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SUMMARY

Two summary measures are proposed of the amount of rth degree (r + 1 factor) and higher
interaction displayed in a (d + 1)-dimensional contingency table, 1 < r s d. The measures
are based on a comparison of the "partially-raked" table having the r-factor interactions
and lower-order effects removed to the "fully-raked" table in which all effects are removed.
The measures have a proportional reduction in error construction with reference to using
d of the variables to predict the remaining one within the partially-raked and fully-raked
tables, and they are generalizations of the lambda and tau measures of association for
cross-classifications of two nominal variables.

Keywords: THREE-FACTOR INTERACTION; ASSOCIATION; GOODMAN AND KRUSKAL'S TAU AND
LAMBDA; MARGINAL STANDARDIZATION; RAKING

1. INTRODUCTION

IN this paper we formulate two sets of summary measures of interaction for multidimensional
contingency tables. For a (d + 1)-dimensional table, these measures can be used to summarize
the extent of all rth degree and higher interaction, for 1 < r < d. An important special case is
d = 2 and r = 2; that is, three-factor interaction in a three-dimensional table.

We define the measures for an adjusted table in which all interactions of lower degree have
been removed but the higher-factor interactions are the same as in the original table. We refer to
this table in which the r-factor interactions and all lower-order effects are absent as a "partially-
raked" contingency table. If the original (unraked) table lacks (r + 1)-factor (rth degree) or
higher-factor interaction, then this adjusted table will contain identical cell entries. We refer to
the table with identical cell entries, which is the transformation of the original table in which all
effects have been removed, as the "fully-raked" table. The measures of interaction may be
interpreted as summary descriptions of the discrepancy between the partially-raked table and
the fully-raked table. They are defined using proportional reduction in error constructions.

Partially-raked tables lend themselves naturally to summary interaction measures because
the process of removing lower-order effects clarifies the nature of the higher-order interactions
but does not alter their values as expressed in terms of odds ratios. For example, the partial-
raking of a two-dimensional table to obtain uniform marginal proportions is obtained through
iterative adjustment of cell frequencies by constant multiplications within rows and within
columns, and hence it does not affect odds ratios in 2 x 2 blocks of the table. Similarly, three-
dimensional tables can be adjusted to obtain uniform two-dimensional marginal distributions
without affecting ratios of odds ratios in 2 x 2 x 2 blocks of the table.

In the next section we define measures of association for two-dimensional tables which have
been raked with respect to marginal effects. In Sections 3 and 5, analogous measures are defined
for describing three-factor interaction in three-dimensional tables. In Section 6, the measures
are further generalized to describe rth degree and higher interaction in a (d + 1)-dimensional
table (r < d). Asymptotic sampling distributions are given in the final section.

In proposing these measures, we recognize the impossibility of adequately representing the
interaction patterns in a large table by a single number. However, we believe that these measures
help to indicate the order of magnitude of the interactions.
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294 AGRESTI - Interaction Measures [No. 3,
2. MEASURES OF ASSOCIATION FOR RAKED TWO-DIMENSIONAL TABLES

The simplest setting for our measures is a two-dimensional contingency table representing
the cross-classification of a population on two variables. Let pij represent the proportion of
members classified in the cell in row i and column j, 1 s i s r, 1 ?1j s c. We consider a
corresponding table of proportions P* = (p,} having the same odds ratios for all 2 x 2 subtables
(i.e. pjpr/P*cpr; = PijPrc/PicPr; 1s sr-1, lsIjs c-1) yet having uniform marginal
distributions {p,* = 1/r, 1 ? i s r} and {p. = 1/c, 1 <j s c}. In other words, the original table
has been partially-raked so as to maintain the same degree of two-factor interaction (as
measured by odds ratios) while removing the one-factor effects. If the original table displays
independence, then we obtain p, = l/rc (all i,j). Thus, a measure of association describes how
far P* differs from the uniform (fully-raked) table, whose probabilities we denote by
P**= {p,*} to denote the raking with respect to one-factor and two-factor effects.

Measures of the association displayed in P* which have simple operational interpretations
can be constructed using the proportional reduction in error (PRE) approach outlined by
Goodman and Kruskal (1954). We identify one of the variables as a dependent variable Y (say,
corresponding to the row classification). After selecting a rule for predicting classification on Y,
we obtain the expected proportion of prediction errors when the rule is applied to predict Y
within each of the levels of X, (i) according to P*, and (ii) according to P**. The measure is
defined to be the PRE obtained by basing the predictions of Y on the interaction structure in P*
instead of in P**.

