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In the past decade there has been great progress in the development of methodology for analyzing
ordered categorical data. Logit and log linear model-building techniques for nominal data have been
generalized for use with ordinal data. There are many advantages to using these procedures instead
of the Pearson chi-square test of independence to analyze ordered categorical data. These advantages
include (a) more complete description of the nature of associations and (b) greater power for detect-
ing population associations. This article introduces logit models for categorical data and shows two
ways of adapting them to model ordered categorical data. The models are used to analyze a cross-
classification table relating mental impairment and parents' socioeconomic status.

In his presidential address delivered at the annual meeting of
the American Statistical Association in 1967, Frederick Mos-
teller stated, "I fear that the first act of most social scientists
upon seeing a contingency table is to compute chi-square for it.
Sometimes this process is enlightening, sometimes wasteful, but
sometimes it does not go quite far enough" (Mosteller, 1968).
Twenty years later, methodology for analyzing categorical data
has advanced considerably, and most social scientists realize
that there is more that can be done besides computing chi-
square. Nevertheless, it is still true that analysis "sometimes
does not go quite far enough." This applies particularly to dis-
tinguishing between methods for nominal and ordinal vari-
ables. Social scientists often analyze variables that have ordered
categories using methods (such as the Pearson chi-square test)
designed for variables that have unordered categories. This
practice results in loss of power for both description and infer-
ence.

Social scientists are not to blame for this situation. Nearly
all elementary statistics books introduce Pearson's chi-square
statistic for testing independence of categorical variables; few of
those books point out that the Pearson test is generally inappro-
priate when at least one of the classifications is ordered. Even
the book by Bishop, Fienberg, and Holland (1975), regarded as
the bible for multivariate analysis of categorical data, makes lit-
tle distinction between methods for nominal and ordinal data.

One reason for the common lack of differentiation between
nominal and ordinal analyses is that specialized methods for
ordered categorical data have become well developed only
within the past 10 years. Articles by Goodman (1979) and Mc-
Cullagh (1980) have had a major impact on this development.
These articles have extended log linear and logistic regression
models so they can be applied to ordinal data.

The purpose of this article is to show how research psycholo-
gists can use some of these recent developments to improve the
way they analyze ordinal data. The article should be technically
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accessible to researchers having an understanding of basic ap-
plied statistics, including regression modeling and the chi-
square test. Detailed knowledge of logistic regression or logli-
near models is not needed, though exposure to these topics at
the level presented in the introductory statistics textbook by
Agresti and Finlay (1986) or in the review article by Swafford
(1980) is certainly helpful.

I first discuss a measure of association, the odds ratio, used
to interpret models discussed in this article. After introducing
the logit model for binary responses, I use it to model cumula-
tive probabilities for ordinal response variables. I then intro-
duce an alternative logit model, for which the odds ratio inter-
pretion extends simultaneously to all pairs of adjacent response
categories. I also show how to construct statistics for testing in-
dependence that utilize the ordering of categories and are more
powerful than the standard Pearson statistic.

To illustrate the models, I analyze Table 1, taken from Srole
et al. (1978, p. 289), relating mental impairment to parents'
socioeconomic status. Both classifications in this table have or-
dered categories, and the 24 cell counts can be well represented
by a single odds ratio measure that describes the nature and
structure of the relationship.

Odds Ratios

First, I discuss some basic principles. For simplicity, these are
illustrated for two-way contingency tables. The most commonly
applied analysis for two-way tables is the test of independence,
usually conducted with Pearson's statistic

X2 = 2 (Observed - Expected)2/Expected.

Here, the observed counts in cells of the table are compared to
expected values satisfying independence. Large values of this
chi-square statistic contradict the null hypothesis of indepen-
dence.

Suppose the contingency table has r rows and c columns.
Then the degrees of freedom for the Pearson statistic are df=
(r — l)(c — 1). This means there are (r — l)(c — 1) bits of infor-
mation in the table regarding the association. Pearson's statistic
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is designed to detect whether any of these bits indicate that the
variables are dependent.

There are many ways to represent the (r — 1 )(c — 1 ) bits of
information in a table. I now present a way that is useful when
one of the variables (say, the column variable) is a response (de-
pendent) variable, measured on an ordinal scale. Denote this
variable by Y. LetP(Y^j) denote the probability of a response
in category j or below (i.e., in Category 1, 2, • • •, or 7 of the
column classification). This is called a cumulative probability.
The ratio

Table 2
Cumulative Odds Ratios for Table 1, Treating Mental
Impairment as Response Variable

is called the odds of response less than or equal to / For in-
stance, an odds equal to 3 means that subjects are three times
as likely to make a response in category j or below than they are
to make a response above category/

Suppose the row variable is an explanatory (independent)
variable, and denote it by X. Let Yt denote the value of Y for a
subject randomly selected from level i of X. The odds of re-
sponse less than or equal toj can be compared for two rows, say,
Rows 1 and 2, by the ratio

P(Y2^j)/P(Y2>j).

This measure is called a cumulative odds ratio. If X = 4, for
instance, the odds of response less than or equal to j are four
times higher in the first row than in the second row. In a table
having r rows and c columns, there are (r - 1) pairs of adjacent
rows that can be compared like this. Also, there are (c— I) ways
of splitting the response into two parts (i.e., the cut point/ could
be any of 1, 2, ••-,€- 1). Therefore, there are (r - l)(c - 1)
cumulative odds ratios that can be formed.

