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Abstract

We present a uni�ed Bayesian approach for the analysis of one-parameter item response mod-
els. A necessary and su�cient condition is given for the propriety of posteriors under improper
priors with nonidenti�able likelihoods. Posterior distributions for item and subject parameters
may be improper when the sum of the binary responses for an item or subject takes its min-
imum or maximum possible value. When the item parameters have a at prior but the item
totals do not fall at a boundary value, we prove the propriety of the Bayesian joint posterior
under some su�cient conditions on the joint (proper) distribution of the subject parameters. The
methods are implemented using Markov chain Monte Carlo and illustrated with an example from
a cross-over study comparing three medical treatments. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Item response models were developed in educational testing to describe how the
probability of a correct answer depends on the subject’s ability and the question’s
di�culty. Speci�cally, the models assume that subject i has a parameter �i describing
that subject’s ability and question j has a parameter �j such that its negative describes
its level of di�culty (i = 1; : : : ; n; j = 1; : : : ; k). The response Xij denotes the outcome
for the ith subject on the jth question, where Xij = 1 for a correct response and 0 for
an incorrect response.
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Let pij = P(Xij = 1). The simplest and most widely quoted model for pij is the
Rasch model (Rasch, 1961), for which

pij = exp(�i + �j)[1 + exp(�i + �j)]−1: (1)

This is also referred to as the one-parameter logistic model, since as a function of �i
it has the form of the distribution function of a one-parameter logistic distribution with
location parameter −�j. A related popular model is the probit model, pij=�(�i+ �j),
where � is the standard normal cumulative distribution function. These models are
special cases of the generalized linear model

F−1(pij) = �i + �j; (2)

where the link function F−1 is the inverse of an arbitrary continuous distribution
function. A systematic development of item response theory from the classical point
of view owes much to the pioneering work of Lord (e.g., Lord, 1953), Rasch (1961),
and their colleagues. Among the many noteworthy contributions in the same vein are
Andersen (1970) and Bock and Lieberman (1970).
Though originally introduced for psychometric applications, the item response form

of model (2) is increasingly being used for a variety of applications, such as repeated
measurements in biomedical studies. This article uses models of this form to analyze
results of a cross-over study comparing three medical treatments on a binary response.
In many applications, � is the parameter of interest and � is treated as a nuisance
parameter. For example, in educational testing interest usually focuses on inference
for {−�j}, the di�culty values of the questions, rather than {�i}, the subject-speci�c
parameters. There could be other instances though, for example in longitudinal models
with individual frailties, when one might be interested in {�i} themselves or in making
predictions of pij for speci�c subjects or clusters. However, the Markov chain Monte
Carlo numerical integration technique that we use for implementation of the Bayesian
procedure is capable of producing the posteriors of {�i} also, if needed.
Throughout this article, we use the generic term “item parameters” to refer to com-

ponents of �. In recent years, the literature has undergone dramatic expansion in the
context of generalized linear mixed models (e.g., Breslow and Clayton, 1993), which
treat � as a random e�ect. The parameter � captures heterogeneity in the individual
subjects, and is very convenient for conditionally independent hierarchical modeling.
Our objective in this paper is to introduce a uni�ed Bayesian approach for the

analysis of item response models of form (2). Prior knowledge often suggests an
asymmetric treatment of the parameters in the prior distributions. In many applications,
for example in IQ tests, previous studies may suggest that {�i} are approximately
normal with a certain standard deviation. On the other hand, there may be little, if
any, information about the distribution of item parameters, suggesting that a at or
highly di�use prior may be sensible for them. A primary question addressed in this
paper is the extent to which it is possible to use an improper prior for �.
Section 2 discusses the selection of priors and the propriety of posteriors under

di�erent choices of improper priors. In particular, a simple necessary and su�cient
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condition is given for the propriety of the posteriors under improper priors with a
nonidenti�able likelihood. As a corollary to this result, it is shown that for an arbitrary
link function, the choice of at priors for both �=(�1; : : : ; �n) and �=(�1; : : : ; �k) leads
to improper posteriors. Under the same choice of priors, the joint distribution of linear
contrasts in {�j} is also improper when

∑n
i=1 xij=0 or n for some j or

∑k
j=1 xij=0 or

k for some i. Once these boundary values are excluded, it is shown that for a general
class of link functions corresponding to cdf’s with certain �nite moments, Laplace’s
at prior produces proper posteriors for the contrasts. This class of links includes, but
is not limited to, the logit, probit, log–log, and certain other links which are inverses
of Student’s t cdf’s. It is also shown that when the link function is the inverse of a
Cauchy cdf, the posterior is improper under Laplace’s prior. Moreover, if a proper prior
is assigned to � but a at prior is assigned to �, then exclusion of the two boundary
values of

∑n
i=1 xij for all j = 1; 2; : : : ; k (but not necessarily those of

∑k
j=1 xij) along

with �niteness of certain prior moments of � yields a proper posterior for (�; �), and
a fortiori for all contrasts, under weaker moment conditions for the link function. In
particular, su�cient conditions are provided for a proper posterior of (�; �) under a
multivariate t-prior for � and at prior for �.
Section 3 discusses implementation of the Bayes procedures via Markov chain Monte

Carlo (MCMC) integration techniques. A general result shows how to simplify the
calculations when the inverse link F satis�es the increasing failure rate (IFR) property.
Section 4 illustrates some of the proposed Bayesian methods for the cross-over study.
Bayesian methods previously proposed for item response models are link-speci�c.