Within each column, the optimal rule is to predict that each member is classified in the
modal category of Y for that particular level of X. Let p = max, SiSr{P.}. That is, m = m(j) iS
the row index at which the maximum proportion occurs in the jth column of the partially-raked
table. Notice that m(j) need not be unique, but the value of pm will be. The proportion of
members who are classified in thejth column and whose value of Y is incorrectly predicted using
the 'modal" prediction rule is p* -p*. = l/c-p*.. Summing over all columns, we obtain the
proportion of misclassifications when predicting Y according to the association in P* to be

(Pj Pm*j) =1EPm*jj J
When Y is predicted according to P**, the proportion of misclassifications is

EP.j j-mj*)=11r

The PRE obtained in using the X-Yassociation structure to predict Y is

A* = (rEpj (2.1)
The symbol lambda is used to reflect the similarity of this measure to the nominal measure of
association lambda which is based on this same prediction rule for unraked tables (see
Goodman and Kruskal, 1954).

Since p>l 1/rc with X and Y being independent iff all pm = 1/rc (in which case all
p!* = 1/rc), the independence of X and Y is equivalent to A* = 0. This equivalence does not
apply to the lambda measure for the unraked table. In that case, lambda equals zero whenever
the modal Y response is the same for all levels of X.

The tau measure for nominal variables proposed by Goodman and Kruskal (1954), which
employs a proportional prediction rule, can also be generalized to partially-raked tables.
Predicting Y within levels of X according to P*, we obtain an expected proportion of
misclassifications of

l[Zp*(l - p/P*A)]= 1-cEZ p*2.j i i J
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1981] AGRESTI - Interaction Measures 295
The PRE obtained by using, instead of ignoring, the X-Y associations to predict Y is

T* (rc Zp'52-1)/(r--1). (2.2)
i J

It is easily seen that T* = 0 or T* 1 in the same cases as does A*. Due to the uniformity of
the {p?'*}, x* and T* generate the same expected proportion of errors for the predictions based
on P**. In basing the predictions on the association in P*, though, the modal prediction rule can
result in no more prediction errors than are expected using the proportional prediction rule.
Hence T* < A*, so that A * might seem to be the preferred measure in this context. However, T*
depends on the {p!*} through their relative sizes rather than just through their column-wise
maxima, and hence it discriminates between many tables for which A* does not.

3. MEASURES OF THREE-FACTOR INTERACTION FOR THREE-DIMENSIONAL TABLES

We now generalize the approach of the previous section to define measures of the degree of
three-factor interaction displayed in a three-dimensional cross-classification of variables Y, X 1,
and X2. Let Pijk denote the proportion of members classified in level i of Y, levelj of X 1 and level k
of X2 (1 < i < r, 1 <j] < c, 1 < k < 1). Let P** ={pJp*} denote the corresponding proportions for
the partially-raked table in which two-factor and one-factor effects have been eliminated while
preserving the three-factor interactions. That is, letting

- ~ ~ ~ (** = ** **I ** *
aiJk Pijk Prck/Pick Prjk ciJk Pijk Prck /Pick Prjk'

the {p}*J satisfy

ijk/ij alJ*/lji* 1<. i <r-1, 1<j < c-1, 1 <k<1 -1,
under the constraints that

pl** = l/rc, pl** = I/rI, p*J* = 1/cl, I1 (i <r, 1 <j <c, I1 Sk |.

Let P*** denote the corresponding fully-raked table of entries {p*** = l/rcl}, for which one-,
two-, and three-factor effects have been eliminated.

Now consider the PRE arising from predicting Y within all combinations of levels of X 1 and
X2 utilizing the structure of the three-factor interactions in P** instead of P***. The use of the
proportional prediction rule results in a PRE of

T ** =(rcl , Ep**21)/(r-1). (3.1)j k ijk
Note thatT = iffall p 1/rcl, which is equivalent to an absence of three-factor interaction
in the unraked and partially-raked tables. This measure may also be interpreted as a
normalization of the measure EiYi kP*(p**- l/rcl)2 describing the distance between the
partially-raked and fully-raked tables. Tau is symmetric in the labelling of the independent
variables, and it is also symmetric in the choice of dependent variable if r = c = 1.

