it is j. When δ1 = ... = δI , all these odds ratios are identical, and a simpler

model holds having a single term δI(i = j) added to the independence model. This makes the fit on the

main diagonal unsaturated, satisfying
∑

m̂ii =
∑

nii, rather than {m̂ii = nii}. Several authors have

proposed the use of quasi-independence loglinear models for studying agreement30,32,33,34.

Ordinal rating scales almost always exhibit a positive association between ratings. Conditional on

observer disagreement, there usually remains a tendency for high (low) ratings by A to occur with

relatively high (low) ratings by B. Hence, the quasi-independence model is normally inadequate for

ordinal scales. One often obtains better fitting models by partitioning beyond-chance agreement into two

parts: Agreement due to a baseline association between the ratings, and perhaps other increments that

reflect agreement in excess of that occurring by chance or from the baseline association.
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One model of this type uses a linear-by-linear baseline association with ordered scores {ui} for the

categories35,36, namely

log mij = µ + λA
i + λB

j + βuiuj (6)

This model tends to fit well when there is an underlying continuous rating scale such that the joint ratings

have a bivariate normal distribution37,38. For this model

log τij = β(uj − ui)
2

so category distinguishability increases as β increases and as the distance between the categories increases.

Model (6) is fitted using iterative methods, such as the Newton-Raphson method. One can use

standard software such as GLIM or SAS to do this30,38. The model can be generalized, for instance by

adding parameters representing extra agreement on the main diagonal31,34,39, using association models

having parameter scores instead of fixed scores36,39,40, or by simultaneously describing agreement among

several observers41.

Darroch and McCloud12 argued that models for agreement should satisfy the property of quasi sym-

metry. We next outline their approach, which seems quite reasonable. They utilized subject-by-observer-

specific probability distributions. Let φsri denote the probability of response in category i, when observer

r evaluates subject s. This stochastic approach recognizes that the same observer may classify a sub-

ject differently on separate occasions. There are two basic assumptions. First, for a given subject s, a

“local independence” assumption states that classifications by separate observers are independent; for

instance, the probability that observer A makes rating i and observer B makes rating j equals φs1iφs2j .

This assumption seems reasonable when ratings are done “blindly” by different observers. The second

assumption states that {φsri} satisfy the condition of no three-factor interaction; that is, φsri has form

φsri = αsrβsiγri.

This means that the signal emitted by the subjects being rated and the observer differences combine

without interaction in affecting the response. Darroch and McCloud gave arguments supporting these

two basic assumptions.

Suppose the subjects are randomly sampled from a population of subjects. Under local independence,

the probability πij is the average of φs1iφs2j computed for all subjects in the population. The variability
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among subjects in their distributions {φsri} results in a joint distribution {πij} displaying association.

Under the additional assumption of no three-factor interaction, Darroch and McCloud noted that this

distribution satisfies quasi symmetry; that is, it has form

πij = aibjdij

where dij = dji for all i and j. All models discussed so far in this article have this property. In loglinear

form, quasi symmetry has expression

log mij = µ + λA
i + λB

j + λij , (7)

where λij = λji for all i and j. Though loglinear models directly address the association component of

agreement and not the lack of bias component, in the quasi-symmetric case they do yield some information

about bias. Under (7), the main effect parameters describe differences between the margins, marginal

homogeneity being equivalent30 to λA
i = λB

i for all i.

Loglinear models treat the observers in a symmetric manner. In some applications, one classification

might be a “known standard” rating, in which case asymmetric interpretations may be of greater inter-

est. For instance, one can re-express models in terms of logits of probabilities for an observer’s rating,

conditional on the standard rating. Also in some applications it is important to stratify the sample into

groups, according to values of relevant covariates. Then, one can check whether the agreement pattern

is homogeneous across levels of the covariate. One could check whether a loglinear model fits well having

identical association structure between ratings in each stratum. Stratified loglinear models are also rel-

evant when we model the agreement between each of several observers and a standard rating, and each

observer evaluates a separate sample of subjects.