JTand Y are statistically independent if all (r - l)(c - 1) of
the cumulative odds ratios equal 1.0 or equivalently, if the loga-
rithms of all of these odds ratios equal zero. Values of cumula-
tive odds ratios can be used to describe the nature of the associa-
tion between an ordinal response variable and a nominal or or-
dinal explanatory variable. For instance, let

Table 1
Cross-Classification of Mental Impairment
and Parents' Socioeconomic Status

Mental impairment

Parents'
socioeconomic

status

A (high)
B
C
D
E
F(low)

Well

64
57
57
72
36
21

Mild
symptom
formation

94
94

105
141
97
71

Moderate
symptom
formation

58
54
65
77
54
54

Impaired

46
40
60
94
78
71

Pair of
socioeconomic

status levels

A,B
B,C
C,D
D,E
E,F

Cut point between categories

Well,
mild

1.07
1.22
1.07
1.47
1.47

Mild,
moderate

.95
1.24
1.04
1.24
1.37

Moderate,
impaired

.92
1.35
1.23
1.29
1.17

X,, = •

Note. From Mental Health in the Metropolis: The Midtown Manhattan
Study (p. 289) by L. Srole, T. S. Langner, S. T. Michael, P. Kirkpatrick,
M. K. Opler, and T. A. C. Rennie, 1978, New York: NYU Press. Copy-
right 1978 by New York University Press. Reprinted by permission.

tori = 1, • • •,/•- 1 and/= 1, • • -,c- 1. WhenXy> 1,subjects
at level i of Xare more likely to make lower responses on F(i.e.,
category j or below) and less likely to make higher responses on
Y, in comparison with subjects at level i + 1 of X. The logarithm
of the cumulative odds ratio is then positive. Thus when these
log odds ratios exceed 0 for all pairs of adjacent rows and all cut
points for the response, larger values of Y are more likely to
occur at higher levels of X, and the association is characterized
as positive.

For cross-classifications of two ordinal variables, there is of-
ten a positive or a negative trend in the association, in the sense
that all or nearly all of these log odds ratios have the same sign.
Then it may be possible to summarize the (r — l)(c — 1) bits
of information about the association by a single number, for
instance, by an average of the {Xj,}. The models I present in this
article provide a structure for summarizing the (r — 1 )(c — 1)
odds ratios by a single bit (or at least fewer bits) of information.

The benefits of summarizing the association by fewer bits of
information include (a) model parsimony and (b) improved
power for detecting important alternatives to independence.
These can be simply explained by analogy to regression analysis
for continuous variables. Suppose one wants to test statistical
independence. If the variables are statistically dependent, one
often expects that as X goes up, Y tends to go up or as X goes
up, Y tends to go down. Thus one normally fits a linear regres-
sion model and tests independence by testing that the slope co-
efficient equals zero. Though it may not perfectly describe the
relationship, the linear model is simple to interpret: It is parsi-
monious. An alternative approach for testing independence is
to fit a high-order polynomial and test that all coefficients (other
than the Y intercept) equal zero. Though this more complex
model fits better, one rarely uses this approach, because one
expects the linear term to explain the major portion of the
trend. If the relationship is close to linear, the test for the slope
in the linear model is more powerful for detecting statistical de-
pendence than is a more general test regarding several parame-
ters, most of which are near zero. The same principles apply in
analyzing categorical data. I prefer to use simple models, partly
because interpretations are simpler and partly because infer-
ences based on them are more powerful.

Table 2 gives sample values of the {Xy} for the data in Table



292 ALAN AGRESTI

Figure 1. Logistic regression model for binary response.

1 , treating Y = Mental impairment as the response variable.
The first entry in Table 2 is 1.07. The odds that mental health
is classified in the well category are estimated to be 1 .07 times
higher for socioeconomic status (SES) Level A than for SES
Level B. Thus, in this sample, mental health is slightly more
likely to be well at the higher SES level (Level A). In fact, in
Table 2 all but two of the cumulative odds ratios exceed 1 .0, and
those two are close to 1 .0. Thus, there seems to be a tendency for
mental health to be better at the higher SES levels. Later in this
article, I show that the sample {X/,} values are not significantly
different from an estimated common value of 1 . 1 8. The models
that are presented next enable one to determine when informa-
tion can be condensed in this way.

Logit Model for Ordinal Response

This section describes a model for ordered categorical re-
sponse variables that is interpreted using cumulative odds ra-
tios. I begin by reviewing the simpler case in which Y has only
two categories. Let ir\ denote the probability of classification in
the first of these categories. When Y is predicted by a quantita-
tive variable X, the model

corresponds to a linear regression model with a dummy vari-
able for Y. This is an unsuitable model for a binary response,
because probabilities are restricted to fall between 0 and 1,
whereas linear predictors take values over the entire real line.

An S-shaped curve of the form shown in Figure 1 is generally
a more appropriate response shape for a model. The formula

IT, =
exp (a +

[1 + exp (<

gives a curve of this shape, where exp (z) denotes the exponen-
tial function ez, the antilog function for natural logarithms.
This model for TI is called a logistic regression model. The prob-
ability in increases as x increases when ft > 0 (as in Figure 1),
and it decreases as x increases when ft < 0. For particular pa-
rameter values a and /3, ir, = 0.5 when x = — a//3. Because the
relationship is curvilinear, the slope of a line tangent to the
curve changes as x changes. At a particular x value, that slope
is j87r,( 1 - ;TI), which depends on the probability of making Re-
sponse 1 at that x value; this slope is greatest in absolute value
where irt = 0.5. Thus, for this model, the effect on -R\ of an

incremental change in x is less when w, is near 0 or I than it is
when Ti"! is near the middle of its range.

The logistic regression formula for irj is not especially simple
to interpret. It is easier to interpret the corresponding formula
for the odds, which is

In other words, there is an exponential relationship between the
odds and the explanatory variable. The term e" is a multiplica-
tive effect on the odds: For every unit change in x, the odds K\/
(\ — in) change by a multiplicative factor of e". If ft = 0, then
eft = I , and the odds do not change as x changes: X and Y are
independent. If /3 > 0, then e0 > 1 , and the odds increase as x
increases; that is, ir\ is larger at higher values of x.

The logit for a binary response is defined as

logit (ir,) = log [TT,/(I -*-,)],

which is the log of the odds of making Response 1 . For the logis-
tic regression model, the logit transformation (with natural log-
arithm) linearizes the relationship, giving

logit (ir,) = a + ftx.

In this form, the model is called a linear logit model. Like other
regression models, the linear logit model can be generalized to
include multiple explanatory variables (dummy variables being
used to represent nominal factors), and effects of explanatory
variables can be tested using the ratio of parameter estimates to
their standard errors.