The use of the modal prediction rule to make the predictions on Y using P** instead of P***
results in a PRE of

=*(r E p*J* -1)/(r- 1), (3.2)
jk

where P** = max {p}*J. Note that when r = 2, A* = Ek I Pij - 1/rcl |. Like T**, ** iS

symmetric in the labelling of the independent variables, though it is not necessarily invariant to
the choice of dependent variable even when r = c = 1. Generally, T** <s **, with A** = 0
equivalent to ** = 0 and ,** = 1 equivalent to T** = 1.

For a 2 x 2 x 2 table, each entry in P** equals P*l* or 4-p*l*, and
i**- V(T*) = 1 - 8p1** |. Also letting R denote the ratio of odds ratios R -= ot /c 12,

A**-| (1-Ri)/(1 + R ") |. (3.3)
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296 AGRESTI - Interaction Measures [No. 3,
It follows that A** = T** = 1 when R = 0 or R = oo. The measure (3.3) was proposed by
Sanathanan and Bridges (1978) to describe the degree of interaction in a 2 x 2 x 2 table. In fact,
for 2 x c x 1 tables, they suggested a measure which is equivalent to A**.

Whereas the absence of interaction is a well-defined state, the maximal degree of interaction
is not. Table 1 illustrates maximal interaction as expressed by the tau and lambda measures for
two different table dimensions. For the dimension 2 x 2 x 4, ** = A** = 1 when there are two
sets of 2 x 2 tables that display complete similarity within sets and complete dissimilarity
between sets; i.e. the Y-X1 association is the strongest positive association within two levels of
X2 and the strongest negative association within the other two levels of X2. For the
dimension 2 x 2 x 3, the maximal value of ** and A)** occurs when the Y - X1 association
is the strongest positive at one level of X2, the strongest negative at another level of X2, and
absent at the third level of X2.

TABLE 1

Maximal interaction for 2 x 2 x 4 and 2 x 2 x 3 cross-classifications

2x2x4: l i i i ? I Il* 0 1/81 0 1/81 11/8 0 1 /18 0

2x2x3: II ? Io
I? 1j6 1312 1J12 11j6 0 I

4. EXAMPLE

A summary measure of interaction can help us to gauge the importance of interaction terms
in a log-linear or logit model. In particular, there are two situations when an interaction
measure definitely complements x2 goodness-of-fit tests for interactions. For very large sample
sizes the x2 test might result in rejecting a model such as one containing no three-factor
interaction terms, yet a measure such as ** may be very close to zero. This means that the three-
factor interaction is statistically significant yet possibly weak in substantive terms. Hence, the
model which ignores it might be reconsidered in the light of the particular application in order to
achieve simplicity and parsimony. On the other hand, for small sample sizes a particular model
may be judged adequate in a goodness-of-fit test, yet ** might be of substantial size. The
measure T** would of course have a large standard error, but its size would emphasize that the
acceptance of the model should be a very tentative one and that a larger sample size might show
the model to be grossly inadequate.

Table 2 illustrates the first of these two cases. This table gives the joint distribution of
Y = voter registration, X1 = race and X2 = region for a sample of adults in the United States in
1976. When Table 2 is raked with respect to all but three-factor interactions, we obtain Table 3.
To get this table, we applied seven cycles of the iterative proportional fitting scheme

t(3s) - t(3?s - I/rlts - 1 t(3s -) = t3s -2)/clt(3s - 2)tijk = ijk rt,.k 9 izjk i,jk / tjk
t(3ks- 2) = (J3ks- 3) Irdt3 ), - 3 = 1, ,..

where (t(,.} are the frequencies in Table 2. We note that the partially-raked table (Table 3) is very
close to the fully-raked table, as reflected by the sample values ** = 0 002 and A** = 0-038.

