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Summary

Several authors have noted the dependence of kappa measures of inter-rater agreement on the
marginal distributions of contingency tables displaying the joint ratings. This paper introduces a
smoothed version of kappa computed after raking the table to achieve pre-specified marginal
distributions. A comparison of kappa with raked kappa for various margins can indicate the extent of
the dependence on the margins, and can indicate how much of the lack of agreement is due to
marginal heterogeneity.
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1. Introduction

The need to assess inter-rater agreement occurs frequently in many applications,
particularly in biomedical areas such as pathology (classifying tumors according
to type or stage of development; see LANDIS and Kocu (1977)), radiology
(classifying results of chest x-rays; see FLETCHER and OLbHAM (1949)), and
psychiatry (classifying subjects according to type of mental illness; see FLEISS et
al. (1965)). Cohen’s kappa (see COHEN (1960)) is the most popular summary
measure for describing agreement between two raters on a nominal scale.
Recently, several authors have pointed out that a potential difficulty with
kappa is that its value depends strongly on the marginal distributions. Two
studies having the same intrinsic agreement, in terms of a probabilistic mechan-
ism for classification, may produce quite different values of kappa because of
having different prevalences of cases of the various types. Hence, it can be
misleading to compare kappa values from studies having substantially different
marginal distributions. Literature discussing this potential disadvantage of kappa
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includes DarRrROCH and McCroup (1986), FeinsTEIN and CiccHETTI (1990),
KRrAUTH (1984), SPiTZNAGEL and HELZER (1985), THOMPSON and WALTER (1988),
UEeBERrsax (1987), and Zwick (1988).

This paper presents an adjustment of kappa that can help reveal the impact of
the marginal distributions on the value of kappa. We define a measure, raked
kappa, that is the value of Cohen’s kappa computed for an adjustment of the
sample table that has certain pre-specified marginal distributions. The adjusted
(or “raked”) table is a standardized form of the sample table having the same
association structure but having the targeted marginal distributions. Raked
kappa represents the value that kappa would have taken under certain condi-
tions. For instance, one might compute raked kappa to describe the impact of the
raters calibrating themselves to achieve marginal homogeneity, with distribution
corresponding to cases in a population of interest. We show how to obtain an
estimated standard error for raked kappa, and also for raked weighted kappa for
ordinal classifications.

2. Raked Kappa

We first introduce notation for kappa. Let m denote the number of categories for
a categorical response variable, let N denote the number of subjects rated, and
denote two observers by 4 and B. For the sample, let p;; denote the proportion
of cases that observer A classifies in category i and observer B classifies in
category j,i=1, ..., m,j=1, ..., m. In this table, Zi p;; 1s the total proportion of
cases of agreement. Perfect agreement in the sample occurs when ) p;; = 1.

The sample value of Cohen’s kappa is defined as

2 pii_z Di+ D+

K= . (1)
I_ZPH Dy

The numerator in (1) compares the observed agreement to that expected if the
ratings were statistically independent, referred to as “chance” agreement, whereas
the denominator is the maximum possible value of the numerator.

Let {r;} denote proportions having the same odds ratios as {p;;} for all 2x2
subtables formed using pairs of rows and pairs of columns, yet having marginal
distributions given by some pre-specified values {r,, =a;} and {r ;=b;}. This
table, called the raked table, can be calculated using iterative proportional fitting.
One re-scales the cell entries to satisfy successively the row and column target
values. The process of marginal raking of tables while preserving certain associ-
ation patterns dates at least to DEMING and STEPHAN (1940). See also MOSTELLER
(1968), FREEMAN and KocH (1976), and AGRESTI (1981). LitTLE and WU (1991)
noted that the raked proportions are maximum likelihood estimates of the cell
probabilities in the population version of the raked table.
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We define raked kappa, denoted by &*, to be Cohen’s kappa computed for the
raked proportions {r;;}. It corresponds to the value of kappa for a table having
the target margins, but maintaining the same association structure as the
observed table. We denote raked kappa computed for the raking having uniform
target values {a;=b;=1/m} by &¥ This raking of the table helps to clarify
patterns of agreement and disagreement. If the original table displays independ-
ence, then this raked table has {r;;=1/m?} and &} =0; if the original table shows
perfect agreement, then this raked table has elements {r; = 1/m, r;;=0 for i}
and g¥=1.

3. Example

The two cross classifications in Table 1 are taken from KRAUTH (1984). The row
and column marginal distributions in the first one are quite different, caused by
observer A frequently choosing category 3 when observer B choses category 2.
Thus, the overall agreement is rather poor, with sample kappa value of
k;=0.310 and estimated standard error of 0.040. One might consider how much
stronger the agreement might have been if the observers had calibrated their
ratings so as to have identical marginal distributions. Indeed, many statisticians
believe that kappa only makes sense as a summary measure of agreement when
the margins are practically the same.

