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Abstract We discuss two challenging scenarios for frequentist and/or Bayesian inference for
categorical data. First, for parameter space regions described by order restrictions, frequentist
methods are less straightforward than Bayesian methods, especially for interval estimation.
Second, for marginal modeling, frequentist inference is currently feasible only in relatively
simplistic settings and Bayesian solutions seem to be essentially non-existent. Both areas
have substantial scope for future research.
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1 Introduction

In this article we discuss two types of problem that seem to be insufficiently developed for
frequentist and/or Bayesian inference. First, for parameter space regions described by order
restrictions, frequentist methods are available for significance testing, but they are more com-
plex than Bayesian methods and have rarely been extended to interval estimation. Second,
marginal generalized linear modeling of multivariate responses is available with the method
of generalized estimating equations (GEE), but likelihood-based frequentist methods are cur-
rently feasible only in simplistic settings and there seems to be almost no Bayesian literature.
Our discussion uses the context of categorical response variables, for which much of the
existing state-of-the-art literature originated in Italy, but the issues seem relevant for any type
of data.

In Sect. 2 we discuss certain aspects of order-restricted inference, in the context of a cat-
egorical response variable. We illustrate for the comparison of two groups, such as compar-
isons of proportions for binary data and inference about stochastic ordering for ordinal data.
In Sect. 3 we discuss implementation of marginal modeling with frequentist and Bayesian
approaches. Each section presents challenges for future research.
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2 Order-restricted inference

In 2000 and in 2010 the General Social Survey in the US asked subjects whether they had ever
taken drugs (such as heroin and cocaine) by injecting themselves with a needle. Of subjects
aged 20–39 in 2000, let π1 denote the population proportion who would answer ‘yes.’ For
this same cohort, let π2 denote the population proportion who would answer ‘yes’ in 2010
(i.e., of those then having age 30–49). With a stable population, necessarily π1 ≤ π2. How
can we find a confidence interval for π2 − π1 that respects such a condition?

There is a substantial literature on order-restricted inference, as summarized by
[27–29,33]. However, that literature is dominated by significance testing, with little attention
paid to interval estimation. Asymptotic sampling distributions for order-restricted tests are
non-standard, typically based on chi-bar-squared distributions (weighted averages of chi-
squared distributions). This has both limited the speed with which they have been adopted
in practice and made it awkward to implement standard methods of inverting results of tests
to construct confidence intervals. For example, Robertson et al. [25] briefly describes the
interval estimation problem before stating that the lack of results are “primarily due to the
general intractability of these types of problems” and Silvapulle and Sen mention that “the
confidence set estimation problem becomes more unmanageable in the constrained statistical
inference cases” reviewed the few articles that address order-restricted interval estimation,
some of which show how methods (such as the bootstrap) that are typically used when tra-
ditional methods fail are inadequate. To find a confidence interval for a parameter such as
π2 − π1 that respects an order condition, most methodologists would probably merely form
an ordinary interval and then truncate results.

By contrast, it is straighforward to use Bayesian methods for this purpose, combining prior
distributions that impose the order restriction with the product binomial likelihood function
for independent samples. For the survey mentioned above, 28 of 938 subjects of age 20–39
in 2,000 reported taking drugs by needle injection, and 25 of 667 subjects of age 30–49 in
2010 reported taking drugs by needle injection. Using a triangular uniform prior density over
the region 0 ≤ π2 − π1 ≤ 1 yields a 95 % highest posterior density interval for π2 − π1 of
(0.0, 0.026).

Ordered categorical data provide a more general setting in which a variety of order-
restricted questions naturally occur. We illustrate with Table 1, analyzed by [1]. This 2 ×
5 contingency table results from a clinical trial that observed the outcome for patients who
experienced trauma due to subarachnoid hemorrhage. A study objective was to determine
whether a more favorable outcome tends to occur with the drug treatment group than with
placebo. In the sample, the two rows are strictly stochastically ordered, with the drug treatment
being higher than the placebo on the ordinal outcome measure. How can we summarize the
evidence that the corresponding population conditional distributions have the same strict
stochastic ordering? In a 2 × c table, this is equivalent to the condition that the log of the
cumulative odds ratio θ j obtained by collapsing the table to a 2 × 2 table by combining
the first j columns and combining the last c − j columns is positive, j = 1, . . . , c − 1.
Alternatively, we could analyze this for a different ordinal odds ratio, such as the local odds
ratios based on pairs of adjacent columns.

