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 Scand J Statist 20: 63-71, 1993

 Computing Conditional Maximum Likelihood

 Estimates for Generalized Rasch Models

 Using Simple Loglinear Models with

 Diagonals Parameters

 ALAN AGRESTI

 University of Florida

 ABSTRACT. Generalized Rasch models for multiple-response items proposed by Andersen

 (1973) are related to quasi-symmetric loglinear models. The loglinear models are obtained by
 treating subject parameters in the Rasch models as random effects. Fitting the loglinear models
 yields estimates of item parameters in the generalized Rasch models that are also conditional

 maximum likelihood estimates when the subject effects are treated as fixed. For models

 that apply naturally when there are ordinal response categories, the related loglinear models

 are simple quasi-symmetric models having diagonals parameters. Our results generalize
 Tjur's (1982) observation about the connection between binary-response Rasch models and
 loglinear models.

 Key words: latent class models, logit model, matched pairs, ordinal responses, quasi symmetry,
 square contingency tables

 1. Introduction

 Suppose n subjects respond to k items, such as k questions on an exam. Let ij denote the
 probability that subject i answers itemj correctly. The Rasch model (Rasch, 1961) is a simple
 logistic model

 log {qii /( - 4i)} = ai-

 that describes how that probability depends on subject abilities {cti } and item difficulties {,fj }.
 Normally, primary interest focuses on estimating {,fj }. Under the usual sampling assumption
 that the observations are independent Bernoulli random variables, the maximum likelihood

 (ML) estimates of {,fj } are inconsistent as n - oo because of the concomitant increase in the
 number of subject parameters (Andersen, 1980, p. 246).

 One obtains consistency by estimating {/> } conditional on sufficient statistics for {ci }. For

 matched-pairs (k = 2), this provides justification for McNemar's test (Cox, 1958). Tjur

 (1982) noted that, when k is not large, one can easily obtain the conditional estimates by

 fitting a certain loglinear model to the 2k contingency table that cross-classifies the n subjects'

 responses on the k items. Inspection of the sufficient statistics for Tjur's model reveals that

 it is simply the quasi-symmetry model. For related discussion, see Darroch (1981), Fienberg
 (1981) and McCullagh (1982).

 For multiple-response items, Andersen (1973, 1990, sect. 12.3) discussed multinomial

 logit generalizations of the Rasch model. We consider special cases of one of

 Andersen's models that are relevant for ordered categorical responses. We show that one

 can obtain conditional ML estimates for the generalized Rasch models by fitting

 parsimonious quasi-symmetry models. For k = 2 items, the ordinal-response Rasch models

 relate to diagonals-parameter symmetry models introduced by Goodman (1979, 1985) and

 Agresti (1983).
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 64 A. Agresti Scand J Statist 20

 2. An ordinal Rasch model

 Let r denote the number of possible responses for each item, and assume the response scale

 is the same for each item. For subject i and item j, let ?hij denote the probability of response
 h, h = 1,.. . , r. Rasch (1961) and Andersen (1973, 1990) discussed models of form

 = exp ((hi - Phj) (1)

 Z exp (ai - Paj)
 a

 Suppose that the response scale is ordinal. For instance, each item may have a correct

 response, a response that receives partial credit, and an incorrect response. For each item we

 order the responses so that response r is the "best" response, and we let scores v . . . v

 denote the credit assigned to the responses.

 A special case of (1) for ordinal responses,

 Ohj exp {14 ? Vh (ai - fl)1(2)
 Z exp {1a + Va(ti -fP)} (2)
 a

 has simple interpretations for the item and subject effects. For instance, when {Vh + I- = 1
 for all h}, the model has the adjacent-categories logit representation

 log (Oh + 1,ij l /)h) = Yh + 0(i j-(3)

 For each subject, the odds of making response h + 1 instead of response h for item a are

 exp (Pb - Pa) times the odds for item b, and this holds uniformly in h. It follows that, for

 each subject, the response distributions for the various items are stochastically ordered

 according to {,1 }. Similarly, for each item, the odds of making response h + 1 instead of h

 for subject a are exp (a - ab) times the odds for subject b. Conditional on response in

 category h or h + 1, the probability of the "better" response increases to 1.0 as oi -+ oo or
 as f3j -k - oo. See Agresti (1989, 1990) for motivation regarding the use of adjacent-categories
 logit models with effects independent of the cutpoints, for analyzing ordinal data.