If the margins of the first cross classification were uniform, but the odds ratios
were preserved, we would obtain the raked proportions shown in Table 2. For
these, £;f =0.696, a quite dramatic improvement. If both margins were the same
as the observed row margin, then #* =0.649, whereas if both margins were the
same as the observed column margin, then #* = 0.640. If both margins were the
average of these margins, then £* = 0.632. The use of raked kappa points out that
the lack of good agreement is explained by the severe marginal heterogeneity.
Even with marginal homogeneity, however, the agreement would be considered
moderate, rather than strong, because of the preserved tendency for A to select
category 3 when B choses 2.

The second cross classification in Table 1 has somewhat stronger sample
agreement, with K, =0.429, based on an estimated standard error of 0.054. In this
case, the margins are similar. Thus, sample kappa is similar to versions of raked
kappa for rakings in which both margins equal the observed row margin, both
margins equal the observed column margin, or both margins are the average of
the observed row and column margins. The sample odds ratios within the body
of the second cross classification are weak, and the agreement is relatively weak
regardless of the choice of marginal distributions. Table 2 shows the raking for
uniform marginal proportions. The values of raked kappa are shown in Table 3,
for various target margins for the cross classifications of Table 1.
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4. Inference for Raked Kappa

For inference, we assume multinomial sampling for the original cell counts. Let
p and r denote vectors containing the elements of {p;;} and {r;}, respectively.
Let D and D, denote m* xm* diagonal matrices with the respective elements
of p and r on the main diagonal. Let K denote an m? x (m— 1)*> marix that
describes the log odds ratios preserved in the raked table. That is, the equation
K'log p= K'logr represents the preserved contrasts

logp,;—logp,, —log p,;+1logp,,, =logr;; —logr;, —logr,;+logr,,,,

i=1....m—1j=1,...,m—1.

Following FREEMAN and KocH (1976), the asymptotic covariance matrix for r
equals

V. =K[K'D;'K] 'K'D"*K[K'D;'K] 'K'/N. )

Let d denote the m? x 1 vector that contains partial derivatives of kappa with
respect to the cell proportions, evaluated at the raked sample proportions.
Expressing &* =9/5 and letting I;_;, denote the indicator of whether i=j, the
element of d for the cell in row i and column j equals

dij: [51(1':,') +(‘7_5)(7’j+ +r+i)]/52-

By the delta method (e.g., AGRESTI (1990, Sec. 12.1)), the estimated asymptotic
variance of raked kappa is d'V.d.

To illustrate, we consider raked kappa for the uniform rakings of the two cross
classifications in Table 1. For the first table, £¥ =0.696 has estimated standard
error 0.085; for the second table, £ =0.356 has estimated standard error 0.073.
An approximate 95% confidence interval for the difference in population raked
kappa values equals

(0.696 — 0.356) + 1.96 [(0.085)* + (0.073)*]*/2, or 0.34040.220.

Though the sample kappa values indicated better agreement in the second table,
the uniform raked value is significantly higher for the first table. A cursory
inspection of the raked proportions in Table 2 shows the stronger agreement in
the first raked table. If the population contained equal numbers of cases of the
three types, and if the raters calibrated themselves to achieve marginal homo-
geneity while maintaining their association structure, the raters from the first
table might show stronger agreement than those from the second. Of course,
calibrating while maintaining associations is a big “IF,” since the marginal
distributions are so different in the first table. Such a comparison is more tenuous
than comparing raked values for two cross classifications in which each table had
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approximate marginal homogeneity, but in which the margins were somewhat
different in the two tables. In such a case, one might rake to common margins for
the two tables (perhaps representing a known distribution of cases in a popula-
tion of interest) in order to better compare the kappa agreement values.

Table 3 shows values of the estimated asymptotic standard error (ASE) for
raked kappa applied to the two cross classifications in Table 1, for various target
margins. These are provided for illustrative purposes, but one should note that
this ASE applies when the targets for the raking were pre-specified.

Table 1

Sample tables for rater agreement

Rater B Rater B
Rater A 1 2 3 Total 1 2 3 Total
1 31 1 1 33 106 10 4 120
1 30 1 32 22 28 10 60
3 1 97 37 135 2 12 6 20
Total 33 128 39 200 130 50 20 200

Source: KRAUTH (1984)

Table 2

Uniform raked proportions for Table 1

Rater B Rater B
Rater A 1 2 3 Total 1 2 3 Total
1 .306 .003 .025 333 253 .041 039 333
2 .025 246 .063 333 .066 145 122 333
3 .003 .084 246 333 014 147 172 333
Total 333 333 333 1.000 333 333 333 1.000