For the Rasch model and its two-parameter extension, relevant work includes Birn-
baum (1969), Owen (1975), Swaminathan and Gi�ord (1982, 1985), Leonard and
Novick (1985), Mislevy and Bock (1984), Kim et al. (1994), and Tsutakawa and var-
ious co-authors listed in the references (e.g., Tsutakawa and Lin (1986), Rigdon and
Tsutakawa (1983, 1987), Tsutakawa (1984), Tsutakawa and Soltys (1988), Tsutakawa
and Johnson (1990)). However, these methods are primarily approximate Bayes due
to analytically intractable posteriors. Albert (1992) conducted a full Bayesian analysis
for the two-parameter probit model, but his parameter augmentation technique applies
only to the probit link. Natarajan and McCulloch (1995) have provided necessary and
su�cient conditions for the propriety of posteriors for certain generalized linear models
with the logit link, but their choice of priors is di�erent from what we have considered.
One of the main objectives of this paper is to present a uni�ed Bayesian analysis of
item response models that works for a variety of link functions.

2. Choice of priors and e�ect on posterior propriety

We assume the general one-parameter item response model (2), where {Xij} are
independent. The likelihood function is

L(�; �|x) =
n∏
i=1

k∏
j=1
[Fxij (�i + �j) �F

1−xij (�i + �j)]; (3)

where �F = 1− F and x= (x11; : : : ; x1k ; : : : ; xn1; : : : ; xnk).
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2.1. E�ects of at priors

We �rst consider possible prior distributions �(�; �) for � and �, having a corre-
sponding posterior distribution

�(�; �|x)˙ L(�; �|x)�(�; �):
When the prior information is vague, one might consider noninformative priors. The
simplest, due to Laplace, is �(�; �)˙ 1. However, this prior leads to improper poste-
riors for � and �, as a consequence of the following lemma. This lemma is possibly
known to many Bayesians and seems to be implicit in Dawid (1979) and O’Hagan
(1994, pp. 72, 158), but the following explicit formulation is worthwhile for this article.

Lemma 1. Suppose the parameter vector is (�1; �2); where �1 and �2 may be vector
valued. Suppose X has a nonidenti�able pdf f(x|�1; �2) = f(x|�1). For a prior
�(�1; �2); the posterior �(�1; �2|x) is proper if and only if �(�1|x) and �(�2|�1) are
both proper.

This lemma follows from the expression

�(�1; �2|x)˙ f (x|�1; �2)�(�1; �2)
= f (x|�1)�(�1)�(�2|�1)
˙ �(�1|x)�(�2|�1):

Remark 1. Dawid (1979) calls a parameter �2 nonidenti�able if �(�2|�1; x)=�(�2|�1),
that is observing data x does not increase the prior knowledge about �2 given �1.
Noting that

�(�2|�1; x)˙ f(x|�1; �2)�(�2|�1)�(�1);
�2 nonidenti�able if and only if f(x|�1; �2) is free of �2, that is f(x|�1; �2) =
f(x|�1). Thus, Dawid’s formal de�nition of nonidenti�ability is equivalent to the lack
of identi�ability of the likelihood. The present lemma lays out conditions leading to
the propriety or otherwise of posteriors in the presence of nonidenti�ability.

Using this lemma, we show now that Laplace’s prior leads necessarily to an improper
posterior in the present context.

Theorem 1. For the likelihood function (3) and the prior �(�; �) ˙ 1; the posterior
�(�; �|x) is improper.

Proof. Make the one-to-one linear transformation �i = �i + �k (i = 1; : : : ; n), �j = �j −
�k ( j = 1; : : : ; k − 1). Write � = (�1; : : : ; �n), � = (�1; : : : ; �k−1). Then (�; �) is one to
one with (�; �; �k) and the likelihood function given in (3) can be rewritten as

L(�; �; �k |x) =
n∏
i=1

k−1∏
j=1
[Fxij (�i + �j) �F

1−xij (�i + �j)]
n∏
i=1
[Fxik (�i) �F

1−xik (�i)]: (4)
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Since the Jacobian of the transformation from (�; �) to (�; �; �k) is a constant free of
any parameter, �(�; �; �k) ˙ 1. This implies �(�k |�; �) ˙ 1, which is improper. Now
apply Lemma 1 with �2 =�k and �1 = (�; �) to conclude that �(�; �; �k |x) is improper.
Hence,∫ ∞