Next, one can apply these ideas to an ordinal response vari-
able by forming logits of cumulative probabilities. Denote the
possible values of Yby 1, • • •, c, and denote their probabilities
byir,, • • .,7rc. Then

= iog 7=1,

treats the response as binary by combining the first j categories
and by combining the remaining (c — j) categories. There are
(c — 1) of these logits, one for each possible cut point for collaps-
ing the response. I shall refer to them as cumulative logits.

A model that simultaneously describes all c - 1 cumulative
logits is

logit [F(Y£j)] = a, + Ax, j = 1, . - . , c - 1.

For fixed j, this has a similar form as the linear logit model just
discussed for the collapsing of the response into two categories.
Asj increases, the aj parameters increase, reflecting the increase
in the logits as additional probabilities are added into the nu-
merator. The parameter of primary interest is ft. It describes the
effect of X, equaling 0 when X has no effect on Y. If ft > 0,
cumulative probabilities tend to be higher at higher values ofX.
That is, the likelihood that Y is below any fixed level is relatively
greater at higher values of X; so, small Y values are relatively
more likely at large X values. Alternatively, the right-hand side
of the model formula could be expressed as a, — fix, or the logit
could be defined with P( Y > j ) in the numerator and P( Y <, j)
in the denominator; with either change, a positive /3 corresponds
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P(Y<3)

Figure 2. Depiction of cumulative logit model
with effect independent of cut point.

to a positive association, in the sense that large Y values are
relatively more likely to occur at large X values.

For this model, ft has the same value for each of the c — 1
cumulative logits. This means that the effect of ̂ Tis assumed to
be the same for each cumulative probability; it does not depend
on the cut point for forming the logit. The parameter ef is inter-
preted as a multiplicative effect on the cumulative odds: The
odds that the response is less than or equal to./ (for any fixed./)
is multiplied by e" for every unit change in X. Figure 2 depicts
this model for the case of c = 4 responses, for which there are
three cumulative logits. The constant value for /3 means that the
response curves for the cumulative probabilities are assumed to
have the same shape. The curve for P(Y <, 1) is the curve for
P(Y s 2) moved («2 ~ «i)//3 units to the right; the curve for
P( Y <, 3) equals the curve for P( Y < 1 ) moved (a, - «3)/|8 units
to the right. This single model simultaneously describes three
relationships: for the effect of X on the odds that Y < 1 instead
of Y > 1 ; for the effect of X on the odds that Y < 2 instead of
Y > 2; and for the effect of Xon the odds that Y <, 3 instead of
Y> 3. When it is fitted, one gets a single estimate of /3 (rather
than three separate estimates, as one would get if one fitted the
binary logit model separately for each collapsing of the re-
sponse).

I have described the cumulative logit model for an ordinal
response Y and a continuous explanatory variable X. When X
is also ordinal, the data are counts in a two-way contingency
table in which both classifications are ordered. Suppose one
represents the rth level of A' by the score xt, where one sets x\ <
Xi < • • • < xrto reflect the ordering of the categories. The cumu-
lative logit model is then

logit [^7, <;;)] = «, + £*,,

For integer-spaced scores (such as Xi = I , x2 = 2, • • • , xr = r),
eff then reflects the multiplicative effect on the cumulative odds
of each row change in X.

The effect parameters in cumulative logit models are related
to cumulative odds ratios. For instance, for Rows 1 and 2,

= log \ij.

For the cumulative logit model, this difference in logits equals
- x2), and similar results apply to other pairs to rows.

When one uses integer-spaced scores, so that xl+t - x,= 1 for
all /', then this model implies that all log \tj = -ft. (For the model
formulation in which the right-hand side of the equation is de-
noted oij — ftxi, all log \jj = /3.) For this cumulative logit model,
then, all cumulative odds ratios for pairs of adjacent rows are
equal, and their common value is e~f. That is, this model im-
plies uniform association for cumulative odds ratios.

If ft = 0 in the cumulative logit model, then Xand Fare inde-
pendent. When this model fits adequately, one can test indepen-
dence by testing that /8 = 0. The estimate $ for /? has approxi-
mately a normal sampling distribution, and one can use

z = 0/,SE(|S)

as the test statistic. Equivalently, z2 and another statistic to be
discussed later have approximate chi-square distributions with
df= I . Like the Pearson statistic, these statistics approximate
their sampling distributions better as the sample size increases.
Unlike the Pearson test, this test utilizes the ordinal nature of
the variables. The statistic z (or its square) uses a single degree
of freedom to search for statistical dependence in the form of
an approximately constant cumulative odds ratio.

Fitting the cumulative logit model is not computationally
simple, but it can be done using statistical computer packages.
These details are discussed in a later section of this article, as
are chi-square statistics for testing the fit of the model.

For the data in Table 1 on mental health and parents' SES,
one sees that the cumulative logit model fits very well. When
mental impairment is the response variable and the scores (1,
2,3,4,5,6) are assigned to the levels of SES, the uniform associ-
ation model has an estimated parameter value of 0 = —0.167.
This corresponds to an estimate ofe°'161 = 1.18 for the uniform
cumulative odds ratio. One has the parsimonious result that the
15 sample odds ratios reported in Table 2 can be adequately
represented by a single number, 1.18. For instance, the odds
that mental health is classified well (instead of mild or moderate
symptom formation or impaired) are estimated to be 1.18 times
higher for each increase of a level in parents' SES. The odds that
mental health is classified well are estimated to be 1.18 times
higher for parents' SES Level A than for parents' SES Level B
and are estimated to be 1.18s = 2.3 times higher for parents'
SES Level A than for parents' SES Level F. The standard error
of the J3 value is 0.0277. The statistic z = "ft/(SE) = -0.167/
0.0277 = -6.0 gives very strong evidence that mental impair-
ment tends to be less at the higher levels of parents' SES.