 Andersen (1973, 1980, pp. 272-274) discussed estimation of parameters for model (2). We

 now present a simple way to obtain conditional ML estimates of item parameters by

 ordinary ML fitting of a loglinear model. For a given subject with ability parameter at, let

 Yhj = 1 if the subject makes response h to item j, and let Yhj = 0 if the subject's response is
 other than h, so Eh Yhj = 1. Given ox, we assume that responses on separate items by the same
 subject are independent. For model (2), the probability of a particular sequence of responses

 on the k items for that subject is then

 Hj exp [Yhj { h + Vh(I -{j)}]
 fH h Zep~+ac-i}(4)

 E exp { ia + Va(o! lS)
 a

 The sufficient statistic for cx is the subject's "total score" s = EY h YhjVh. The conditional
 distribution of {Yhj} for that subject, given s, equals

 exp {Z Yh+ih EZ ( YhjV)h Pj}

 Eexp {EYh*+h - E (YhjVh )j}
 A, h j h

 where As denotes the set of possible data {yh*} having XhYhjVh= s, and where a +
 subscript denotes summation over that index. The conditional likelihood is the product of
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 Scand J Statist 20 Conditional ML estimates for generalized Rasch models 65

 such terms over all n subjects. The sufficient statistic for f3j in that likelihood is Eh Vhnj(h),
 where nj (h) denotes the number of times that response h occurs for item j.

 A likelihood related to this conditional likelihood results also from a random effects

 representation for the subjects. Let F(ca) denote a (unknown) distribution for the subject

 effects. From (4), the marginal probability of a particular set of responses is

 { xp (z YZ , YhjVh

 exp { (zYhj) - j (Y Yvh)} Vh ex gj dF(c),
 {h ( h )}J g(K)

 where g(oc) depends on other parameters but not on {Yhj }. Letting 7r(hI, . . ., hk) denote the
 marginal probability of response hj on item j, j = 1, . . ., k, we have

 7r(hi, * , hk) e exp { 4hth EjVhj ) dF(a), (5)

 where th denotes the number of {hj } that equal h. From (5), we see that apart from
 randomness for the sample size n, this distribution satisfies a Poisson loglinear model for

 expected frequencies {m(hl, . . . }, hX in a rk contingency table,
 r k

 log m(h,, . . *, hk)=? + Ahth - Y jVh? + PS' (6)
 h=l 1 =

 where s = Ej vhj.
 Let n(h,, . . ., hk) denote the number of subjects making response hj to item j, j = 1, . . ., kg

 and let nS denote the number of subjects having Xjvhj = s. One can express the Poisson
 likelihood for (6) as the product of the Poisson probability for n, a multinomial distribution

 (given n) for {nS } that is parametrized by probabilities {q5 } for the possible total scores for

 a subject, and the conditional distribution of {n(h,, . . .}, hX given those totals. The term
 involving {f,j } and {Ah }, which appears in the third part of that expression for the likelihood,
 is identical to the term involving those parameters in the conditional likelihood for the

 generalized Rasch model. It follows that ML estimates and second derivatives of the log

 likelihood with respect to those parameters for the loglinear model are identical to those for

 the conditional approach to fitting the generalized Rasch model. The derivation of the Poisson

 likelihood factorization is a direct extension of Tjur's ( 1982) presentation for the case r = 2.

 The sufficient statistics for model (6) are

 EZn1(h), h=1,...r

 E vnj(h), h = 1, . . . , r
 ZVhn](h), j=1...k
 h

 ns,s=kv1,(k-I)vl +V2, .kVr

 The likelihood equations equate these to their fitted values. The sufficient statistics for the

 item parameters may be interpreted (when divided by n) as "mean" responses in the

 first-order margins of {n(h1, . . ., hk)}. The third set of sufficient statistics are equivalent to
 those for the subject parameters. Identifiability of parameters requires constraints such as

 E Ah = E ft = E ps = 0.