−∞
· · ·

∫ ∞

−∞
�(�; �|x) d� d�˙

∫ ∞

−∞
· · ·

∫ ∞

−∞
�(�; �; �k |x) d� d� d�k =∞:

The nonidenti�ability of the likelihood becomes apparent with the reparameterization
(4). A similar nonidenti�ability occurs for more complex item response models as
well. The result as stated in Lemma 1 should be of use in other similar contexts.
Swaminathan and Gi�ord (1985, p. 353) suggested that using at priors for both �
and �, the Bayesian analysis is equivalent to the likelihood-based analysis. However,
since the posterior is then improper, it is not possible to �nd any meaningful descriptive
measures such as the posterior mean and posterior quantiles, although it is still possible
to �nd a posterior mode that is equivalent to the ML estimate. The ML estimator,
however, is inconsistent. (see, e.g., Baker, 1992).

Theorem 1 raises the question of whether the subset (�; �) of (�; �; �k) has a proper
posterior, since the nonidenti�ability of the likelihood disappears when it is expressed
only in terms of �, and �. However, for Laplace’s prior the answer continues to be
negative when either for at least one i, the {xij; j=1; : : : ; k} are all zeros or 1’s, or for
at least one j, {xij; i=1; : : : ; n} are all zeros or all 1’s. To see this, consider likelihood
(4) as L(�; �|x). Also, let ti =

∑k
j=1 xij (i = 1; : : : ; n) and yj =

∑n
i=1 xij ( j = 1; : : : ; k).

Then, the following result holds.

Theorem 2. Suppose that ti = 0 or k for at least one i or that yj = 0 or n for at
least one j. Then; for the prior �(�; �)˙ 1; �(�; �|x) is improper.

Proof. Suppose tm = 0, that is xm1 = · · ·= xmk = 0. Now,∫ ∞

−∞

k−1∏
j=1

�F(�m + �j) �F(�m) d�m¿
∫ 0

−∞

k−1∏
j=1

�F(�j) �F(0) d�m =+∞:

Similarly, if tm = k, that is xm1 = · · ·= xmk = 1, then∫ ∞

−∞

k−1∏
j=1
F(�m + �j)F(�m) d�m¿

∫ ∞

0

k−1∏
j=1
F(�j)F(0) d�m =+∞:

Also, if yl = 0, that is x1l = · · ·= xnl = 0, one gets∫ ∞

−∞

n∏
i=1

�F(�i + �l) d�l¿
∫ 0

−∞

n∏
i=1

�F(�i + �l) d�l¿
n∏
i=1

�F(�i)
∫ 0

−∞
d�l =+∞:

Finally, if yl = n, that is x1l = · · ·= xnl = 1,∫ ∞

−∞

n∏
i=1
F(�i + �l) d�l¿

∫ ∞

0

n∏
i=1
F(�i + �l) d�l¿

n∏
i=1
F(�i)

∫ ∞

0
d�l =+∞:
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As a consequence of the above �ndings, the joint posterior of (�1; : : : ; �k−1)= (�1−
�k ; : : : ; �k−1 − �k) given x may be improper when ti = 0 or k for at least one i, or
yj = 0 or n for at least one j. It may be noted here that the conditions 0¡ti ¡k
for all i and 0¡yj ¡n for each j are precisely those needed for �niteness of the
ML estimates (see Wedderburn, 1976, or Dellaportas and Smith, 1993). This result
contrasts, however, with the conclusions of the usual one-way normal ANOVA model
considered, for example, in Gelfand and Sahu (1999). To see this, suppose Y1; : : : ; Yk
are independent N(� + �j; 1), ( j = 1; : : : ; k). For Laplace’s prior �(�; �1; : : : ; �k) ˙ 1,
the joint posterior of (�; �1; : : : ; �k) is improper, as a consequence of Lemma 1. Yet
if the likelihood is parameterized only in terms of � = (�1; : : : ; �k), where �j = � + �j,
(j = 1; : : : ; k), and Laplace’s prior is used for these parameters, then the posterior
of � is a product of independent normals. This implies that the joint posterior of
(�1 − �k ; : : : ; �k−1 − �k) = (�1 − �k ; : : : ; �k−1 − �k) is also proper. Gelfand and Sahu
(1999) have also discussed su�cient conditions ensuring the propriety of posteriors in
genralized linear models. They have linked the propriety of the posterior with familiar
notion of estimability.
A natural question to ask here is whether the posterior of (�; �) necessarily becomes

proper under the prior �(�; �) ˙ 1 once the boundary values of the ti’s and the yj’s
are excluded. The answer turns out to be negative unless some appropriate moments of
F are �nite, i.e., F satis�es a certain tail smoothness condition. To see this, let F be
standard Cauchy, n=k=2, x11=1, x12=0, x21=0, and x22=1. Then, t1=t2=y1=y2=1 so
that both boundary values 0 and 2 are excluded. The likelihood function L(�1; �2; �1|x)
is then given by

L(�1; �2; �1|x) =
[
1
2
+
1
� tan

−1(�1 + �1)
] [
1
2
− 1
� tan

−1(�1)
]