Table 3

Raked kappa for various target margins

Row Column Kappa-1 ASE-1 Kappa-2 ASE-2
Observed Observed 0.310 0.019 0.429 0.053
Uniform Uniform 0.696 0.085 0.356 0.073
Average Average 0.632 0.112 0.438 0.054

Row Row 0.649 0.093 0.439 0.055

Column Column 0.640 0.100 0.437 0.054
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5. Raking Model-Fitted Proportions

The raking process preserves empty cells. If a cell count equals zero, then the
raked entry in that cell equals zero. Empty cells can potentially cause problems
with the raking process, in the sense that raked estimates may not exist having
the target margins. Because of this, one might add a small constant (e.g., 107°) to
empty cells before raking a table. When the empty cells fall off the main diagonal,
as is usually the case, the effect of this on Cohen’s kappa is minor since it
depends only on the total count on the main diagonal and on the marginal
counts of the original table. However, different small constants can result in quite
different raked tables, and one should use the raking process on sparse tables
only with caution.

When a table contains several empty cells, a less ad hoc approach fits a
reasonable model to the data before computing the raked table. This reflects the
fact that the empty cells are sampling zeroes rather than structural zeroes, and
that one expects the true cell probabilities to be non-zero. If one fits a quasi-
independence or quasi-symmetric type of model that preserves the marginal
totals and the main diagonal counts, then kappa is the same for the model fit as
it is for the sample data; on the other hand, the table of fitted values and the
corresponding raked table will not contain empty cells, and would often provide
better estimates of corresponding population tables.

Let 7 denote the estimated asymptotic covariance matrix for the model-fitted
proportions. Then, FREEMAN and KocH (1976) showed (though the expression is
printed incorrectly in their article) that the estimated covariance matrix for the
proportions based on raking the model-fitted values equals

V.=K[K'D7'K] 'K'D"'VD 'K[K'D; K] 'K'. (3)

Thus, the asymptotic variance of raked kappa for the raking of the model-fit
equals d' V. d.

6. Raking Weighted Kappa

Cohen’s kappa is designed for nominal classifications. For ordinal classifications,
weighted kappa (SPITZER et al., 1967) used weights {w;;} to allow disagreements

to be more serious as the distance between the two categories selected by the two
raters increases. For 0 <w;; <1, with all w;; = 1, weighted kappa is given by

2, = Zwijpij_zwijpi+p+j ' )
1 _Z WiiDi+ P+

Using {r;;} in place of {p;} in this definition yields weightedAkappa for raked
proportions. Expressing raked weighted kappa as k}=7/0,, its estimated
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asymptotic variance is d,, V. d,,, where the elements of the partial derivative vector

equal

wo

dijsW: [Wij5w+(ﬁw-gw) (Z Wajra+ +Z Wibr—*-b)]/gz »
a b

In inter-rater agreement studies with ordinal response scales having several
categories, it is not uncommon for several of the off-diagonal counts to equal
zero, particularly for cells that are far from the main diagonal. In such cases, it is
sensible to compute raked weighted kappa for model-fitted values.

We illustrate raked weighted kappa using Table 4, taken from a study
(CoNFORTINI et al., 1993) on cervical cancer from the Center for Cancer Study
and Prevention, in Florence, Italy. Table 4 shows the results of analysis on a set
of 100 slides carried out by a cytologist at the laboratory using seven ordered
categories, compared with an ‘expert’ diagnosis. For these data, the sample value
of Cohen’s kappa equals £ =0.497. Since the classification scale is ordinal, we
might alternatively use weighted kappa. Using weights w;;=1—(i—j )?/(m — 1),
we obtain k,, = 0.600.

In this study, one might compute raked versions of kappa after raking the
rater’s margin to match the observed one for the ‘expert’ rater. This would enable
us to describe the potential agreement if the rater shared the expert’s distribution
of classifications. The large number of empty cells implies, however, that the
raked proportions do not exist. For instance, the sixth row contains only one
non-empty cell. For a raked version of this row to have a row total of 9, all 9
observations must fall in the cell in column 6, because other cells in the row are
empty. But then column 6 would necessarily contain more than 9 observations,
which is a contradiction.

To remedy this problem, one could collapse the table to fewer rows and
columns, or add small constants to the empty cells. Instead, we smoothed the
counts by fitting a model. Not surprisingly, the independence model fits poorly,
having a likelihood-ratio goodness-of-fit statistic of G*=161.1, based on d f = 36.
The quasi-symmetry model, which adds symmetric association terms to the
independence model, is a useful model for agreement data that usually gives a
much better fit. It is implied by a Rasch model structure whereby logits for
response outcomes depend additively on effects of raters and subjects rated
(Trur, 1982, DARROCH and McCLoup, 1986). However, its additional sufficient
statistics are the totals p;;+ p;, many of which equal zero for these data. Thus,
this model smooths only some of the empty cells. It gives a good fit to the set of
cells for which p;; + p;; >0, having G?=6.3, based on df=6.