 3. Other versions of the generalized Rasch model

 Model (1), the most general version of the Rasch model for multiple response categories, is

 more appropriate than (2) when the response categories are nominal. For that model,
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 66 A. Agresti Scand J Statist 20

 integrating with respect to an unknown distribution for the subject effects yields a marginal

 distribution satisfying quasi symmetry; that is, m(hl, . hk) has form

 m(hl, ... , hk) = bl(hl) . . . bk(hk)c(hl . , hk), (7)

 where c() is permutationally invariant. In addition, the conditional ML estimates of item

 effects in (1) can be obtained from ML estimates of main effects in the loglinear version of

 quasi-symmetry model (7). This is the result for r response categories that corresponds to

 Tjur's result for r = 2. See also Darroch & McCloud (1986) and Conaway (1989).

 The ordinal model (2) we have discussed is a special case of the general Rasch model (1)

 that uses the ordinality of the response both in terms of describing item effects and subject

 effects. Other special cases of (1) exist that are less parsimonious than (2), retaining a general

 form for one of these types of effects. For instance, the model

 - exp (chi - Vhflj) (8
 E exp (ocai - Va. j)
 a

 retains simple interpretations for item effects. When {Vh + - Vh = 1 for all h }, for each subject

 the odds of making response h + 1 instead of response h for item a are exp (fib - a) times
 the odds for item b. When primary interest focuses on the item effects, it is unnecessary to

 assume that subject effects are identical for the logit for each pair of adjacent response

 categories, and model (8) sometimes fits well when model (2) does not.

 Using the same arguments given in the previous section, one can show that conditional

 ML estimates of item effects {#f } for model (8) are identical to the ML estimates for the
 corresponding parameters in the loglinear model

 r k

 log m(h,, . . ., hk) = p + E Ahth- Z fvhj+ p(h, ..hk), (9)
 h=l

 where p() is permutationally invariant. This model is the special case of quasi symmetry (7)

 satisfying bj(h) = exp (h - fJVh). Model (6) is a further special case having a coarser
 partition of cells on which the p parameter relating to "equivalent" subjects is constant. Both

 models are equivalent to quasi symmetry when r = 2. The model of complete symmetry, for

 which m(hl, . . ., hk) is permutationally invariant, is the special case of (9) in which
 /3I = ... = flk. For reference purposes, we shall refer to the general model (1) as the
 multinomial Rasch model, the fully-ordinal model (2) as the ordinal Rasch model, and the

 partly-ordinal model (8) as the ordinal item-effect Rasch model.

 The quasi-symmetry model is often interpreted as an adjustment of the complete symmetry

 model in which the marginal distributions are not required to be identical. The ordinal Rasch

 models imply a particular type of departure from symmetry in which the marginal hetero-

 geneity has a simple structure reflecting the ordering of response categories. In terms of the

 sufficient statistics, this refers to heterogeneity in the k marginal means for the chosen scores

 {v; }. Whatever the choice of monotone scores for the ordinal Rasch models, the k first-order

 marginal distributions of the cross classification of {m(hl, . . . , hk)} are stochastically ordered
 according to the {fB>}. This follows from the results that (1) for each subject, the item

 response distributions {Ohij, h-1, . . .}, r for j = 1, . . ., k are stochastically ordered accord-
 ing to {f3 }, (2) the k first-order marginal distributions of {m(hl, . . ., hk)} are equivalent to

 the r x k two-way marginal table of {4hij } collapsed over subjects, and (3) the two-way
 subject-by-item marginal table of {0hij} has each cell entry equal to 1.