When d > 2 observers rate the same sample, one approach constructs a loglinear model that applies

to the joint d-dimensional cross-classification of the ratings34. It addresses higher-order agreement as well

as pairwise agreement. The parameters in such models describe conditional agreement – for instance,

the agreement between two observers for fixed ratings by the other observers. This may be somewhat

unnatural, since the assessment of agreement between two observers depends on how many and which

other observers are included. An alternative approach fits models simultaneously to two-way marginal

tables of the multi-dimensional table. One can then consider whether patterns of agreement are homo-

geneous for different pairs of observers. Such models are not easy to fit, since the likelihood refers to the
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interior cells in the table rather than the two-way marginal tables, and multi-observer tables are often

very large and sparse. One approach obtains consistent estimates by treating the separate two-way tables

as independent layers of a three-way table, and uses a jackknife to obtain estimated standard errors of

parameter estimates that reflect the actual dependence41.

Other applications of the loglinear approach include using other types of quasi-symmetry models37,42,43,

other types of diagonals-parameter models44,45, other types of ordinal models46,47,48 that model ordinal-

scale disagreement, and models based directly on assumed underlying normal distributions49,50.

5 Rasch Models

We next discuss a model that is specified directly in terms of the separate subject-by-observer rating

distributions. It yields comparisons of marginal distributions of the observers’ ratings for those distri-

butions. We first consider the case of I = 2 categories, for which the model is the well-known Rasch

model51, having form

log(φsr1/φsr2) = α + γs + βr. (8)

That is, it assumes no three-factor interaction for {φsri}. This model naturally addresses bias among

observers. For instance, for each subject, the odds of a rating by observer A in category 1 are exp(βA−βB)

times the odds for observer B.

In fitting the Rasch model, for a given subject s one assumes “local independence.” As n → ∞,

ordinary ML estimators of the observer effects {βr} are inconsistent52, because of the concomitant

increase in the number of subject parameters. Consistent estimates result from conditioning on sufficient

statistics for {γs}. We noted previously that the assumptions of no three-factor interaction and local

independence generate the quasi-symmetry model for the averaging of joint distributions over subjects

(e.g., for {πij} when d = 2). Not surprisingly, the Rasch model relates to the quasi-symmetry model

for the 2d table that cross classifies responses for the d observers. It follows53 that ML estimates of

{λA
1 −λA

2 , λB
1 −λB

2 , ...} in the quasi-symmetry model are also conditional ML estimates of {βr} in model

(8).

When I > 2, a multinomial logit generalization of the Rasch model relates to the quasi-symmetry

model for the Id cross classification of the subjects’ responses. We mention here a special case of a

generalization presented by Andersen52, applicable for ordinal responses. It has the adjacent-categories
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logit representation

log(φsri/φs,r,i+1) = αi + γs + βr, (9)

holding simultaneously for i = 1, ..., I − 1. For each subject, the odds of observer A making response i

instead of response i + 1 are exp(βA − βB) times the odds for observer B, and this holds uniformly in i.

One can obtain conditional ML estimates of {βr} in (9) by ordinary ML fitting of a corresponding

quasi-symmetric loglinear model54. To illustrate, for two observers one derives the loglinear model by

expressing πij as the average of φs1iφs2j with respect to some unknown distribution for the subject effects.

The resulting loglinear model has form

log mij = µ + λi + λj + βAxi + βBxj + ρt (10)

where {xh = h} and t = i + j. The observer parameters βA and βB are the same in 9 and 10, and

the {ρt} in 10 are nuisance parameters that relate to {γs} in 9. The sufficient statistics for βA and βB

are the first-order marginal means
∑

ipi+ and
∑

jp+j . For model (10), conditional on the “total score”

t = i + j, the responses are independent. Thus, local independence applies to groups of subjects who

are homogeneous in terms of having the same total score. This is the idea behind latent class modeling,

which is the subject of the next section. One can regard the Rasch model as a latent class model with as

many classes as there are different total scores.

6 Latent Class Models

Latent class models express the joint distribution of ratings as a mixture of distributions for classes

of an unobserved (latent) variable. Each latent class consists of homogeneous subjects, such that local

independence holds among the ratings. Since Goodman’s55 development of ML procedures for estimating

parameters in latent class models, such models have been used for a variety of applications; see, for

instance, Haberman56 and, for a more elementary introduction, McCutcheon57. This section summarizes

a basic latent class model58 , applied to describe inter-rater agreement. This approach treats both the

observed scale and the latent variable as discrete.