×
[
1
2
+
1
� tan

−1(�2)
] [
1
2
− 1
� tan

−1(�2 + �1)
]
:

We shall show
∫∞
−∞ L(�1; �2; �1|x) d�1=∞. The �rst step towards this is the inequality

∫ ∞

−∞
L(�1; �2; �1|x) d�1¿

∫ ∞

0
L(�1; �2; �1|x) d�1

¿ g(�1; �2)
∫ ∞

0

[
1
2
− 1
� tan

−1(�2 + �1)
]
d�1;

where

g(�1; �2) =
[
1
2
+
1
� tan

−1(�1)
] [
1
2
− 1
� tan

−1(�1)
] [
1
2
+
1
� tan

−1(�2)
]
:

Hence, it su�ces to show that

Int def=
∫ ∞

0

[
1
2
− 1
� tan

−1(�2 + �1)
]
d�1 =∞:
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To this end, we �rst use the transformation tan−1(�2 + �2) = 1
2 (� − z). Then, “Int”

simpli�es to

Int =
∫ �−2 tan−1(�2)

0

(
1
2
z
)
1
2
sec2((�− z)=2) dz

=
1
4

∫ �−2 tan−1(�2)

0

z
cos2((�− z)=2) dz

=
1
4

∫ �−2 tan−1(�2)

0

z
1
2 [1 + cos(�− z)]

dz =
1
2

∫ �−2 tan−1(�2)

0

z
1− cos z dz

=
1
2

∫ �−2 tan−1(�2)

0

z

2 sin2
(
1
2 z
) dz = 1

2

∫ �−2 tan−1(�2)

0

(z=2)2(4=z)

2 sin2
(
1
2 z
) dz

¿
∫ �−2 tan−1(�2)

0

dz
z
=∞:

Thus, exclusion of the boundary values of {ti} and {yj}, by itself, is not su�cient
to guarantee the propriety of posteriors. We now prove a theorem which shows that
under some su�cient moment conditions on F , the posterior is indeed proper.

Theorem 3. Suppose (i) 0¡ti ¡k for all i; (ii) 0¡yj ¡n for all j; and (iii)
∫∞
−∞

|z|n+k−1 dF(z)¡∞. Then; under the prior �(�; �)˙ 1, �(�; �|x) is proper.

Proof. Let �=(�1; �2; : : : ; �n; �1; �2; : : : ; �k−1)T. We write u(i−1)k+j=xij (i=1; 2; : : : ; n; j=
1; 2; : : : ; k); z(i−1)k+j as the vector with 1 in places i and n + j, and zeros elsewhere
for j=1; 2; : : : ; k−1, while zik is the vector with 1 in place i and zeros elsewhere. Each
z(i−1)k+j is a vector with n+k−1 components. Let ZT=(z1; : : : ; zk ; : : : ; z(n−1)k+1; : : : ; znk).
Then it is easy to check that F(�i + �j) = F(zT(i−1)k+j�), and rank(Z) = n + k − 1.
Write w(i−1)k+j=1−2xij and Z∗T =(w1z1; : : : ; wkzk ; : : : ; w(n−1)k+1z(n−1)k+1; : : : ; wnkznk).
Since 16ti6k − 1 for all i and 16yj6n − 1 for all j, there exists a¿ 0 such that
Z∗Ta = 0.

Next, we show that there exists a constant K depending only on Z∗ such that

||�||6K ||u|| (5)

whenever

Z∗�6u; (6)

where u = (u1; u2; : : : ; unk)T, ||�||= (�T�)1=2, and ||u||= (uTu)1=2. Let
�= sign(�) = (sign(�1); : : : ; sign(�n); sign(�1); : : : ; sign(�k−1))T;

where the sign function takes the value 1 if its argument is nonnegative and is −1
otherwise. Since rank(Z∗) = rank(Z) = n+ k − 1, there exists a b� ∈ Rnk such that

bT�Z
∗ = �T:
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Let

�=
min16l6nk(al)

2||b�|| :

Then �¿ 0 and a + �b�¿ 0. Hence, by (6), one gets

(a + �b�)Tu¿ (a + �b�)TZ∗�

= �bT�Z
∗� = � sign(�)�¿�||�||:

This proves (5).
Let dF(u) = d(w1F(u1)) d(w2F(u2)) : : : d(wnkF(unk)). It is easy to show that∫

Rn

∫
Rk−1

L(�; �|x) d� d�=
∫
Rn+k−1

L(�|x) d� =
∫
Rnk

∫
Rn+k−1

1[Z∗�6u] d� dF(u);

where 1[Z∗�6u] is the usual indicator function. It follows from (5) and (6) that∫
Rn+k−1

1[Z∗�6u] d�6K ||u||n+k−1:
Thus, assumption (iii) along with the above inequality directly yields the propriety of
the posterior distribution.