Incorporating Nominal or Multiple
Explanatory Variables

This discussion of the cumulative logit model has focused on
the case of a single explanatory variable having ordered catego-
ries. More general models can be formulated in which the effect
ft need not be the same for each cut point, though the common
effect model is usually adequate for describing the most impor-
tant component of the association. Cumulative logit models can
also be formulated for nominal explanatory variables.

When the row variable X in a cross-classification table is
nominal, the model
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is useful. The {/?,} parameters for the levels of the nominal vari-
able are usually scaled so that 2 0, = 0 (as in analysis of variance
[ANOVA] coding) or so that 0r = 0 (as in coding for parameters
that are coefficients of dummy variables). These parameters are
called row effects. Two rows that have the same 0 parameter
value have the same distribution on Y; that is, the probability
of making any given response is then the same for subjects at
each of those two levels of X. Independence of X and Y corre-
sponds to the distribution of Y being the same in each row and
is the special case fit = • • • = ft. Cumulative probabilities in a
particular row tend to be higher when the 0 parameter for that
row is higher. The farther apart 0 values are for two rows, the
greater the difference between their distributions on Y. The
difference between 0 values has an interpretation using cumula-
tive odds ratios.

The model previously discussed for an ordinal explanatory
variable is the special case of this model in which the {ft} have
the linear trend ft = ftx,, for some set of ordered scores {xt}.
The row effects model treats X as nominal, but it might also be
used when X is ordinal (a) if Yis not a linear function of ̂ (on
the logit scale) or (b) if we do not wish to impose a pattern for
the association by assigning scores to the levels of X.

For illustrative purposes, apply the row effects model to Table
1. When scaled so that ft, = 0, the estimates of the row effect
parameters are 0, =. 0.82 (SE = 0.17), 02 = 0.84 (SE = 0.17),
03 = 0.62 (SE = 0.16), ft, = 0.52 (SE = 0.15), ft, = 0.26 (SE =
0.16), and 06 = 0.0. To compare rows 1 and 3 of Table 1, take
the difference ft — ft = 0.20. For any j, the odds that mental
impairment is less than or equal toy are estimated to be e20 -
1.2 times higher for SES Level A than for SES Level C. For these
data, the row effect estimates show roughly a decreasing trend,
indicating that the cumulative probabilities starting at the well
end of the scale tend to decrease as parents' SES level moves
toward the F end of the scale. The ft and 02 values are nearly
identical, indicating that subjects at Levels A and B of parents'
SES in this sample had very similar distributions on mental
impairment.

More generally, cumulative logit models can be formulated
for multiple explanatory variables, some of which may be nomi-
nal or ordinal categorical and some of which may be continu-
ous. To illustrate the interpretation of models with multiple ex-
planatory variables, I next analyze the artificial data in Table 3,
relating mental impairment to a binary measurement of socio-
economic status (Z = 1, high; Z = 0, low) and to a life events
index X, a composite measure of both the number and severity
of important life events (such as birth of a child, new job, or
death in the family) that occurred to the subject within the past
3 years.

Consider first the main effects model,

logit [(P(Y<.j)} = a, + ft* + 02z.

The parameter estimates are ft = -0.319 (SE = 0.121) and
ft = 1-111 (SE = 0.611). The cumulative probability increases
(so relatively more subjects are at low levels of mental impair-
ment) as the life events score decreases and at the higher level
of SES. At a fixed life events score, the odds that mental impair-

Table 3
Mental Impairment by Socioeconomic Status and Life Events

Subject

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Mental
impairment

Well
Well
Well
Well
Well
Well
Well
Well
Well
Well
Well
Well
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Mild
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Moderate
Impaired
Impaired
Impaired
Impaired
Impaired
Impaired
Impaired
Impaired
Impaired

SES

1
1
1
1
0
1
0
1
1
1
0
0
1
0
1
0
1
1
0
1
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
0
0
1
0
0

Life
events

1
9
4
3
2
0
1
3
3
7
1
2
5
6
3
1
8
2
5
5
9
3
3
1
0
4
3
9
6
4
3
8
2
7
5
4
4
8
8
9

Note. SES = socioeconomic status.

ment is below any given level is estimated to be e"11 = 3.04
times as great at the high SES level as at the low level.

A model allowing interaction is obtained by adding the term
03*z to the model. The estimates are then 0, = -0.420 (SE =
0.186), ft = 0.371 (SE = 1.136), and ft, = 0.181 (SE = 0.238).
The estimated effect of life events on the cumulative logit is
-.420 for the low SES group and -.239 for the high SES group.
The effect is weaker for the high SES group, though the differ-
ence in effects is not significant for this small sample.

Alternative Logit Model

There are alternative ways of constructing models for ordinal
response variables. I next discuss a model based on a different
way of forming logits of response proportions. I utilize the ordi-
nality of Yby forming logits for adjacent pairs of response cate-
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gories. For a cross-classification of an ordinal response Y and
an ordinal explanatory variable X having assigned scores xt <
• •• <xr, the model

P(Y,=j)log

assumes a linear effect 0 that is the same for each adjacent pair
of response categories. The variables are independent if/8 = 0.
The odds of making response j instead of response j + 1 are
multiplied by ef for each unit change in X.

Let

P*(Yt,=./) = W-MW-j) + P(Yt=j + I)].

This is the conditional probability of making response j, given
that the response is either j or j + 1. The model has the logit
form

log ;'= 1, • • - , £ - 1,

for these conditional probabilities. This model can also be rep-
resented by Figure 2, if one replaces the cumulative probability
label for the vertical axis with the label P*(Y = j). If 0 > 0, then
outcome; is relatively more likely than outcome j + I at larger
values of x The case 0 = 0 corresponds to the statistical inde-
pendence of Xand Y.