We illustrate latent class models for three observers, denoted by A, B, and C. The data to be analyzed

are sample cell counts {nhij} specifying the numbers of occurrences for the I3 possible combinations of

ratings by the three observers. The latent class model assumes there is an unobserved categorical scale
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X , with L categories, such that subjects in each category of X are homogeneous. Because of this

homogeneity, the joint ratings of A, B, and C are assumed to be statistically independent, given the

level of X . Subjects occurring in the same latent category might be ones having the same “true” rating.

For instance, when I = 2 (say, positive and negative possible ratings), the 2d joint distribution for the

d ratings may be a mixture of two distributions – statistical independence among observers for subjects

whose true rating is positive, and statistical independence among observers for subjects whose true rating

is negative.

For a randomly selected subject, let πhijk denote the probability of ratings (h, i, j) by observers

(A, B, C), and categorization in class k of X . For a sample of size n, let {mhijk = nπhijk} denote

expected frequencies for the A-B-C-X cross-classification. The observed data {nhij} are a three-way

marginal table of an unobserved four-way table. The distribution {πhijk} satisfies the loglinear model

having as sufficient statistics the marginal configurations represented by the notation (AX, BX, CX).

The latent class model corresponding to loglinear model (AX, BX, CX) is the nonlinear model having

form

log mhij+ = µ + λA
h + λB

i + λC
j + log[

∑

k

exp(λX
k + λAX

hk + λBX
ik + λCX

jk )]

Strong associations between each observer and X can induce strong marginal associations between

pairs of observers. One can use the fit of the model to estimate conditional probabilities of obtaining

various ratings by the observers, given the latent class. When L = I and one interprets the latent classes

as the same as the observed scale, estimates of probabilities {P (A = i | X = i), P (B = i | X = i), P (C =

i | X = i)} are of interest. One can also estimate probabilities of membership in various latent classes,

conditional on a particular pattern of observed ratings, and use these to make predictions about the

latent class to which a particular subject belongs. A practical problem with latent class models is the

large number of parameters. To achieve identifiability it is sometimes necessary to reduce the parameter

space by setting certain parameters equal to zero or introducing equality constraints55,59.

This basic latent class model treats the rating scale as nominal. When the rating scale is ordinal and

when (for some fixed L) model (AX, BX, CX) fits well, it can be beneficial to fit special cases of that

model that utilize the ordinality. Such models are more parsimonious and have simpler interpretations

for associations between the observed and latent variables. One model that treats X and the observed

scale as ordinal assumes a linear-by-linear association between each observer and X . The model uses
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scores {uh} for the observed scale and scores {xk} for the latent classes, and assumes that

log mhij+ = µ + λA
h + λB

i + λC
j + log[

∑

k

exp(λX
k + βAXuhxk + βBXuixk + βCXujxk)] (11)

More generally, one could replace one or both sets of scores by parameters, yielding latent class versions

of a log-multiplicative model introduced by Goodman36. For examples of various latent class approaches

for ordinal variables, see Agresti and Lang60, Clogg59, and Hagenaars61.

When the rating scale is truly nominal with distinct categories (e.g., positive, negative), it is not

unreasonable to expect a latent class model to hold, with the same number of latent classes; that is,

one expects that if subjects are relatively homogeneous within each true state, the observers’ judgments

will be approximately independent conditional on that state. However, when there are gradations of the

symptom studied, such as when the measurement scale is ordinal with a subjective scale, this is not so

plausible17. Instead, it is often natural to posit an underlying continuous variable. Instead of assuming

a fixed set of classes for which local independence applies, one could assume local independence at each

level of a continuous latent variable. Models of this type are called latent trait models. Uebersax62

described the use of such models for agreement analyses. Each observer is assumed to have a set of

threshholds that divide the continuum into I intervals. A logistic distribution determines the probability

a subject is classified into each category, at each latent trait level. Each such level corresponds to a

distinct point on the continuum, but the perceived level differs from it because of various sources of

measurement error. Fitting the models produces estimates of the proportions in various latent classes, a

dispersion parameter that reflects measurement error, levels on the continuum for the latent classes, and

the observer threshholds. For examples of related latent trait models, see Andrich63, Bartholomew64,65,

and Rost66,67.

Another possible extension assumes quasi symmetry for the distribution among the observed classifi-

cations implied by a latent class model. This results in a simplification by which associations are identical

between each observer and the latent variable60. When I = 2, such latent class models are special cases

of the Rasch model68.