Remark 2. Assumption (iii) of Theorem 3 automatically holds for any distribution
with �nite moments. Thus, the theorem applies for the logit, probit and log–log links,
the corresponding distributions being logistic, normal and extreme valued. Also, the
theorem is applicable to t-distributions with degrees of freedom exceeding n+ k − 1.

2.2. Proper prior for subject parameters

As mentioned in the introduction, often it would be natural to assign a proper prior to
� and a at prior to �. We next investigate conditions under which such priors lead to a
proper posterior for (�; �) and a fortiori for all independent linear contrasts in �. In this
regard, it is straightforward to show that an invariance property holds for the posterior
means of the elementary contrasts {�j − �m; 16j 6= m6k} for general link functions
and the location-scale family of priors g�;�(�) = �−ng((�1 − �)=�; : : : ; (�n − �)=�) for
� and the independent at prior for �. The joint posterior of the contrasts {�j − �m}
(and hence their Bayes estimates) is location invariant, not depending on �. Thus, for
inference about the elementary contrasts for this prior, one can take �=0 without loss
of generality.
For this prior structure, to study conditions that lead to a proper posterior, we �rst

need a slight modi�cation of Theorem 3. Speci�cally, suppose zTi = (z
T
i1; z

T
i2), where

zi1 and zi2 are respectively of dimensions k1 and k2 (k1 + k2 = k). Then, writing
�T = (�T1 ; �

T
2 ), the likelihood function is given by

L(�|u) =
n∏
i=1
[Fui(zTi1�1 + z

T
i2�2) �F

1−ui(zTi1�1 + z
T
i2�2)];

where each ui is either 0 or 1. Consider the prior �(�) ˙ g(�1), where g(�1) is a
proper prior. We want to �nd conditions under which the posterior �(�|u) is proper.
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Let Z2 = (z12; : : : ; zn2)T; wi=1− 2ui; i=1; : : : ; n; Z∗T
2 = (w1z12; : : : ; wnzn2), and Z∗T

1 =
(w1z11; : : : ; wnzn1). Following Theorem 3, we assume that

(a) Z2 has rank k2;
(b) there exists a = (a1; : : : ; an)T; ai ¿ 0 for each i such that Z∗T

2 a = 0;
(c)

∫
Rn ||u||k2 dF(u)¡∞, where dF(u) = d(w1F(u1); w2F(u2); : : : ; wnF(un));

(d)
∫
Rk1 ||�1||k2g(�1) d�1¡∞.

Then the following theorem holds.

Theorem 4. Assume (a)–(d). Then; �(�|u) is proper.

Remark 3. Before proving this theorem, we see some of its implications in the present
context. Writing �1 = �, and �2 = �, it follows that if � has a proper prior, but � has
a at prior, assuming that yj =

∑n
i=1 xij does not attain its boundary values for each

j, the joint posterior continues to be proper. The ti =
∑k

j=1 xij can take any values
including its boundaries 0 or k. This is particularly useful when the number of items
is small, for instance, in the example considered by us in Section 4, where k = 3 and
ti = 0 or 3 for 14 subjects.

Proof of Theorem 4. Following the proof of Theorem 3, write

L(�|y) =
∫
Rn
1[Z∗

1 �1+Z
∗
2 �16u] dF(u):

Now, using (5) and (6), we have
∫
Rk1

∫
Rk2
L(�|y)g(�1) d�1 d�2

=
∫
Rn

∫
Rk1

{∫
Rk2
1[Z∗

1 �1+X
∗
2 �26u] d�2

}
g(�1) d�1 dF(u)

6K
∫
Rn

∫
Rk1

||u − Z∗
1 �1||k2g(�1) d�1 dF(u); (7)

where K (¿ 0) is a generic constant. But

||u − Z∗
1 �1||k262k2 [||u||k2 + ||Z∗

1 �1||k2 ]:

Hence, it su�ces to �nd conditions under which

I =
∫
Rn

∫
Rk1
[||u||k2 + ||X∗

1 �1||k2 ]g(�1) d�1 dF(u)¡∞:

But

I =
∫
Rn

||u||k2 dF(u) +
∫
Rk1

||Z∗
1 �1||k2g(�1) d�1: (8)
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The �rst term on the right-hand side of (8) is �nite because of (c). Then, writing
�1(Z∗T

1 Z
∗
1 ) as the largest eigenvalue of Z

∗T
1 Z

∗
1 , the second term on the right-hand

side of (8) equals∫
Rk1
[�T1Z

∗T
1 Z

∗
1 �1]

k2=2g(�1) d�16[�1(Z
∗T
1 Z

∗
1 )]

k2=2
∫
Rk1

||�1||k2g(�1) d�1

which is �nite due to (d). This proves the theorem.