In a 2× c contingency table with a column response variable, it is common to assume that
each row of the table ni = (ni1, ni2, . . . , nic) has an independent multinomial distribution,
with parameter π i being the vector of conditional probabilities in row i . Altham [3] gave
a simple Bayesian solution to the stochastic ordering question, using independent Dirichlet
priors for π2 and π2 with hyperparameter vector αi = (αi1, αi2, . . . , αic), i = 1, 2. The
posterior distribution of (π i | ni ) is then Dirichlet with parameters (ni +αi ), i = 1, 2. Sym-
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metric Dirichlet priors with {αi j = c} are non-informative in terms of association directions,
satisfying prior log(θ j ) = 0 for all j . Common special cases are the uniform distribution
(c = 1) and the Jeffreys prior (c = 0.5). For them, the prior probability of a stochastic order
in a particular direction is 1/c [3]. For the posterior Dirichlet, using the equivalence of a
Dirichlet random variable with differences between certain order statistics from a uniform
distribution over [0, 1], Altham derived the posterior probability of a stochastic order. Let
{μ j = n1 j + α1 j } and {ν j = n2 j + α2 j }. Let μ = (μ1 + · · · + μc) and ν = (ν1 + · · · + νc)

be the effective posterior sample sizes. The posterior probability that row 2 is stochastically
larger than row 1 equals

∑

s1

· · ·
∑

sc

(
μ1+ν1−1

s1

)(
μ2+ν2

s2

) · · · (μc−1+νc−1
sc−1

)(
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)

(
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ν−1
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where each s j index varies between 0 and the upper limit in the corresponding binomial
coefficient, but such that (s1 + · · · + s j ) ≤ (μ1 + · · · + μ j − 1) for 1 ≤ j ≤ c − 1. For
Table 1, with uniform prior densities, the posterior probability that the response for drug is
stochastically higher than for placebo is 0.705.

Altham’s derivation does not extend to alternative types of ordering (such as positive
local log odds ratios) for 2 × c tables or to r × c or multiway contingency tables. However,
with Dirichlet priors, the posterior probability of a condition such as a particular stochastic
ordering of r rows on an ordinal response can be simulated simply and accurately. Kateri and
Agresti [17] gave details and examples.

How might one answer the question about a stochastic ordering from a frequentist per-
spective? As in [1,5], we could test the null hypothesis of identical distibutions against an
order-restricted alternative hypothesis such as stochastic ordering. However, because the
union of H0 and Ha is not the entire parameter space, such inference is not well suited for
determining whether the ordinal structure truly holds. Agresti and Coull [1] showed that the
P value from a likelihood-ratio test can be very small even when the sample badly violates
the order restriction, merely because the ordinal condition is more consistent with the data
than is the narrow null hypothesis.

A more appropriate frequentist approach for the posed question about a stochastic ordering
uses an intersection–union test [9]. Consider a particular type of ordinal condition in a 2 × c
table expressed in terms of c − 1 ordinal odds ratios, such as uniformly positive cumulative
log odds ratios for all columns j . One regards the null hypothesis H0 that the order restriction
does not strictly hold as the union of c − 1 events, where event k says that the kth of the log
odds ratios is >0. The alternative hypothesis states that the order restriction strictly holds,
that is, it is the intersection event that all c − 1 of the log odds ratios are positive. To achieve
overall size α, for each individual log odds ratio k we conduct an α-level one-sided test that it
is ≤0 versus the alternative that it is >0. For example, we could use the signed square root of
the Pearson statistic for the relevant 2 × 2 table, which is the one-sided two-sample z statistic
for comparing two proportions using the pooled standard error. We then reject the overall
H0 if each of the c − 1 individual tests is significant. From [9], this test has large-sample
size of α. Moreover, Berger showed that this test is also the likelihood-ratio test for this
decomposition of the parameter space. One can regard the P value for the test as equaling
the maximum of the P values for the individual tests. For Table 1, using the two-sample
one-sided z test statistic, the minimum individual z score occurs for the test of log(θ4) = 0,
with z = 0.66 generating a P value = 0.25. Here, we have conducted the individual tests
under the null condition that log(θ j ) = 0 and acted as if this gives the same P-value as testing
under log(θ j ) ≤ 0, which seems intuitively reasonable but requires further justification. In
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Table 1 Cross classification of
treatments and extent of trauma
due to subarachnoid hemorrhage,
with conditional distributions in
parentheses

Treatment
group

Outcome

Death Vegetative
state

Major
disability

Minor
disability

Good
recovery

Placebo 59 (28 %) 25 (12 %) 46 (22 %) 48 (23 %) 32 (15 %)

Drug 135 (23 %) 39 (7 %) 147 (25 %) 169 (29 %) 102 (17 %)

a somewhat different order-restricted setting, Dardanoni and Forcina [13] used this type of
approach to evaluate Lorenz curve orderings.