Logit models for adjacent response categories utilize a
different type of odds ratio to summarize the association. The
odds ratio

P(Yt=j~)IP(Yt=j+\)

compares the odds of making the lower of two adjacent re-
sponses (j and./ + 1) at two adjacent levels (i and /' + 1) of the
explanatory variable. There are also (r— l)(c — 1) of these odds
ratios, for the different possible combinations of pairs of adja-
cent rows and pairs of adjacent columns. The {By} are called
local odds ratios, because they describe associations in localized
regions of the table. As was true for cumulative odds ratios, in-
dependence is equivalent to all 6tj = 1 .0, and logit models can
provide structure for their values. For instance, when both vari-
ables are ordinal, all sample {By} may have about the same mag-
nitude; then the table can be described by an estimate for a com-
mon value of the {By}.

For the logit model for adjacent response categories just dis-
cussed, all

when the x scores are integer spaced, such as x\ = 1 , •••,x,=
r. (Again, — 0 is replaced by ft if one uses the parameterization
ctj - 0X, for the right-hand side of the model formula, or if one
defines the logit with P(Y, , = j + 1) in the numerator.) Thus,
e~e respresents the common value of the local odds ratios. This
model is a uniform association model for local odds ratios. For
this, the odds of making response j instead of response j + 1 are

e f times higher in row /' than in row / + 1, for all i and/ The
hypothesis of independence can be tested using z = ~f}/SE(fi).
Like the uniform association model for cumulative odds ratios,
this model has one more parameter than the independence
model, which is the special case of either model with 0 = 0.

This model also gives a good fit to Table 1. The estimate 0 =
—0.091 has a standard error of 0.015, so there is again strong
evidence that mental impairment tends to diminish as parents'
SES increases. The estimated common value of the local odds
ratio is e0091 = 1.09. The odds that mental health is well instead
of showing mild symptom formation is estimated to be 1.09
times higher for SES Level A than for Level B, 1.09 times higher
for Level B than for Level C, and so forth. The same statement
applies to each pair of adjacent response categories. Estimated
odds ratios for other comparisons are obtained by taking 1.09
to the power given by the product of the distance between the
rows and the distance between the columns. For instance, the
estimated odds that mental health is well instead of impaired is
estimated to be 1.09" = 3.9 times higher for SES Level A than
for Level F. (There are three levels between well and impaired,
five levels between Levels A and F, and 15 = 3x5.) The 0 pa-
rameter (and its estimate) for this model differs from the 0 pa-
rameter for the cumulative logit model, because they refer to
different types of odds ratios. However, the substantive conclu-
sions reached with the two models are similar: There is strong
evidence of a negative association between mental impairment
and parents' SES; the degree of association is relatively weak;
and the association has similar value throughout the table,
whether measured with local or cumulative odds ratios.

When X is nominal, or when it is ordinal but does not have a
linear effect on the logit, one can use the more general row
effects model

log

The model just discussed is the special case in which the {0,-}
parameters have a linear trend, and the independence model is
the special case in which all {0,} are equal. If rows a and b have
parameters 0a = 0;,, then those rows have identical distributions
on Y. Generally, 0a - 0^ is the log odds ratio for each pair of
adjacent response categories, for the cells in rows a and b.

A useful characteristic of logit models for adjacent categories
is that there are equivalent log linear models. Thus some statisti-
cal computer packages for log linear models can be used to fit
them. Also, the models are equivalent to other models that form
logits using pairs of categories (rather than groups of categories,
as does the cumulative logit model). For instance, baseline cate-
gory logit models contrast each response category with the final
category. The adjacent-categories logit model having a linear
effect is equivalent to the baseline-category logit model

log 7 = 1 ,
P(Y, = c)

The effect parameter 0 in the adjacent-categories logit model
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Table 4
Estimated Expected Frequencies for Independence Model and Uniform Association Models for Local
and Cumulative Odds Ratios Fitted to Table 1

Mental impairment

Parents' socioeconomic
status

A (high)
Independence model
Local odds model
Cumulative odds model

B
Independence model
Local odds model
Cumulative odds model

C
Independence model
Local odds model
Cumulative odds model

D
Independence model
Local odds model
Cumulative odds model

E
Independence model
Local odds model
Cumulative odds model

F(low)
Independence model
Local odds model
Cumulative odds model

Well

64
48.5
65.3
65.9
57
45.3
54.2
54.3
57
53.1
55.9
55.7
72
71.0
65.3
65.0
36
49.0
39.0
39.0
21
40.1
27.3
27.7

Mild symptom
formation

94
95.0

104.4
103.7
94
88.9
94.9
94.8

105
104.1
107.2
107.3
141
139.3
137.0
137.3
97
96.1
89.6
89.6
71
78.7
68.8
68.6

Moderate symptom
formation

58
57.1
50.1
48.9
54
53.4
49.9
49.3
65
62.6
61.7
61.6
77
83.7
86.4
86.8
54
57.8
61.8
62.4
54
47.3
52.0
52.5

Impaired

46
61.4
42.1
43.5
40
57.4
45.9
46.6
60
67.3
62.2
62.4
94
90.0
95.3
94.9
78
62.1
74.7
74.0
71
50.9
68.8
68.2

can be estimated by fitting the baseline-category logit model
and replacing x, with x,{c — j) in the design matrix.

using a statistic of the Pearson form. Another statistic used for
this purpose is the likelihood ratio statistic, defined by

Goodness of Fit

Let 7T/, denote the probability of a subject being classified in
the cell in row / and column j of a two-way table. Then for a
sample of size n, mr,y is the expected value (mean) of the distri-
bution for the number of subjects classified in that cell. The
values {niTy} are called expected frequencies. Estimation meth-
ods used for fitting logit models also can generate estimates of
expected frequencies that satisfy the model. For a particular
model, estimated expected frequencies are values that provide
the closest fit to the observed cell counts, subject to the con-
straints that they satisfy the model and match the observed data
in certain marginal totals.

Table 4 gives estimated expected frequencies for fitting to Ta-
ble 1 the independence model, the uniform association model
for cumulative odds ratios, and the uniform association model
for local odds ratios. The independence model fits very poorly
in the corners of the table. This happens for ordinal data when-
ever there is a monotone trend. The models permitting depen-
dence fit the corner cells considerably better. The estimates of
the cell probabilities for the various models are the entries in
Table 4 divided by the overall sample size, 1,660.