2.3. Hierarchical approach with normal subject prior

In practice, the most common way to apply the previous result would take {�i}
to be iid N(0; �2). However, there would often be no obvious choice for �. One
could, alternatively, use a hierarchical Bayesian approach in which �−2 has a gamma
(a=2; b=2) distribution, that is, pdf proportional to (�2)−(1=2)b−1exp(−a=2�2), for �xed
a(¿ 0) and b(¿ 0). This is equivalent to assuming the multivariate-t prior for �,

�1(�)˙
(
a+

n∑
i=1
�2i

)−(1=2)n−(1=2)b−1
: (9)

It is generally agreed (e.g., Berger, 1985) that the t-priors are more robust than the
normal prior. One can check directly that conditions (a) and (b) of the theorem hold.
Once again, the �niteness of the kth moment of the link function ensures (c). Finally,
in this case, condition (d) holds if∫

Rn
||�||k(a+ ||�||2)−(1=2)n−(1=2)b−1 d�¡∞;

which holds if and only if k − n− b− 2 + k − 1¡− 1, that is n¿ 2k − b− 2. This
condition easily holds when the number of subjects is much larger than the number
of items, which is almost always the case in practice. Also, it is interesting to notice
the analogy of this condition with condition (c) in Theorem 1 of Hobert and Casella
(1996).

3. Implementation of Bayes procedures

Consider �rst the general model (2) and the prior �(�; �)˙
∏n
i=1 g1(�i)

∏k
j=1 g2(�j).

Both g1 and g2 can be improper as long as the posterior �(�; �|x) remains proper. How-
ever, due to nonconjugacy of the prior, the posterior is analytically intractable, and can
be found only via numerical integration. Also, direct numerical integration seems in-
feasible because of the high dimensionality of the problem. Fortunately, the integration
task has become easier due to the advent of Markov chain Monte Carlo techniques.
We shall use, in particular, Gibbs sampling.
Gibbs sampling consists of �nding the conditional distribution of every parameter

given the remaining parameters and the data. In this case the full conditionals are
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given by

�(�i|�l (l 6= i); �; x)˙
k∏
j=1

[Fxij (�i + �j) �F
1−xij (�i + �j)]g1(�i); (10)

�(�j|�m (m 6= j); �; x)˙
n∏
i=1
[Fxij (�i + �j) �F

1−xij (�i + �j)]g2(�j); (11)

i = 1; : : : ; n; j = 1; : : : ; k. Note that the full conditional of �i does not involve the
remaining {�l; l 6= i}, and the full conditional of �j does not involve the remaining
{�m; m 6= j}). The full conditionals, however, are non-standard densities from which it
is not possible to draw samples directly. The general procedure for generating samples
in such cases is to use the Metropolis-Hastings accept–reject algorithm. If, however,
F , �F , g1 and g2 are all log-concave, the full conditionals �(�i|·) and �(�j|·) are all
log-concave and one can then use the adaptive rejection sampling algorithm of Gilks
and Wild (1992).
To see the log-concavity of �(�i|·) and �(�j|·), simply write

log �(�i|�l (l 6= i); �; x) =
k∑
j=1

[xij logF(�i + �j) + (1− xij)log �F(�i + �j)]

+ log g1(�i): (12)

If F , �F and g1 are all log-concave then clearly �(�i|�l (l 6= i); �; x) is log-concave.
Similarly, if F , �F and g2 are log-concave, �(�j|�m (m 6= j); �; x) is log-concave. The
log-concavity of F and �F is ensured if F is an IFR df.
The full conditionals �(�i|�l (l 6= i); �; x) (i = 1; : : : ; n) and �(�j|�m (m 6= j); �; x)

( j = 1; : : : ; k) can all be proper, and yet the posterior �(�; �|x) can be improper (cf.
Casella and George, 1992). For the Rasch model, if one assigns the at prior �(�; �)˙
1, then from Theorem 1, �(�; �|x) is improper. But, it can be shown after some algebra
that the full conditionals �(�i|�l (l 6= i); �; x), and �(�j|�m; (m 6= j); �; x) are all proper.
The multivariate t-prior given in (9) is not log-concave, so direct application of

the algorithm discussed so far is not possible. However, recognizing the hierarchical
structure of the t-prior, one can proceed essentially as before. To see this, rewrite the
prior given in (9) as

[�|R= r] ∼ N(0; r−1In); (13)

f(r) ˙ exp(− 1
2ar)r

(1=2)b−1: (14)

This parameter augmentation or introduction of R simpli�es the MCMC technique (see
e.g. Wake�eld et al., 1994). One now has the full conditional

�(�i|�‘ (‘ 6= i); �; r; x)˙
k∏
j=1

[Fxij (�i + �j) �F
1−xij (�i + �j)] exp

(
− r
2
�
)
; (15)

�(�j|�m (m 6= j); �; r; x)˙
n∏
i=1
[Fxij (�i + �j) �F

1−xij (�i + �j)]; (16)
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Table 1
Cell counts for cross-over study comparing treatments for relief of primary dysmenor-
rhea

Treatment B Treatment C Treatment A

Relief No relief

Relief Relief 8 45
Relief Norelief 4 4
No relief Relief 7 9
No relief No relief 3 6

�(r|�; �; x) ˙ exp
[
−1
2
r
(
a+

n∑
i=1
�2i

)]
r(1=2)(n+b)−1: (17)

Hence, F and �F are both log-concave, so that the full conditionals given in (13) and
(14) are also log-concave. Finally, the full conditional given in (15) is Gamma, and it
is easy to generate samples from the same.