 For each choice of h1 < h2 < . .. < hk, let np(hl, . . . , hk) denote the sum of all cell counts
 for cells having index given by a permutation of (hI, ... , hk). These sums are the sufficient

This content downloaded from 
������������128.227.173.42 on Wed, 20 Nov 2024 19:26:09 UTC������������� 

All use subject to https://about.jstor.org/terms



 Scand J Statist 20 Conditional ML estimates for generalized Rasch models 67

 statistics for the final term in model (9). This is also the finest possible partition one can have

 for {nS } in model (6), corresponding to a choice of scores for which different sums of scores

 occur whenever different cells have indices that are not permutationally related. For such

 scores, the two models are equivalent.
 The residual degrees of freedom for asymptotic chi-squared goodness-of-fit tests equal

 rk -(r - 1)(k -1) -(r +k - 1)!/{(r - )!k!} for the quasi-symmetry model. They equal

 rk _ (k - 1) - (r + k - 1)!/{(r - )!k!} for model (9), just k - 1 less than dffor the complete
 symmetry model. When the scores are equal-interval, the simpler model (6) has residual

 degrees of freedom equal to rk _ (k + l)r + 2. In practice, {n(h . hk)} are often too

 sparse to conduct direct goodness-of-fit tests of models (6) and (9). However, one can

 compare their fits to that of the quasi-symmetry model, when the data support the latter

 model. An advantage of the simpler model is that when nS > 0 for each s, but there are some

 (h1, .. , hk) such that n(h,, . . ., hk) = 0 for all permutations of the indices, then ML
 estimates exist for model (6) but not for model (9) and the quasi-symmetry model.

 4. Relation to models for square tables

 Suppose there are only k = 2 items. Letting I - = 2, model (6) has form

 log m(a, b) = U + Ia + Ab + fJ(Vb Va) + Pvra+V ( 10)

 When the scores are equal-interval, this model is a special case of the double-diagonals-

 parameter model

 m(a, b) = 2aoCb ba-b ba*+bg (11)

 which relates to models discussed by Goodman (1985). Similarly, the more general model (9)

 has form

 log m(a, b) = 9 + )a + Ab + f3(Vb Va) + p(a, b), (12)

 where p(a, b) = p(b, a) for all a and b. This special case is a model introduced by Agresti

 (1983), which for equal-interval scores has logit characterization

 log {m(a, b)/m(b, a)} = b(b - a). (13)

 Models (11) and (13) are special cases of a family of models satisfying

 log {m(a, b)/m(b, a) } = ba - b X (14)

 discussed by Goodman (1979). Model (14) is called a diagonals-parameter symmetry model,

 and model (13) is called a linear diagonals-parameter symmetry model. J0rgensen (1985) used

 models with diagonals parameters indexed by total scores to describe inter-rater agreement.

 For arbitrary k, models (6) and (9) may be regarded as diagonals-parameter models in k

 dimensions. For instance, for model (9) consider the log odds log {m(a, b, h3,... , hk)/

 m(b, a, h3 . hk)1. For unit-spaced scores, this equals (3,B - /2)(b - a) for all pairs of cells
 that are b - a diagonals away from the main diagonal in the first two dimensions.

 An alternative to the models of this article uses the same linear predictor as in models such

 as (3) but utilizes logits of cumulative probabilities. Such models have the advantage of

 invariance under groupings of response categories, but conditional ML does not apply

 because of the lack of sufficient statistics. McCullagh (1977) described weighted least squares

 estimates for the cumulative logit model, for the case k = 2. Alternative forms of estimation

 include maximizing the marginal likelihood after assuming a particular parametric form

 F(oc; 0) for the subject effects or assuming a latent class structure, such as discussed for r = 2

 by Cressie & Holland (1983) and by Lindsay et al. (1991).
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 Table 1. Opinions* about teenage sex, premarital sex, and extramarital sex,

 with fitted values for ordinal item-effect Rasch model in parentheses

 Extramarital sex

 Teen Premarital

 sex sex 1 2 3 4

 1 1 140 (140) 1 (1.5) 0 (0.2) 0 (0.0)

 2 30 (30.3) 3 (2.8) 1 (0.4) 0 (0.0)

 3 66 (66.5) 4 (7.7) 2 (1.6) 0 (0.4)

 4 83 (83.0) 15 (15.5) 10 (7.0) 1 (2.0)

 2 1 3 (2.2) 1 (0.2) 0 (0.0) 0 (0.0)

 2 3 (4.0) 1 (1) 1 (0.4) 0 (0.0)

 3 15 (11.1) 8 (8.0) 0 (0.8) 0 (0.2)

 4 23 (22.3) 8 (7.9) 7 (4.2) 0 (0.6)

 3 1 1 (0.3) 0 (0.0) 0 (0.0) 0 (0.0)