The goodness of fit of a model can be quantified by compar-
ing the observed counts to the estimated expected frequencies,

G2 = 2 2 Observed log(Observed j
Expected!'

where the sum is taken over all the cells in the table. Like the
Pearson statistic, this statistic is nonnegative and tends to take
larger values when the fit is poorer, for a given sample size.

Degrees of freedom for goodness-of-fit statistics equal the
number of sample logits minus the number of parameters in
the model. For cumulative logits or adjacent-categories logits
applied to a r X c table, there are c — 1 logits in each of r rows,
a total of r(c — 1) logits. The uniform association model has c —
1 {«,} parameters and the ft parameter, so

df=r(c-\.)-(c-\)-\=rc-r-c.

This is one fewer than the degrees of freedom (r — l)(c — 1) for
the Pearson chi-square test of independence, because the uni-
form association model has one more parameter (/3) than the
model corresponding to independence. The row effects model
has c — 1 {aj} parameters and r — 1 {0,-} parameters, so

df= r(c - 1) - (c - 1) - (r - 1) = (r- l)(c - 2).

Table 5 contains G2 and Rvalues for several models fitted to
Table 1. The independence model has G2 - 47.4, based on df=
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Table 5
Goodness-of-Fit Statistics for Models Fitted to Table 1

Model

Independence
Uniform association
Row effects

df

15
14
9

Cumulative
logits

47.4
10.9
7.8

Adjacent category
logits

47.4
9.9
6.3

15. This is a poor fit; the P value is less than 0.001 for testing
the hypothesis that the independence model holds in the popu-
lation. (The Pearson chi-square statistic for testing indepen-
dence is 46.0, also showing a poor fit.) By contrast, the cumula-
tive logit model implying uniform cumulative odds ratios has
G2 = 10.9, based on df= 14, a very good fit. Similarly, the cumu-
lative logit model with row effects gives a good fit, as do the
corresponding models for adjacent-categories logits.

An advantage of the likelihood ratio statistic G2 is that, unlike
the Pearson form of statistic, it cannot increase as the model is
made more complex. This feature makes it useful for compar-
ing models. For instance, suppose one wishes to test whether
a "complete" model Mc gives a significantly better fit than a
"reduced" model Mr. Then G2(MC) <; G\Mr), and their differ-
ence is a chi-square statistic having degrees of freedom equal to
the difference in the degrees of freedom for the two statistics.
The larger the difference in G2 values, the more evidence there
is to reject the simpler model in favor of the more complex one.
The test described here is analogous to the F test for comparing
two regression models, in which G2 is analogous to the residual
sum of squares computed in regression analysis.

As an illustration, the difference in G2 values between the in-
dependence model and the uniform association model for cu-
mulative odds ratios is 47.4 - 10.9 = 36.5, based on df= 15 -
14 = 1. This gives a P value less than 0.0001 for testing the
hypothesis that the independence model is adequate against the
alternative hypothesis that the uniform association model
holds. Thus the uniform association model gives a better fit than
the independence model. The uniform association model for
local odds ratios also gives a better fit than the independence
model. For either type of model, the test for comparing the
model to the independence model usually gives very similar re-
sults to the statistic z = &/SE for testing H0:$ = Q against Ha :

The difference between G2 values for the independence model
and an ordinal model also gives a test for independence, one
that takes into account the ordering of the categories. It is more
efficient than the usual chi-square test of independence, because
it is based on fewer degrees of freedom. For instance, by com-
paring G2 values for the independence model and a uniform
association model in Table 1 , one obtains a test based on df= 1
rather than df= 15.

For either cumulative logits or adjacent-categories logits, one
sees from Table 5 that the row effects model does not fit signifi-
cantly better than the uniform association model. For instance,
for cumulative logits, the difference 10.9 - 7.8 = 3.1, based on

df= 14 - 9 = 5, indicates that the more parsimonious model,
uniform association, gives an adequate description of these
data. This test is equivalently a way of checking whether an as-
signed set of scores is appropriate. That is, when one compares
the uniform association model and the row effects model, one
is testing whether the fit is as good when one replaces the param-
eters {(},} with /8.x, for chosen scores {x,}.

The G2 statistic does not give a valid test of goodness of fit
when any of the explanatory variables are continuous or when
the cell counts tend to be small. However, in such cases, differ-
ences of G2 values can still be useful for comparing complete
and reduced models (see Agresti and Yang, 1986).

As with other statistical endeavors, there is danger in putting
too much emphasis on statistical tests, whether of effects or of
goodness of fit. Results are sensitive to sample size, and test
statistics merely help indicate the level of parsimony that can
be achieved. It is important to supplement these tests with esti-
mation methods that describe the strength of associations and
with residual analyses that detect parts of the data for which the
general overall trend does not hold.

Model Selection
For a particular model type, such as cumulative logit, the G2

statistic can be compared among several models to gauge the
complexity of model needed, for instance, to determine which
explanatory variables are needed, the forms of their effects, and
whether interaction terms are needed. As in regression analysis,
there is a trade-off between the desirability of a good fit (small
G2) and a parsimonious model. For Table 1, the uniform associ-
ation model satisfies both criteria well, both for the cumulative
logit and for the adjacent-categories logit type of model.

The cumulative logit and adjacent-categories logit both pro-
vided similar fits for Table 1. This similarity of results happens
often in practice, so the choice between these model types must
be based on other grounds. When one wants inferences to apply
to an assumed underlying continuum for the response, the cu-
mulative logit model is convenient. If that model fits well for an
underlying continuous response variable, then it also fits well
for any choice of categories for the response. The effect parame-
ters will be about the same size regardless of the choice of re-
sponse categories.

On the other hand, when one wants inferences to apply to
a fixed set of response categories, the adjacent-categories logit
model may be more convenient. With it, for each pair of re-
sponse categories a and b, one can describe how the odds of
response in category a, rather than category b, depend on ex-
planatory variables. With the cumulative logit, description ap-
plies instead to the odds of response below y rather than above
y for an arbitrary fixed point y. With the adjacent-categories
logit, the values of effect parameters will depend strongly on the
choice of categories for the response. The parameters tend to
have smaller values when the number of response categories in-
creases, because the local odds ratios then describe association
over more restricted ranges.