To fit latent class models, one can assume that {nhij} have independent Poisson(mhij) distributions,

and apply the EM algorithm55. The E (expectation) step of the algorithm approximates counts in the

complete A-B-C-X table using the observed A-B-C counts and the working conditional distribution of X ,
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given the observed ratings. The M (maximization) step treats those approximate counts as data in the

standard iterative reweighted least squares algorithm for fitting loglinear models. Alternatively, one could

adapt for the entire analysis a scoring algorithm for fitting nonlinear models69 or a similar method for

fitting loglinear models with missing data70. Software is readily available for fitting latent class models –

for instance, MLSSA57,71, LAT56, and NEWTON70.

Authors who have used latent class models or adaptations of them to model inter-rater agree-

ment include Agresti and Lang60, Aickin72, Clogg73, Dillon and Mulani74, Espeland and Handelman75,

Uebersax62,76, and Uebersax and Grove77. A danger with the latent class approach, as in related methods

such as factor analysis models, is the temptation to interpret latent classes too literally. For instance,

it is tempting to treat a rating of i given that the subject falls in latent class i as necessarily being a

“correct” classification. One should realize the tentative nature of the latent classes and be careful not

to make the error of reification78.

An advantage of the latent class model approach using loglinear models, compared to summarizing

association by the kappa measure, is that parameters and their estimates are identical whether the

sampling scheme is Poisson, multinomial, or independent multinomial. For instance, in some studies

samples of subjects may be chosen to give a good spread across categories. Sampling relatively more

or fewer observations from some latent classes has no impact on the value of the association parameters

relating the latent factor to each observer. If a model holds and the sampling proportions are changed,

the model still holds with the same values for the association parameters. This is not the case for kappa.

Its value is highly dependent on the allocation across categories of the latent variable or across categories

of any of the observed classifications.

7 Example

To illustrate methods for modeling agreement, we now analyze Table 1. The sample version of Cohen’s

kappa for Table 1 is 0.493, with estimated standard error 0.057. The difference between observed and

chance agreement is about 50% of the maximum possible difference. If we assume identical margins, using

(pi+ + p+i)/2 to estimate πi, we obtain estimates of component-wise kappa values (4) of {0.781, 0.247,

0.402, 0.435}. To investigate the pattern of agreement more fully, we fitted several models to Table 1.

Table 2 reports likelihood-ratio statistics (G2) for testing their fit. For some models, at least one sufficient
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statistic takes its maximum or minimum possible value for given values of other sufficient statistics, in

which case ML estimates do not exist unless a small constant is added to certain empty cells. The lack

of existence is purely a consequence of dealing with the log scale for model parameters, and it is standard

to add a very small constant to the empty cells or to all cells so that the estimates exist but their values

are not overly smoothed (Agresti31, Sec. 7.7). The results we quote are based on adding 10−8 to each

cell.

First we consider the loglinear modeling approach. The model of statistical independence of the

ratings is simply the ordinary latent class model with L = 1. It fits poorly (G2 = 118.0, df = 9), as

one would expect. Adjusted residuals for the model, reported in Table 3, show that agreement for each

category is greater than expected by chance, especially for the first category. Similarly, disagreements

tend to occur less than would be expected by chance, though the evidence of this tends to be weaker

for categories closer together. The most marked disagreements are with observer B choosing category

3 and observer A instead choosing category 2 or 4. The quasi-independence model fits much better

(G2 = 13.2, df = 5) than independence, but still gives an inadequate fit. Thus, simpler models that make

this assumption, such as the kappa-based model of Section 3, will be inadequate. The quasi-symmetry

model fits well (G2 = 1.0, df = 3), though, so it is worth investigating more parsimonious models that

have this property.

The quasi-independence model has an adjusted residual of 3.31 in cell (4,3) and 2.62 in cell (2,1)

and some relatively large negative residuals in cells in which one rating is high and the other is low.

Conditional on the ratings by A and B differing, high (low) ratings by A tend to correspond to high (low)

ratings by B. The residual ordinal association that remains after fitting the quasi-independence model

is explained well by a linear-by-linear term (G2 = 1.1, df = 4). A simpler model having a single diagonal

parameter (δ) and a linear-by-linear term also fits well (G2 = 4.8, df = 7). This model has form

log mij = µ + λA
i + λB

j + βuiuj + δI(i = j) (12)

with {ui = i}. Table 4 displays its ML fit. Agresti39 gave examples of the use of SAS and GLIM to fit

this model.