From our experience in using T** and A** with dichotomous dependent variables, values in
the ranges of T* * < 001 and A** < 001 tend to occur for tables that display a relatively weak
amount of three-factor interaction. For example, suppose that j p** - l/rcl j l/rcl (all i,j, k) for
some 6, 0?6, 1. Then T** 62(r- 1) and A**<6/(r- 1), and when 6 = 041 with r = 2 we get
T** < 001 and A** 0 1. Hence, the degree of three-factor interaction seems to be very weak for
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1981] AGRESTI - Interaction Measures 297
TABLE 2

Three-way table for voter registration, race and region

Region

Voter North
Race registration North Central South West

White Yes 13 827 17457 17 151 10 125
No 6 711 6 385 8 571 5 508

Black Yes 946 1 299 2 985 554No 784 661 2 310 357
Spanish Yes 333 170 544 606No 600 152 861 1 103

Source: Based on Table 2 in US Bureau of the Census (1978).
Note: These frequencies are approximations, since the referenced table contained estimated US population
frequencies based on the sample survey.

TABLE 3
Table of partially-raked proportions corresponding to Table 2

Region

Voter North
Race registration North Central South West

White Yes 0 0440 0 0397 0 0422 0 0408
No 0 0393 0 0436 0 0411 0 0426

Black Yes 0-0405 0 0405 0 0408 0 0449
No 0-0428 0 0429 0 0426 0 0384

Spanish Yes 0 0405 0 0448 0 0420 0 0394
No 00429 00385 00413 00440

this example. However, the likelihood ratio goodness-of-fit test of the model of no three-factor
interaction results in a highly significant test statistic (X2 = 3153, d.f. = 6, P<000005). The
statistical significance is not surprising given the very large sample size (n = 100000), and we
could consider using the "no three-factor interaction" model as suggested by the small values of
T** and A**.

5. OTHER APPROACHES TO MEASURING THREE-FACTOR INTERACTION
The proportional reduction in error construction of T** and A** necessitates the

identification of a dependent variable. Often one may wish to use a measure which is invariant to
the choice of dependent variable. Symmetric versions of tau and lambda may be defined for this
purpose, by calculating the expected errors corresponding to selecting each variable as the
dependent variable one-third of the time. For tau, for example, this modification results in the
measure

rcl Y. p**2 1i j k ijkT 3rcl(cl rl rc) - (5.1)
One should note that a value of A** = ** = 1 is not obtainable for all table dimensions. For

example, for a 2 x c x I table, the maximal possible value is one if c and I are even numbers and
otherwise it is 1 -1 /S, where S is the minimum odd dimension. The upper bound of one is also
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298 AGRESTI - Interaction Measures [No. 3,
obtainable (for the asymmetric and symmetric versions) when r = c = 1, but never when r > c or
r> 1. Hence, if we use T* or A** to compare interactions in two samples, the tables should have
the same dimensions.

Summary measures may also be defined on the original (unraked) table. For example,
Bishop, Fienberg and Holland (1975, p. 330) proposed a family of interaction measures,

.X IPijk Pjk i ajk(i()c (5.2)
based on the discrepancies between the true proportions and proportions {P'k} which would be
expected according to a particular log-linear model. Unfortunately, the upper bounds of
members of this family depend on the table dimensions even when r = c = 1. The member given
by a = 2, b = 0, c = 1 is asymptotically equivalent to the chi-square goodness-of-fit statistic
divided by the sample size and is a constant multiple of a family of measures suggested by
Sakoda (1977). The index having a = 1, b = 0, c = 0 is perhaps the most easily interpretable
member, being the total discrepancy between the two sets of proportions.

A somewhat different approach to summarizing interaction has been suggested by Davis
(1975) and Clogg (1979). They take monotonic transformations of interaction parameters from
log-linear models so that they fall on a-1 to + 1 scale. Another very different approach is based
on the reduction in chi-square relative to a baseline model (see Goodman, 1971). Two
disadvantages of this approach are readily apparent: the dependence of the measure on the
choice of baseline model, and the non-comparability of measure values across tables for which
the goodness-of-fit of the baseline model varies.