Computational Issues
The ordinary least squares procedures used in fitting regres-

sion and ANOVA models cannot be used with models for cate-
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gorical data. The main difficulty is that statistics such as sample
logits do not have variance that is constant for all levels of the
explanatory variables. There are two related estimation meth-
ods that can be used: maximum likelihood and weighted least
squares. Weighted least squares is a generalization of ordinary
least squares that gives relatively more weight to a sample logit
as its variance decreases. Maximum likelihood estimates are the
values for the parameters under which the observed data would
have had the highest probability of occurrence; they are calcu-
lated through iterative use of a weighted least squares algo-
rithm. The two methods give very similar results for large sam-
ples. For small samples, weighted least squares can be somewhat
unreliable; for instance, estimates do not exist if there are zeros
in some cells of the table. Also, weighted least squares cannot
be used if any explanatory variables are continuous. Thus,
maximum likelihood is the preferred method for most analyses,
and this is the method used to obtain estimates reported in this
article.

Though iterative methods are needed to solve the equations
that determine maximum likelihood estimates, these methods
are becoming increasingly available in statistical computer
packages. Most packages use the Newton-Raphson iterative
method, for which adequate convergence usually occurs within
a few cycles for tables of only two or three dimensions. The
estimated covariance matrix of the model parameter estimates
is produced as a by-product of this method.

The statistical computer package SAS (SAS Institute, Inc.,
1987) can be used to fit all models discussed in this article. The
supplemental procedure LOGIST (Harrell, 1986) in SAS fits reg-
ular logistic regression models when the response variable has
two categories, and it fits cumulative logit models when there
are more than two response categories. This program uses max-
imum likelihood estimation, and it can be used with categorical
or continuous explanatory variables. The newest version per-
mits the testing of the assumption that the effect is the same for
each cut point, and it permits the fitting of more general models
in which this assumption is not made. The procedure CATMOD
in SAS is a general procedure that enables the user to define a
wide variety of models for a categorical response variable. Max-
imum likelihood is available as an option for the standard re-
sponse function, which is the baseline-category logit. For other
response functions, weighted least squares is used, in which case
the explanatory variables must all be categorical.

Appendix A gives the code for using PROC LOGIST to fit cumu-
lative logit models to Table 1, using maximum likelihood. For
PROC LOGIST, k + 1 denotes the number of response categories,
so k = 3 in this case. The model statement MODEL MENTAL =
SES treats SES as a quantitative variable with the scores sup-
plied with the input data, so in this case it gives the uniform
association model for cumulative odds ratios. The variables A-
E are dummy variables for the first five levels of SES. The sec-
ond model statement fits these as explanatory variables and cor-
responds to the row effects models.

Appendix B gives the code for using PROC CATMOD in SAS
to fit the logit model for uniform cumulative odds ratios using
weighted least squares and the logit model for uniform local
odds ratios using maximum likelihood. For either model, there
are 18 sample ordinal logits, 3 for each row of Table 1. Each

model has four parameters, the three cut point parameters { a { ,
KI, a3} and the /3 effect parameter. Thus the design matrix has
dimensions 18X4. The RESPONSE statement forms the 18 sam-
ple cumulative logits, 3 for each row. With Version 6 of SAS
for the personal computer, this is done automatically with the
statement RESPONSE CLOGITS;. When there is no RESPONSE
statement before the MODEL statement, the model uses base-
line-category logits. The maximum likelihood fit for the adja-
cent-categories logit model can be obtained by fitting the corre-
sponding baseline-category logit model. The matrix entered in
the second MODEL statement is the design matrix for the base-
line-category logit model that makes it equivalent to the adja-
cent-categories logit model. The fourth element in each row of
the design matrix has the value /'(4 — _/), for ;' = 1, • • •, 6 andj
= 1, 2, 3; this is the coefficient of 0 for the model implying uni-
form local odds ratios.

The procedure LOGLINEAR in SPSS" can be used to fit adja-
cent-category logit models but not cumulative logit models. The
models are fitted by identifying them with corresponding log
linear models (uniform association and row effects models). See
Agresti (1984, Appendix D) and Norusis (1985) for details.

The computer package GLIM (Numerical Algorithms
Group Inc., 1985) can also be used to fit these models. The adja-
cent-categories logit model is obtained by fitting the equivalent
log linear model (see Agresti, 1984, Appendix D) and the cumu-
lative logit model is fitted using a supplementary program
(Hutchison, 1984).

Increased Power With Ordinal Models

When classifications are ordinal and one expects a positive or
a negative trend, one may be able to summarize the association
adequately by a single statistic, such as an estimated uniform
cumulative odds ratio. The test of independence is then based
on a chi-square statistic having only a single degree of freedom.
If the model on which the statistic is based fits well, such a test
is much more powerful than the usual Pearson test of indepen-
dence; that is, it will be more likely to give a small P value when
there truly is an association with a positive or a negative trend.

I now outline the reason for the advantage in power that a
chi-square test with a single degree of freedom has. When the
null hypothesis of independence is false, chi-square statistics
have large-sample noncentral chi-square distributions. If two
statistics capture the same basic information about the associa-
tion, they share the same noncentrality. For fixed noncentrality,
power increases as degrees of freedom decrease. Consequently,
it is desirable to obtain the noncentrality using a statistic having
as few degrees of freedom as possible. The chi-square statistic
in the Pearson test of independence does not do this; it is de-
signed to detect any type of deviation from the null hypothesis,
so it uses all (r — l)(c - 1) degrees of freedom. The model-based
statistics described in this article detect only certain types of
deviations, but they are the ones of most importance for ordinal
variables. Hence they are based on fewer degrees of freedom
and usually have greater power than the Pearson test. Of course,
they may be less powerful if the actual association is described
poorly by the model on which the statistics are based (just as
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the / test for the regression slope will not do well if there is really
a quadratic relationship rather than a linear one).