Model (12) has estimates β̂ = 1.32 (ase = 0.42) and δ̂ = 0.84 (ase = 0.43). For this model,

log τij = (j − i)2 + 2δ. An interpretation is that for i = 1, 2, 3, 4, the odds that the estimated diagnosis of
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pathologist A is i + 1 rather than i is exp(β̂ + 2δ̂) = 20.1 times higher when the diagnosis of pathologist

B is i + 1 rather than when it is i. In this sense, category distinguishability for these observers seems

strong. The special case of model (12) satisfying λA
i = λB

i for all i also satisfies marginal homogeneity,

but fits poorly (G2 = 76.6, df = 10). Whatever lack of agreement exists in Table 1 seems due to bias

moreso than to category indistinguishability. If the raters could calibrate themselves to achieve marginal

homogeneity, then this model would simplify to complete symmetry, with a relatively high proportion of

observations on the main diagonal.

We next describe agreement using latent class models. The ordinary latent class model (treating

classes as nominal) fits poorly when L = 2, and that model is saturated when L ≥ 3. However, latent

class models with L×L terms still apply when L ≥ 3 and (using equal-interval scores) fit well, particularly

when L = 4 (G2 = 3.6, df = 4). Models with L = 4 are natural to apply, as one might hope that the

latent classes approximate well the categories of the observed classification. The estimates of the linear-

by-linear associations between the observers and the latent rating are similar for the two observers, and

a simpler model satisfying quasi symmetry that sets them equal also fits well (G2 = 4.6, df = 5). Table

4 also displays the fit of this “uniform” L×L latent class model. The estimated common association

parameter (using unit-spaced scores) is β̂ = 4.54. The estimated odds that an observer selects category

j + 1 instead of j are exp(4.54) = 93 times higher for subjects in latent category k + 1 than for subjects

in category k. There is a strong association between each rating and the latent rating.

For this latent class model, the fitted proportions in the four latent classes are {0.175, 0.161, 0.520,

0.144}. For each observer, Table 5 shows the estimated observer response probabilities in each latent class.

For a given latent class, each observer is most likely to make response in the same category. The only

near exception is latent class 4 for observer B, in which response 3 is almost as likely as response 4, which

helps explain the positive residual in cell (4,3) for the independence model. To the extent that the latent

classes are indicative of “true” ratings, classification errors are most likely in categories 2 and 3 for A and

2 and 4 for B. Similarly, one can use the fit to calculate estimated values of {P (X = k | A = i, B = j)}.

For instance, when A = 4 and B = 3, the estimated values are {0.000, 0.000, 0.598, 0.402}.

For examples of analyses of multi-rater agreement using an expanded version of Table 1 having five

additional pathologists, see Cox et al.79, Landis and Koch8, Becker and Agresti41 and Agresti and Lang60.
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8 Commentary

This article has surveyed several ways of modeling agreement and disagreement for categorical response

scales. Though we have presented the models as ways of describing inter-observer agreement, clearly

they are just as valid for modeling intra-observer agreement. For instance, one might be interested

in modeling the extent to which ratings agree when an expert observer uses two different measuring

instruments to analyze the same sample of subjects, or when an observer rates the same subjects with

the same instrument at two separate occasions.

It seems dangerous to make judgments about the “best” way to model agreement and disagreement.

Work in this area is at an early stage of development, and much more will be done by the end of the

century. However, we can make a few basic comparisons of the types of methods we have discussed.

First, we believe that the trend toward developing models is a good one. Model-based approaches yield

additional and more precise information than that provided by summary measures of agreement. Of

the models, the main choices seem to be between variance-components models that lead to intraclass

correlations which (in the categorical case) are kappa-type measures, loglinear and related association

models, and latent class and more general latent structure models.

The loglinear and latent class models have the advantage of yielding fitted cell probabilities. Thus one

can test goodness of fit and make predictions about the behavior of observers under certain situations.

Loglinear models are simple but, so far at least, a single model fails to provide information about both

association and observer bias. Latent class models give somewhat different information. They focus

less on agreement between the observers than the agreement of each observer with the “true” rating.