 2 0 (0.8) 0 (0.6) 0 (0.1) 0 (0.0)

 3 3 (3.4) 2 (1.1) 3 (3) 1(0.4)

 4 13 (14.6) 4 (6.1) 6 (7.1) 0 (0.8)

 4 1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

 2 0 (0.1) 0 (0.0) 0 (0.0) 0 (0.0)

 3 0 (1.1) 0 (0.4) 1 (0.5) 0 (0.1)

 4 7 (6.0) 2 (1.3) 2 (1.1) 4 (4)

 *Data from 1989 General Social Survey, with categories: 1, always wrong; 2,

 almost always wrong; 3, wrong only sometimes; 4, not wrong.

 5. Example

 Table 1 is taken from the 1989 General Social Survey, conducted by the National Opinion

 Research Center at the University of Chicago. Subjects in the sample were asked their

 opinion on (1) early teens (age 14-16) having sex relations before marriage, (2) a man and

 a woman having sex relations before marriage, (3) a married person having sexual relations

 with someone other than the marriage partner. The response scale was (always wrong,

 almost always wrong, wrong only sometimes, not wrong at all). We denote the classifications

 by T for teenage sex, P for premarital adult sex, and X for extramarital sex. Table 2 shows

 results of goodness-of-fit tests for fitting several loglinear models to the responses for the 475

 subjects who responded to these items. Table 1 contains many empty cells and small counts,

 so the likelihood-ratio statistic (denoted by G2) is useful mainly for comparing models. The

 quasi-symmetry model, which corresponds to the multinomial Rasch model, fits well

 (G2 = 20.8, df = 38). Simpler models that utilize the ordering also fit reasonably well, and the

 reduction in quality of fit compared to the general multinomial model is compensated by ease

 of interpretation. Table 2 reports results for ordinal models using {Vh+ V-Vh = 1}.
 Inspection of residuals indicates that the loglinear model (6) corresponding to the ordinal

 Rasch model fits decently except in the cell for responses (2, 3, 2) for (T, P, X), which had an

 observed count of 8 and fitted value of 2.9. Loglinear model (9), which corresponds to the

 ordinal item-effects Rasch model, fits reasonably well in all cells (G2 = 27.8, df = 42). Table

 1 also displays fitted values for this model. These models necessarily have perfect fits in cells

 (1, . . ., 1) and (r, . . ., r), and model (9) and the quasi-symmetry model have perfect fits in

 all diagonal cells (h, . . ., h), by virtue of the likelihood equations for the final term in the
 models. Both ordinal Rasch models have very strong evidence of heterogeneous item effects.

 For model (9), for instance, the difference in likelihood-ratio statistics between the complete
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 Table 2. Goodness of fit of loglinear models for Table I

 Likelihood-ratio Pearson Degrees of

 Model statistic statistic freedom

 Mutual independence 231.3 416.2 54

 Complete symmetry 637.3 606.7 44

 Ordinal Rasch 42.5 43.1 50

 Ordinal item-effect Rasch 27.8 24.6 42

 Quasi symmetry 20.8 24.6 38

 Table 3. Conditional maximum likelihood estimates of item parameters

 Ordinal item-effect Rasch model Ordinal Rasch model

 Item Estimate Std error Estimate Std error

 Premarital 2.626 0.288 2.595 0.215

 Extramarital -0.364 0.125 -0.343 0.119

 Teenage 0 0 0 0

 symmetry model and this model tests the hypothesis of homogeneous item effects (i.e.

 1 = . .. = fJk). The improvement in fit (609.5, df = 2) compared to the complete symmetry
 model is quite dramatic, and a similar reduction (640.9, df = 2) occurs in comparing model

 (6) to a reduced model with homogeneous effects.