Literature Review

Nontechnical introductions to ordinary logit and log linear
models were given by Upton (1978), Swafford (1980), Gilbert
(1981), and Agresti and Finlay (1986, chap. 15). Slightly more
advanced treatments were given by Fienberg (1980) and Agresti
(1984, chaps. 1-4, 6). Haberman's (1978) text is considerably
more technical but shows lots of applications. The book by
Bishop et al. (1975) is a classic reference for log linear models,
but it deals almost exclusively with models that treat all vari-
ables as nominal.

Discussions of the cumulative logit model include those by
Williams and Grizzle (1972), Simon (1974), Bock (1975, pp.
544-546), McCullagh (1980), Agresti (1984, chap. 7), and An-
derson (1984). Haberman (1974) and Goodman (1979) pre-
sented a class of log linear models, called association models,
that utilize orderings of categories by assigning or estimating
scores. Goodman (1979) characterized the models in terms of
local odds ratios, and he showed how to present analogs of
ANOVA tables for partitioning the association into component
parts. Goodman (1983) showed how these models correspond
to logit models for adjacent categories (see also Goodman,
1981).

An alternative analysis for an ordinal response involves as-
signing scores to response categories and fitting regression
models for the mean response. Because a categorical response
is not normally distributed with constant variance, this analysis
uses weighted least squares rather than ordinary least squares.
Grizzle, Starmer, and Koch (1969), Forthofer and Lehnen
(1981, chap. 6), Semenya, Koch, Stokes, and Forthofer (1983),
and Agresti (1984, section 8.3) described this approach. Mantel
(1963) and Bhapkar (1968) described simple tests, similar to
regression and ANOVA tests, that utilize assigned scores. Analo-
gous tests for partial association were given by Landis, Heyman,
and Koch (1978).

Yet another approach to the analysis of ordinal data is more
nonparametric in flavor. An ordinal categorical version of the
Kruskal-Wallis test can be used to test independence between
an ordinal response and a nominal factor. An ordinal categori-
cal version of Kendall's tau (such as Goodman and Kruskal's
gamma or Kendall's tau-b) can be used as the basis of a single-
degree-of-freedom test of independence between two ordinal
variables. For instance, z = Measurt/(SE of measure) is a suit-
able statistic for testing independence using these measures of
association. See Goodman and Kruskal (1979), Lehmann
(1975, p. 305), and Agresti (1984, chap. 10) for details of these
nonparametric tests. A weakness of the nonparametric ap-
proach is that it is less suitable for describing multidimensional
tables than is an approach involving model building. Many of
these alternative analyses can be implemented in SAS with
PROC CATMOD or PROC FREQ, or in BMDP-4F (Dixon 1981).

Up until now, models as discussed in this article have been
applied in the social sciences primarily in methodological pa-
pers rather than in routine data analysis. This should change
as the models become more widely known to statisticians and

researchers. Most applications have involved the use of associa-
tion models, either for scaling or for describing occupational
mobility (see, for instance, Clogg, 1982, 1984); Smith & Gar-
nier, 1987; and Sobel, Hout, & Duncan, 1985).

In summary, there is a growing body of new methods avail-
able for analyzing ordered categorical response data. I hope this
presentation will encourage researchers to use such methods in
their own analyses of ordinal data.
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Appendix A

SAS (PROC LOGIST) Used to Fit Cumulative Logit Models to Table 1

DATA MENTAL;
INPUT SES ROW $ NO N1 N2 N3 @@;
A=ROW='A;
B=ROW='B';
C=ROW='C;
D=ROW='D';
E=ROW='E';
LABEL MENTAL = 'O=WELL 1 =MILD 2=MODERATE

3=IMPAIRED';
MENTAL=0; DO I = 1 TO NO; OUTPUT; END;
MENTAL= 1; DO I = 1 TO Nl; OUTPUT; END;
MENTAL=2; DO I = 1 TO N2; OUTPUT; END;
MENTAL=3' DO I = 1 TO N3; OUTPUT; END;
CARDS;
1 A 64 94 58 46
2 B 57 94 54 40
3 C 57 105 65 60
4 D 72 141 77 94
5 E
6 F

36
21

97 54 78
71 54 71

PROC LOGIST K=3;
MODEL MENTAL = SES;
PROC LOGIST K=3;
MODEL MENTAL = A B C D E;
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Appendix B

SAS (PROC CATMOD) Used to Fit Cumulative Logit and Adjacent-Categories Logit Model to Table 1

DATA MENTAL;
INPUT SES MENTAL COUNT @@;
CARDS;
1
2
3
4
5
6

1 64
1 57
1 57
1 72
1 36
1 21

1
2
3
4
5
6

2
2
2
2
2
2

94
94
105
141
97
71

1
2
3
4
5
6

3
3
3
3
3
3

58
54
65
77
54
54

1
2
3
4
5
6

4
4
4
4
4
4

46
40
60
94
78
71

PROC CATMOD ORDER=DATA; WEIGHT COUNT;
DIRECT SES;
RESPONSE 1 -1 0 0 0 0, 0 0 1 -1 0 0, 0 0 0 0 1 -1 LOG

0 0 0 1, 1 1 1 0, 0 0 1 1, 1 1 0 0, 0 1 1 1, 1
0 0 0 ;

MODEL MENTAL = _RESPONSE_SES;

PROC CATMOD ORDER=DATA; WEIGHT COUNT;
POPULATION SES;

1 0

1 0

1 0

1 0

1 0

1 0

0

0

0

0

0

0

-3,

-6,

-9,

-12,

-15,

-18,

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

-2,

-4,

-6,

-8,

-io,
-12,

0

0

0

0

0

0

0

0

0

0

0

0

1
1
1
1
1
1

-1,
-2,

-3,

-4,

-5,

-6)
(123 = "CUTPOINTS", 4 = "SES")/ML NOGLS PRED=FREQ;
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