4. An example

We illustrate the Bayesian approaches to item response models using Table 1,
previously analyzed by Jones and Kenward (1987) and Agresti (1993). The data result
from a three-period cross-over trial designed to compare placebo (treatment A) with a
low-dose analgesic (treatment B) and high-dose analgesic (treatment C) for relief of
primary dysmenorrhea. At the end of each period, each subject rated the treatment as
giving either some relief (1) or no relief (2). Let pij denote the probability of relief
for subject i using treatment j ( j = A; B; C). We estimate the treatment e�ects for the
logit, probit, and log–log versions of model (2). Our interest focuses speci�cally on the
posterior means and standard deviations of treatment di�erences {�j − �k}. Following
the results and discussion at the end of Section 2, we use a at prior for � and a
N(0; �2) prior for subject parameters � with inverse gamma prior for �2. By Theorem
4, the posterior is then proper, even though ti = 0 for 6 subjects and ti = k = 3 for 8
subjects.
Since the main interest is in estimating �, we regard � as a nuisance parameter,

its presence in the model serving as a mechanism for inducing the dependence in
the repeated measurements. Because of this we have presented the data in the form
of Table 1 rather than listing the individual {Xij}. Generally, the counts in the 2k
cross-classi�cation of the repeated responses is su�cient for estimating �, as is seen
by marginalizing (3) over �. In this sense, the analysis presented here is analogous to
repeated measurement methods for k-way correlated binary response data. However,
even though we regard � primarily as a nuisance, it may be of interest to estimate the
variability of � as a means of describing the degree of subject heterogeneity.
We calculated the posterior moments using the Gibbs sampler (Geman and Geman,

1984, Gelfand and Smith, 1990), using 1000 iterates for a burn-in and then taking
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Table 2
Bayes treatment comparison estimates (standard errors in parentheses) for logit model with Table 1, using
a variety of parameters (a; b) for t priors

Parameters for t Prior

a 0.001 0.010 0.100 1.0 3.0 2.0
b 0.0 0.0 0.0 0.0 5.0 4.0

�B − �A 2.08 2.09 2.11 2.19 2.18 2.16
(0.38) (0.38) (0.38) (0.39) (0.38) (0.38)

�C − �A 2.62 2.64 2.66 2.75 2.74 2.72
(0.42) (0.43) (0.43) (0.43) (0.41) (0.41)

�C − �B 0.54 0.55 0.55 0.56 0.56 0.56
(0.37) (0.38) (0.38) (0.38) (0.38) (0.38)

every �fth iterate until generating 100,000 samples. Convergence of the Gibbs sampler
was checked using the Gelman and Rubin (1992) algorithm. We estimate that the
simulation error for the posterior estimates of {�j − �k} is within 10% of the reported
posterior standard error (e.g., within 0.04 when the reported standard error is 0.42).
We �rst consider the logit link. Table 2 displays the Bayes estimates of the treatment

e�ects, with the standard deviations in parentheses. In order to use a relatively at
prior for �2, we chose (a; b) for its inverse gamma prior close to 0. As a check on
the sensitivity of results to the particular selection of (a; b), Table 2 shows results for
the variety of settings (a; b) = (0:001; 0), (0.01, 0), (0.1, 0), (1.0, 0). For comparison,
we also obtained results for the very at prior (a; b) = (2:0001; 4:0001), for which
E(�2)=1 and Var(�2)=20; 000, and for the more informative prior (a; b)= (3; 5), for
which E(�2) = 1 and Var(�2) = 2. Results are relatively insensitive to the choice, and
regardless of the prior we conclude that treatments B and C are substantially better
than placebo, with only mild evidence that C is better than B.
The usual competitors of the Bayes estimates of � are the maximum likelihood (ML)

estimates for the mixed model treating � as a random e�ect. These are often referred
to as marginal maximum likelihood estimators, since they are calculated by integrating
the likelihood with respect to the assumed normal distribution of the random e�ect �
and maximizing the resulting “marginal likelihood” of x with respect to � and �2. The
standard errors for estimates of the {�j − �k} are obtained from the estimated inverse
information matrix. Alternatively, for a �xed e�ects formulation with the logit link,
one can use a conditional maximum likelihood approach, eliminating �i (i = 1; : : : ; n)
by conditioning on the su�cient statistics Ti =

∑k
j=1 xij; i = 1; : : : ; n. Andersen (1970)

showed that the ML estimate of � based on this likelihood is consistent.
Table 3 shows the marginal ML estimates and the conditional ML estimates. These

are also the posterior modes for the Bayesian approach using a at prior for �.
Though the estimates di�er somewhat from the Bayes estimates, the substantive con-
clusions are the same. For instance, with the conditional ML approach, we estimate the
subject-speci�c odds of relief for the high-dose analgesic as exp(0:589)=1:80 times the
odds of relief for the low-dose analgesic; this odds ratio estimate is exp(0:509) = 1:66
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Table 3
Marginal maximum likelihood and conditional maximum likelihood treatment compar-
isons for logit model with Table 1