Finally, one should note that these measures apply most naturally to cross-classifications of
nominal variables. If any of the variables are ordinal, it may be more informative to utilize the
ordinal nature in describing the interaction. Measures may be defined to correspond to
appropriate models for ordinal data. To illustrate, Goodman (1979) proposed a "uniform
interaction" model for ordinal variables, whereby the ratio

0 _ Pijk Pm P+ 1, j+ 1,k/Pi+ 1, j,k Pi.J+ l,k
Plj,k+ 1 Pt+ 1, j+ 1,k+ 11Pt+ 1,j,k+ 1 Pi,j+ 1,k+ 1

of odds ratios for all adjacent collections of cells of size 2 x 2 x 2 is constant. To describe how the
association between two ordinal variables tends to increase (or decrease) across the levels of the
third variable, we could utilize a measure such as

r- 1 c-1 1-1

*= z x= k-1 iPiP+ 1, j+ 1,k Pi,J+ 1,k1 Pi+ l,j,k+ 1i= 1 j= 1 k= 1 .(5.3)
.r- 1 c-1 i- 1

Z Z Z Pi, j+1,kPi+ 1,J,k Pi,j,k+ I Pi+ 1,j+ 1,k+ 1
i= 1 j= 1 k= 1

If there is uniform interaction, then the population version of this measure simplifies to the
common value of Oijk,

6. MEASURES OF INTERACTION FOR HIGHER-DIMENSIONAL TABLES
The measures we have discussed can be naturally generalized to measures of (r + 1)-factor

and higher interaction in (d + 1)-dimensional and higher-dimensional tables, for 1 < r < d. We
will illustrate for the tau PRE measure.

Consider a (d + 1)-dimensional contingency table having 10 levels for the dependent variable
Y and 1i levels for variable Xi (i = 1,..., d). Let i = (i1, ..., id) and let ptr! be the proportion in cell
(i0, .1. id) for the table which has been raked with respect to r-factor interactions and all lower-

order effects. Then all (d + 1) of the r-dimensional marginal tables are uniform. p(r) equals the

fully-raked table of proportions {1/lo 11 ... ld} iff there is no f-factor interaction, for
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1981] AGRESTI - Interaction Measures 299
f = r +1, ... , d + 1. The proportional prediction rule has expected error

E [Z pl(I-)( 1p(r)/p.r )]
io

in predicting Y within all combinations of levels of (Xl, ..., Xd) according to the interaction
structure in p(r), and it leads to the PRE measure

-r) = [I'0 E (p(r)/p(r)2) - ]/(lo - 1). (6.1)
io i

We obtain T(r) = 0 iff there is a complete absence of (r + 1)-factor and higher-factor interaction.
Finally, these measures need not be restricted to describing all forms of interaction of a

certain level. For example, we can obtain a partially-raked table with some subset of the r-factor
interactions removed (and all lower effects removed) and compare it to the fully-raked table.
Formula (6.1) can be applied to that partially-raked table to summarize the extent of remaining
interactions. To illustrate, in the three-dimensional case, we might wish to describe the total
extent of three-factor interactions and partial association between Y and X1, perhaps due to a
prior belief that these effects will be negligible. The partially-raked table P* will satisfy
Pik = 1/rl and p* k= 1/cl all i,j,k, but will maintain the Y-X1 partial associations
Pijk PrcI/Pic* Prjk' 1 i , r - 1, 1 <j < c - 1, 1 < k < 1, and hence also the three-factor interactions.

7. ASYMPTOTIC DISTRIBUTION THEORY

In this section we show how to obtain asymptotic non-null variances for the interaction
measures, making it possible to construct approximate confidence intervals for population
values based on observations in a probability sample. Let p denote the vector of population
proportions and let p denote an estimate of p. Let p(r) and p(r) denote the corresponding
population and sample proportions for a partially-raked table in which some set (possibly all) of
the r-factor interactions have been eliminated, as well as all lower-order effects. Let g be a vector
specifying the fixed marginal distributions of the partially-raked table, and let A be the matrix
whose columns generate those marginal probabilities when applied to p(r) or p(r), Also, let K
denote an ortho-complement matrix to A which, when applied to the vectors ln p and ln p(r),
describes the interactions that are preserved in the partially-raked table.

If an estimate p (r) exists which satisfies the above constraints, it may be found using the
iterative proportional fitting algorithm (see, for example, Bishop et al., 1975, Section 3.5).
Although p(r) does not have a closed-form expression except for special cases, its asymptotic
covariance matrix can be obtained by applying implicit techniques to the expressions A'fr) -
and K' ln pr) = K' ln p. Let V denote the covariance matrix of p and let D and Dr denote diagonal
matrices with the elements of p and p(r) on the diagonal. Freeman and Koch (1976) showed
(though the expression is printed incorrectly in their paper) that the asymptotic covariance
matrix for p(r) is