 Table 3 presents conditional ML estimates of item effects for the ordinal Rasch models,

 as well as their estimated standard errors, using constraints that equate the estimate for

 T to 0. There is considerably more tolerance for premarital adult sex than for other

 types. Using the ordinal Rasch model (3), for instance, for a given subject and each

 h, h = 1, 2, 3, the estimated odds of response h + 1 instead of h for premarital sex are

 exp (2.595 + 0.343) = 18.9 times as high as for extramarital sex. We obtained similar

 substantive results for other possible choices for the response scores {Vh }. For instance, if we

 regard the scores as reflecting approximate distances between the response categories, it

 might make sense to use scores such as {1, 1.5, 3.0, 4}, treating the distance between "almost

 always wrong" and "wrong only sometimes" as greater than those between the other

 adjacent pairs. The ordinal Rasch model then has conditional ML item estimates

 {2.91, -0.33, 0}.
 Unconditional ML estimates are obtained by fitting generalized Rasch models directly to

 the 3 x 4 x 475 table that cross classifies item-by-response-by-subject. For the ordinal Rasch

 model (3), the estimated item effects are the same as those obtained for the 3 x 4 x 10 table

 stratified by values of the sufficient statistic (the total score s) for the subject parameter.

 These estimates are (5.24, -0.62, 0), reflecting severe upward bias of unconditional estimates

 when the number of parameters has the same order as the sample size. When k = 2 and

 r = 2, the unconditional estimate is twice the conditional estimate (Andersen, 1973), which

 equals log {n(1, 2)/n(2, 1)}.

 Models discussed in this article have subject-specific item effects. An alternative model uses

 a simpler linear predictor deleting the subject effects. For instance, instead of (3) one uses the

 marginal model

 log (Oh+ 1+J/h,+J) =Yh -AXl (15)
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 70 A. Agresti Scand J Statist 20

 Table 4. GLIM code for fitting ordinal Rasch models to Table I

 $units 64

 $data count $read

 140 1 0 0 3 1 0 0 1 0 0 0 0 0 0 0

 30 3 1 0 3 1 1 0 0 0 00 0 0 0 0

 66 4 2 0 15 8 0 0 3 2 3 1 0 0 1 0

 83 15 10 1 23870 13460 7224

 $calc teen = %gl(4,4): xmar = %gl(4,1): pre = %gl(4,16) $

 $calc t = teen: x = xmar: p = pre $

 $calc lal = %eq(t,l) + %eq(x,1) + %eq(p,1) $
 $calc la2 = %eq(t,2) + %eq(x,2) + %eq(p,2) $
 $calc la3 = %eq(t,3) + %eq(x,3) + %eq(p,3) $
 $calc score = p + x + t-2 $

 $ass symm = 1,2,3,4,2,5,6,7,3,6,8,9,4,7,9,10,2,5,6,7,5,11,12,13,6,12,14,

 15,7,13,15,16,3,6,8,9,6,12,14,15,8,14,17,18,9,15,18,19,4,7,9,10,7,13,15,

 16,9,15,18,19,10,16,19,20

 $fac teen 4 xmar 4 pre 4 symm 20 score 10 $

 $yvar count $err pois

 $fit symm: + p + x + t$! Fits symmetry and model (9)
 $fit symm + pre + xmar + teen$! Fits quasi symmetry
 $fit lal + la2 + la3 + score + p + x + t$! Fits model (6)

 Effects are then "population-averaged"; that is, the response odds refer to a randomly selected

 subject answering item a and another randomly selected subject answering item b (Agresti,

 1989, 1990, sect. 11.4.3). For Table 1, the estimates of the population-averaged item effects

 for model (15) are (1.043, -0.195, 0), with estimated standard errors of (0.062, 0.063, 0). The

 estimates were obtained by using the methods of Aitchison & Silvey (1958) to maximize a

 multinomial likelihood for the 64 cells in Table 1, subject to the constraint that the marginal

 probabilities satisfy ( 15). These results illustrate the wide discrepancies that can occur among

 conditional estimates of subject-specific item effects, unconditional estimates of subject-specific

 item effects, and estimates of population-averaged item effects.

 When k is not too large, loglinear models corresponding to ordinal Rasch models are easy
 to fit with most software that can handle loglinear models. To illustrate, Table 4 contains

 code for using GLIM to fit the models to Table 1. The factors denoted by "score" and

 "symm" generate loglinear terms for which the sufficient statistics correspond to those for the

 subject parameters in the Rasch models. The coefficients of the terms denoted by "t", "x",

 and "p" are the ordinal item parameters.
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