Parameter Conditional ML Marginal ML

Estimate Std. Error Estimate Std. Error

�B − �A 1.641 0.338 1.960 0.343
�C − �A 2.230 0.388 2.469 0.367
�C − �B 0.589 0.393 0.509 0.360

for the marginal ML approach and exp(0:54)=1:72 for the hierarchical Bayes approach
with (a; b) = (0:001; 0:0). It is interesting to note that the marginal ML estimate of �
for the N(0; �2In) random e�ects distribution of � equals 0; that is, this is an unusual
instance where the data do not provide evidence of within-subject dependence. The
model with �= 0, corresponding to subject homogeneity, is equivalent to one treating
the three responses for a subject as if they came from three independent subjects.
These marginal ML estimates are similar to what one obtains with a Bayes approach

using a degenerate normal prior distribution (mean = variance = 0) for each �i; in that
case, the posterior means are 1.99 for �B − �A (std. error = 0:35), 2.51 for �C − �A
(std. error = 0:37), and 0.52 for �C − �B (std. error = 0:36). In fact, even with a
relatively at prior for �, the posterior does not provide evidence of especially large
variability in the �i. For instance, consider the t prior for � with (a; b) = (0:001; 0).
Then the posterior mean and standard deviation of �i equals (0.21, 0.55) for the 8
subjects who have relief with all three treatments, (0.04, 0.42) for the 56 subjects who
have relief with two treatments, (−0:13; 0:47) for the 16 subjects who have relief with
only one treatment, and (−0:29; 0:63) for the 6 subjects who have relief with none of
the treatments. Hence with either the marginal ML or the Bayes approach a model is
plausible that treats the subjects as homogeneous. Nonetheless, for model building we
feel it safer to use the full model that permits the possibility of heterogeneity.
Table 4 shows the Bayes estimates for the probit and log–log links, using a variety of

priors. The numerical values for treatment e�ects are not comparable to those in Tables
1 and 2, since the scales di�er for these links. The probit link function corresponds to a
cdf with a standard deviation of 1.0, whereas the logistic link function corresponds to a
cdf with a standard deviation of �=

√
3=1:81 and the log–log link function corresponds

to a cdf with a standard deviation of �=
√
6 = 1:28. It follows that when the di�erent

link functions provide decent �ts, the estimates with the logit link should be on the
order of 1.8 times those with probit link and on the order of

√
2=1:4 times those with

the log–log link. In fact, making this translation with the results in Table 4 provides
comparable results to those in Table 2. In particular, the same substantive results occur
as with the logit link, with the estimated e�ect being about 5 or 6 standard errors for
the comparison of treatments B and C with A, and about 1.5 standard errors for the
comparison of treatments C and B.
For Table 1, one can also consider generalizations of model (2) that take into ac-

count the sequence in which a subject receives the treatments. Other analyses of these
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Table 4
Bayes treatment comparison estimates (standard errors in parentheses) for probit and log–log links with
Table 1, using a variety of parameters (a; b) for t priors

Parameters for t Prior

a 0.001 0.010 0.100 1.0
b 0.0 0.0 0.0 0.0

Probit link
�B − �A 1.24 1.25 1.27 1.32

(0.21) (0.21) (0.21) (0.22)
�C − �A 1.55 1.56 1.58 1.65

(0.22) (0.22) (0.22) (0.23)
�C − �B 0.31 0.31 0.31 0.33

(0.21) (0.21) (0.22) (0.22)
Log–log link
�B − �A 1.43 1.44 1.45 1.51

(0.26) (0.26) (0.26) (0.27)
�C − �A 1.89 1.90 1.91 1.98

(0.29) (0.29) (0.30) (0.30)
�C − �B 0.46 0.46 0.46 0.47

(0.32) (0.32) (0.32) (0.32)

data have considered potential treatment-by-sequence interaction, such as period or
carry-over e�ects. Such analyses do not show any need for more complex modeling.
See, for instance, Agresti (1993), who used a loglinear modeling approach that has
treatment parameter estimates necessarily identical to the conditional ML estimates.
We do not pursue these models here.

5. Concluding remarks

This article has introduced a uni�ed Bayesian analysis of item response models. We
have not considered many important questions, such as how to check model adequacy
or how to choose the link function for the model. One way to choose the link uses the
Bayes factors of one model relative to another to guide in model selection. Another
way uses an adaptive link function, estimating the link from the data as in Mallick
and Gelfand (1994).
The techniques used here have the potential of extension to more complex models,

such as two-parameter item response models that contain “discrimination parameters”
in addition to subject and item parameters. Also possible are extensions to multinomial
responses, such as cumulative logit models for ordinal responses.
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