For instance, one can predict the probability an observer makes a particular response for subjects in a

particular latent class, or predict the probability that a subject belongs to some latent class for a given

set of observer responses. This is useful information if the latent classes truly correspond to the actual

classification categories. But, of course, one never knows whether that is the case. With latent class

models we simply obtain information about probabilistic connections between the true ratings and the

observed ratings that could generate data such as observed. Currently it seems useful to assess agreement

from a combination of loglinear and latent class modeling, with the latter perhaps replaced by a latent

trait model if the ratings are ordinal or can be visualized as having an underlying continuous response.
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The modeling of patterns of agreement and disagreement should continue to yield interesting and

challenging research problems for some time to come. Our survey has focused on “fixed panel” designs,

whereby the same observers rate each subject. Relatively little work refers to “varying panel” designs, in

which one randomly selects a separate panel of raters for each subject77,80. Similarly, not much attention

has been paid to modeling agreement on a categorical scale when some observers have replicate ratings.

Also, there are many challenges in modeling multi-rater agreement. For such problems, data are usually

sparse, with potentially much missing data. In future work, it may be beneficial to incorporate recent

research on (1) robust methods using quasi likelihood and estimating equations81,82 to handle complex

dependencies in large sparse tables, (2) incomplete data methods83 to handle missing data problems,

and (3) random effects in categorical data models84 to treat observers as a sample from a population of

observers.

Alternative types of models not discussed in this review are likely to receive more attention as meth-

ods of analyzing agreement. In particular, all models we discussed treat the observers as fixed, rather

than random. Clearly, in many applications one would prefer to treat the observers as a sample from

some population of observers, and obtain information about the degree of agreement for a typical pair

of raters in this population. In addition, it might be of interest to compare observers of different types,

such as observers from different medical specialties or levels of experience. Mixed models incorporating

fixed effects for types and random effects for observers may then be useful. These are important problems

for future research. Other types of models that have not been discussed here include signal detection

theory methods27,85 and correspondence analysis and correlation models37,86. The first of these has close

connections to latent trait models76, and the second to loglinear and association models with scores for

response categories. Whether having this abundance of models will produce ultimate convergence of

statisticians to a favorite approach for analyzing agreement, or whether it will simply produce greater

fragmentation in types of analyses, remains to be seen.
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Table 1. Diagnoses of carcinoma

for pathologists A and B.

B
A 1 2 3 4
1 22 2 2 0

2 5 7 14 0

3 0 2 36 0

4 0 1 17 10

Source: Based on data in

Landis and Koch (1977b)
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Table 2. Likelihood-ratio statistics for models fitted to Table 1

No. Latent Likelihood-Ratio
Classes Model Statistic DF

1 Independence 118.0 9
L×L association 8.8 8

L×L association + diagonal 4.8 7
Quasi Independence 13.2 5

Quasi L×L association 1.1 4
Quasi Symmetry 1.0 3

2 L×L LC 32.8 6
Ordinary LC 31.9 2

3 L×L LC 8.7 5

4 Uniform L×L LC 4.6 5
L×L LC 3.6 4
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Table 3. Diagnoses of carcinoma, with adjusted residuals

in parentheses for independence model.

B
A 1 2 3 4
1 22 2 2 0

(8.49) (-0.47) (-5.95) (-1.76)

2 5 7 14 0
(-0.50) (3.20) (-0.54) (-1.76)

3 0 2 36 0
(-4.08) (-1.22) (5.51) (-2.28)

4 0 1 17 10
(-3.30) (-1.32) (0.28) (5.93)
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Table 4. Fitted values for loglinear model and for

latent class model with L = 4 latent classes.

B
A 1 2 3 4
1 22 2 2 0

(22.0)a (2.0) (1.9) (0.0)
(21.9)b (3.2) (0.9) (0.0)

2 5 7 14 0
(4.6) (8.4) (12.8) (0.2)
(5.0) (6.9) (14.0) (0.2)

3 0 2 36 0
(0.4) (1.2) (35.6) (0.8)
(0.2) (1.5) (35.6) (0.8)

4 0 1 17 10
(0.0) (0.4) (18.6) (9.0)
(0.0) (0.4) (18.5) (9.1)

a – loglinear model

b – latent class model
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Table 5. Estimated Response Probabilities by Latent Class

Latent Response
Observer Class 1 2 3 4

1 .977 .023 .000 .000
A 2 .304 .674 .021 .000

3 .001 .207 .603 .189
4 .000 .000 .033 .967

1 .985 .015 .000 .000
B 2 .351 .502 .147 .000

3 .000 .035 .953 .012
4 .000 .000 .455 .545
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