V(r)=K[K'D- T K] - K'D- VD - K[K'D K] K'. (7.1)
In the special case of simple random sampling, V = (D - pp')/n and the asymptotic covariance
matrix simplifies to

V(r) = K[K'D-1 K]-1 K'D-1 K[K'D-1 K]-1 K'/n. (7.2)
Once V(r) is obtained, the asymptotic variance of a wide variety of functions of p(r) (such as

T(r)) can be obtained using the delta method, as outlined by Goodman and Kruskal (1963). Let
the vector of partial derivatives of a measure p = 4^(gYr) taken with respect to p(r) and evaluated at
p(r) be denoted by OG. Then the asymptotic variance of C is a2(4) = a t' V(r) g. Under simple
random sampling, the asymptotic normality of p induces an asymptotic normal distribution for
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300 AGRESTI - Interaction Measures [No. 3,
gW0. It follows that

A d -1 N(O, 1) as n -oo,

where

a= {'K[K'D7' K] -'K'D' K[K'D7- K]'-K1 K'OI/n}i (7.3)
and O, Dr. and D are consistent estimates of a, Dr, and D obtained by replacing p(r) and p by
their consistent estimates p(r) and A.

To illustrate the asymptotic theory we first consider a two-dimensional table which has been
raked with respect to single-factor effects. The matrix K here reflects the stability of the odds
ratios in p and p* through the contrasts

lnpij-lnpic-lnprj+lnPrc = lnp*-lnp P-lnp*J+lnp*, 1 <is r-1, 1<j<c-1.
That is, K' is a (r- 1)(c- 1) x rc matrix satisfying K'ln p* = K'ln p. Let Sij ij, = cov(P"? Ar.j as
obtained from V(') as given in (7.2). It follows that the asymptotic non-null variance ofT* under
random sampling is

a2(*)= [2rc/(r-1)]2E Y.P p P %iJ,i, (7.4)

Similarly, for the random sample analogue A* of A*, assuming m = m(j) is unique for all j, we
obtain

c2l*) = [r/(r - 1)]2 _ ym(jmj)j (7.5)
Next consider a three-dimensional table obtained by raking with respect to all two-factor

and single-factor effects. The matrix K here reflects the common ratios of odds ratios in the
partially-raked and unraked tables as equated through the contrasts

ln pif-tln pi1 - In pi& + ln pic - ln Prjk + ln Prji + ln Pr - In Prci

I n p.*i*- In P,*a-lIn p*d* +In pi*- In p*J* + In p*j* + In Prck - In prc,

1 <i<r-1, i<j<c-1, 1 <k<1-1.
That is, K' is a (r- 1)(c- 1)(l- 1) x rcl matrix satisfying K'ln p** -K'ln p.

Given the asymptotic covariance matrix (7.2) for p**, we can obtain asymptotic variances
for the sample measures of three-factor interaction. More generally, the asymptotic variance of
T(r) or 2(r) for (d + 1)-dimensional cross-classifications (see (6.1)) may be obtained. For example,
letting

ai0,;jOi = COV (Pligi JOJ)

we obtain

2(-(r)) =[10(o _ -1)] 2 ijQ
io, i io, j

x --( L io (7.6)
if r <d. When r = d (such as with T" for three-dimensional tables), T(r) simplifies to

[lo ll ... d Y. E P(lo)i; - II/(lo -1)9
1o i

and we get

2(T( T )- [210 ...ld/(lo - 1)] 2 E Ppoi (7.7)
io, i jo, J
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1981] AGRESTI -Interaction Measures 301
The K matrix that helps determine VTr) in the case r = 2 describes thed)

IO--.. d 41+ E (1i 1)+ E (li -1)(lj -1)t

higher-order interactions that are preserved in raking the (d + 1)-dimensional table with respect
to one-factor and two-factor effects.

For the special case of the 2 x 2 x 2 table, expression (7.7) simplifies to

= 256[Y p,'] -1)2[p,(4-Pl*j*,)]/n (7.8)
Similar expressions can easily be given for the asymptotic variance of A(r) or of symmetric
versions of these measures.

We computed &(z**) = 0 0009 and &l**) = 0 0077 for the standard errors ofT** = 0 0020
and A** = 00384 used to describe three-factor interaction in Table 2. Hence, the true
interaction estimated from that table may be concluded to be non-zero, but very weak.
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