Compared to the Bayesian approach, an unsatisfying aspect of this test is its severe dis-
creteness. For example, if all except one of the sample log odds ratios take large positive
values, the P value is governed essentially completely by that one exception; that is, we could
change the counts in the table in any way whatever that keeps that one corresponding 2 ×
2 table (for the exception) the same but for which all the other individual P values remain
smaller than the P value for the exception, and the overall P value of the intersection–union
test will not change. Also, it is awkward to handle more complex structures, such as when
Ha is an unspecified stochastic ordering among several unordered groups (i.e., a union of
intersections of events). In future research, it is of interest to extend frequentist methods such
as the intersection-union test to more complex settings. These include a union of intersections
of events for mixtures of nominal and ordinal variables in two-way contingency tables, and
further generalizations for multiway contingency tables and for marginal distributions of a
multivariate ordinal response. Also, ultimately, estimating effect size has greater importance
than significance testing. Assuming a particular ordinal structure, how can we construct good
frequentist confidence intervals for measures such as assumed positive cumulative log odds
ratios? As already mentioned, for a Bayesian approach it is straightforward to construct
posterior intervals over constrained parameter spaces.

3 Marginal models

We next consider a problem for which neither frequentist nor Bayesian methodology is well
developed, and the Bayesian approach may be the more difficult of the two to implement. We
introduce basic issues using Table 2, which shows data from a recent General Social Survey:
Each subject was asked about the success of the US government in y1 = providing health
care and y2 = protecting the environment. To analyze whether responses tend to be more
positive on one issue than the other, we could apply a standard ordinal model with a location
shift to the two marginal distributions. One such possibility is the cumulative logit model

logit[P(y1 ≤ j)] = α j , logit[P(y2 ≤ j)] = α j + β, j = 1, 2.

The simple special case β = 0 is marginal homogeneity. Fitting the model of marginal
homogeneity and testing whether it is adequate is a standard method of square contingency
table analysis. Yet, there seems to be little (if any) literature on Bayesian approaches for such
models and for their extensions to multiway contingency tables.

In practice, the context is usually much more complex. We may have a cluster of observa-
tions (yi1, yi2, . . . , yiT ) for subject i (e.g., repeated measures or longitudinal data), the cluster
sizes Ti may vary, and it is relevant to explore effects of explanatory variables on each yit

marginally. Moreover, in longitudinal studies there are usually some missing observations,

123



Two Bayesian/frequentist challenges 129

Table 2 Cross classification of
General Social Survey responses
about success of US government
in providing health care and in
protecting the environment

Health care Environment

Successful Mixed Unsuccessful Total

Successful 199 81 83 363

Mixed 129 167 112 408

Unsuccessful 164 169 363 696

Total 492 417 558 1, 467

because some subjects may drop out during the study, thus contributing only partial sets of
observations.

Frequentist likelihood-based inference, such as maximum likelihood model fitting, is
feasible for simple data such as in Table 2, but not for the more general context. Such inference
is awkward for marginal models, even without explanatory variables, mainly because the
multinomial likelihood refers to the joint distribution rather than the marginal distributions.
For example, for a 3 × 3 table such as Table 2, the multinomial likelihood for cell probabilities
{πi j } and cell counts {ni j } is

L(π) ∝ π
n11
11 π

n12
12 · · · πn33

33

but the model parameters refer to marginal probabilities such as P(y1 ≤ 1) = π11+π12+π13.
More generally, with T observations on a multicategory response with explanatory variables,
the likelihood function uses a product of multinomial distributions at the predictor settings,
each having cT probabilities, but we cannot substitute the marginal model formula in this
likelihood to utilize the standard fitting methods such as Fisher scoring.

Frequentist approaches for marginal modeling of multivariate categorical responses can
handle relatively simple cases, such as a common but not very large T for all subjects
and relatively few categorical explanatory variables. Williamson and Kim [32] proposed a
probit model in terms of a latent multivariate normal model, Masarotto and Varin [22] used
Gaussian copula marginal regression and implemented it in the R package gcmr, Lang and
Agresti [20] and several follow-up papers by Lang used methods for maximizing a likelihood
subject to constraints, that is, maximizing the joint multinomial likelihood function while
regarding the model formula as a constraint equation. For other approaches, such as using
a correspondence with an equivalent saturated loglinear model or with the equivalent set
of (univariate, bivariate, trivariate, ...) distributions, see [10,14–16,23]. There is also now a
considerable literature on order-restricted inference for marginal models, such as [4,6–8].