Table 4 contains the raking of the fitted values for the quasi-symmetry model.
The raking produces a clear ridge along the main diagonal, with some of the
serious disagreements in the sample table eliminated (such as when the expert
choses category 5 and the rater choses category 2). The raked table has both
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kappa and weighted kappa equal to 0.748, compared to the respective values
of 0497 and 0.600 for the unraked table. An alternative set of weights
w;=1—i—j|/Im—1] yields £,=0.598 and &} =0.785. For kappa and both
versions of weighted kappa, there is potential for moderate improvement in
agreement under marginal homogeneity. The increases in kappa and weighted kappa
values for the raked table are perhaps surprising, considering that the original
margins are not dramatically different. This illustrates that kappa or weighted kappa
can potentially be quite sensitive to fairly minor changes in marginal distributions.

Table 4

Data with raking of quasi-symmetry model fit to match margin for expert rater

Expert Rater

Rater A 1 2 3 4 5 6 7 Total

1 12 5 0 0 0 0 0 17
(12.1) (3.5) 0.0) 0.0) 0.0 0.1) (1.3) (17)

2 2 16 4 1 6 1 1 31
(3.6) (17.0) (3.1) 0.0 0.0 0.1) (1.3) (25)

3 0 2 7 3 0 0 1 13
(0.0) (3.2) (7.3) 0.0 0.0 0.1) 0.4) (11)

4 0 0 0 2 3 0 0 )
(0.0 0.1 0.2) (5.7) 0.0 (0.0) (0.0) (6)

5 0 0 0 0 16 5 0 21
0.0 (0.0 0.0 0.3) (24.7) (0.0) (0.0 (25)

6 0 0 0 0 0 i 0 1
0.0) (0.0 (0.0 0.0 0.3) 8.7) 0.0 )

7 3 2 0 0 0 2 5 12
(1.3) (1.2) 0.4) 0.0 (0.0) 0.1) 4.1) (7)
Total 17 25 11 6 25 9 7 100

Source: CONFORTINI et al., (1993).

7. Comments

As shown above for the first cross classification in Table 1, one use of raked
kappa is to indicate how strong agreement could have been if the raters had the
same targets, corresponding to a lack of inter-observer bias. In particular, one
could compute raked kappa for various targets satisfying marginal homogeneity.
This helps to reveal how much of the lack of agreement may be due to a lack of
calibration of the two raters.

Even if raters are calibrated to achieve marginal homogeneity, however, values
of kappa from different studies may be incomparable because of markedly
different prevalence of the various types. To illustrate, consider Table 5. Each
cross classification exhibits marginal homogeneity, but the incidence in the first
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category is much less in the first table than the second (.05 vs. .40). The sample
kappa values of 0.244 and 0.513 suggest that agreement is better for the raters of
the second set of subjects. In fact, the odds ratios are the same (10) in the two
tables, so the raked kappa values are equal for any target margins that are
identical for the two studies. For the 2 x2 case with each margin equal to
(r, 1 —7), kappa is related to the odds ratio 0 by 0 — 1 =#/[n(1 — n)(1 — £)*]. For
instance, for the uniform margins (i.e., 7=0.5) with 0 =10, £ =0.520. Thus, a
second use of raked kappa is to compare agreements from two studies having
approximate marginal homogeneity within studies but severe marginal hetero-
geneity between studies.

Table 5

Tables having identical values of raked kappa

Table A Table B
141 359 2830 1170
359 9149 1170 4830

Finally, though raked kappa is useful for the purposes just described, we do not
believe that it is a panacea. In practice, a calibration process may result in a change
in association. For instance, in the 2 x 2 case, consider the latent class model in
which there is independence between ratings, given the ‘true’ response category; that
is, the observed table is a mixture of two 2 x 2 tables. For given sensitivity and
specificity, the odds ratio between the ratings in the observed 2 x 2 table changes as
the distribution of cases of the two types changes. Generally, how the odds ratio
behaves depends on a variety of factors that could all potentially themselves change
as the distribution of cases change, including the conditional distribution for the
response outcome given the true outcome, and misclassification probabilities. In
m x m tables or in their multi-rater generalizations, we believe it is more informative
to utilize modeling strategies that investigate the structure of the agreement and that
analyze residual departures from that structure. AGRESTI (1992) provided a recent
survey of modeling strategies.

An S-Plus function (BECKER et al., 1988) for computing kappa, raked kappa for
supplied target margins, the weighted kappa analogs, and their estimated stand-
ard errors is available free from the authors by e-mail or upon receipt of a
formatted 3/, inch floppy diskette.
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