Lang’s [18,19] research incorporates methods for solving Lagrangian likelihood equations
with a refinement of the Newton-Raphson algorithm, and is useful for a wide variety of
models of form L(μ) = Xβ for probabilities or expected frequencies μ in a contingency
table, with link function L. An important special case is the generalized loglinear model
C log(Aμ) = Xβ,which includes marginal logit models. Lang’s R function mph.fit (mph =
multinomial Poisson homogeneous) can fit many such models. Colombi and Cazzaro [12]
extended his approach to include inequality constraints, and those authors and S. Giordano
extended Lang’s R function in their impressive hierarchical multinomial marginal models
(hmmm) R package.

These approaches for maximum likelihood model fitting are not feasible for implemen-
tation with large T or with data sets that also contain continuous predictors and different
cluster sizes because of issues such as missing data. So in practice, for frequentist inference,
methodologists usually use the generalized estimating equations (GEE) approach, which is
a multivariate generalization of quasi-likelihood methods. For a multivariate response yi for
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subject i with E( yi ) = μi and var( yi ) = V i and with models expressed simultaneously for
the marginal means, the estimates are solutions of generalized estimating equations

n∑

i=1

D
′
i V−1

i ( yi − μi ) = 0,

with Di = ∂μi/∂β. The GEE generalize likelihood equations for a univariate response,
without fully specifying the joint distribution. That is, the GEE method provides estimates
of regression parameters without assuming a full multivariate distribution. In V i , it assumes
a “working” correlation structure (e.g., exchangeable, autoregressive) for yi . The estimator
of β is consistent even if the correlation structure is misspecified, when the marginal model
is correct. The method uses empirical robust estimates of standard errors that are valid even
if the correlation structure is misspecified, based on a sandwich estimated covariance matrix.
Originally specified by [21] for univariate responses [30] extended GEE methods to han-
dle multinomial (ordinal or nominal) responses, potentially increasing efficiency by basing
working correlations on pairwise ordinal odds ratios.

From a frequentist perspective, more research would be useful here for ordinary likelihood
methods, because GEE methods have limitations from not being likelihood-based. Related to
this, GEE methods rely on Wald methods of inference, which are not optimal. It is desirable
to expand the scope to handle marginal models that are currently not feasible to fit. It may
be easier to develop further compromises between maximum likelihood and GEE, such as
by using composite likelihood methods, as surveyed by [31]. Future research with marginal
modeling could also possibly generalize [2], who proposed a Pearson-type “pseudo-score”
statistic that does not require the full likelihood and may generalize to multivariate settings.

As mentioned, in the general marginal modeling format, Bayesian approaches also must
deal with the awkward form of the likelihood function relative to the model formula. The
relatively sparse Bayesian literature includes using a latent multivariate normal model [11],
using a multivariate logistic with correlation parameters and marginal logistic distributions
[24], and marginal models with inequality constraints [8]. See [26] for the Bayesian approach
to composite likelihood analyses.

4 Conclusion

We have highlighted two challenging scenarios for frequentist and/or Bayesian inference for
categorical data. The challenge of developing interval estimation methods for order-restricted
inference seems relevant for any type of data, and the challenge of extending frequentist and
Bayesian methods for marginal modeling seems relevant for all but multivariate normal
modeling.

Of course, other challenges exist that are broadly recognized these days by the Statistics
community. Perhaps foremost is further development of statistical analyses for “big data.”
Although considerable new methodology has been developed on regularization methods
such as the lasso, much remains to be done. For categorical data, especially challenging is
the issue of Bayesian inference, in particular, identifying appropriate noninformative priors
when the number of parameters exceeds the number of observations (such as in much genetics
research). For instance, at the March 2013 University of Padova workshop Recent Advances in
Statistical Inference: Theory and Case Studies, the talk by Jim Berger on “Overall Objective
Priors” which is online at http://homes.stat.unipd.it/sites/homes.stat.unipd.it.lauraventura/

123

http://homes.stat.unipd.it/sites/homes.stat.unipd.it.lauraventura/files/berger


Two Bayesian/frequentist challenges 131

files/berger showed that different highly disperse Dirichlet priors can lead to quite different
posterior inferences about multinomial parameters.

Many of the issues highlighted in the Padova workshop are quite different from ones that
might have been discussed in such a workshop a quarter-century ago. In another quarter
century, we can only vaguely imagine what new challenges will have arisen, as our field
continues its rapid growth to deal with new types of data and enormous magnitudes of it. An
increasingly relevant question, for both frequentists and Bayesians, seems to be this: What
is the core unifying theory that underlies methods for Statistical Science?

Acknowledgments Thanks to Sabrina Giordano and Maria Kateri for helpful comments.
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