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Improved Exact Inference About Conditional
Association in Three-Way Contingency Tables

Donguk KiM and Alan AGRESTI*

We propose modified exact inferential methods for contingency tables. Ordinary “exact” inference is conservative, because of the
discreteness. For estimating a common odds ratio in several 2 X 2 tables, two modifications of the ordinary “exact” confidence
interval maintain at least a fixed confidence level but tend to be much narrower. One approach inverts results of a test with a modified
P value utilizing the test statistic and table probabilities. The second approach inverts one two-sided test rather than two one-sided
tests. This approach is much less conservative when the true odds ratio is relatively small or large. We also generalize results of Cohen
and Sackrowitz and relate modified P values to construction of exact, unbiased, and admissible tests for an ordinal alternative to

conditional independence.

KEY WORDS: Confidence interval; Fisher’s exact test; Linear-by-linear association; Mid P value; Odds ratio; P value.

1. INTRODUCTION

The title of this article may seem like a contradiction.
How can one improve on a procedure that is “exact?”
The improvement refers to decreasing the conservativeness
that occurs due to discreteness. For instance, we present a
2 X 2 X 5 table for which the ordinary 95% confidence in-
terval for an assumed common odds ratio is (1.1, 531.5).
The discreteness implies that .95 is a lower bound for the
actual confidence coefficient. A modified confidence interval
that we propose also guarantees at least 95% confidence but
takes the much shorter range (2.1, 67.3). Our approach is
applicable for any contingency table, but we illustrate the
arguments for inferences about conditional associations in
three-way contingency tables.

For three-way I X J X K tables, let X, Y, and Z denote
the row, column, and layer classifications. Let N = {n}
denote the cell counts, with expected frequencies {m }.
The data can follow any of the standard sampling models,
such as multinomial over the entire table, or independent
multinomial within each level of Z or each combination of
levels of X and Z. The log-linear model of no three-factor
interaction is

log my. = N+ N+ N+ M+ A+ NE+HNE (D

Conditional independence of X and Y, given Z, is the special
case {\}¥ = 0}. Exact conditional inference about {\}*}
utilizes the distribution of { . }, the sufficient statistics for
these parameters, conditional on the sufficient statistics
{nisx } and { n, } for the remaining parameters (“+” denotes
the sum over the index it replaces).

We present exact inference for this model and also for a
narrower one relevant when X or Y are ordinal. Our pro-
cedures are adaptations of the ordinary exact conditional
methods that are less conservative. Section 2 discusses a
modified P value, proposed in a related context by Cohen
and Sackrowitz (1992), and shows that its distribution can
be much less discrete than that of the ordinary P value. Sec-
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tion 3 proposes a modified “exact” confidence interval for
a common odds ratio in several 2 X 2 tables, based on in-
verting two one-sided tests using the modified P value. Sec-
tion 4 presents another “exact” confidence interval, based
on inverting a two-sided test. Though these two types of
modified intervals are also conservative, they may be much
narrower than the ordinary “exact” interval. In particular,
the ordinary one is based on two separate one-sided tests.
Approaches based on two-sided tests are usually much better,
especially when the true odds ratio is relatively small or rel-
atively large.

Section 5 generalizes to three-way tables some results of
Cohen and Sackrowitz (1991, 1992) regarding admissibility
of tests for two-way tables. The ordinary test of conditional
independence for 2 X 2 X K tables is usually inadmissible.
One can use the modified P value to reduce the degree of
supplementary randomization while achieving admissibility.

2. A LESS CONSERVATIVE P-VALUE

Suppose that one plans to conduct an exact conditional
test for categorical data using some preassigned size «, such
as .05. It is not usually possible to construct a critical region
having that size, because of the discreteness of the distribu-
tion. One can artificially achieve the nominal size by per-
forming supplementary randomization in making the deci-
sion about whether to reject when a table occurs at the
boundary of the critical region (Lehmann 1986, p. 135). In
practice, of course, such randomization is unacceptable. For
a particular test, let T denote the test statistic and let ¢, denote
its observed value. When large values of T contradict the
null, the usual P value is

P= PHO(TZ to).

To make a formal decision about Hy, one rejects if P < a.
The discreteness implies that the actual size is no greater
than «, both conditionally and unconditionally.

The exact conditional approach conditions on sufficient
statistics for unknown parameters to eliminate them (Agresti
1992). The extra conditioning reduces the set of possible
test statistic values, making the distribution more highly dis-
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crete. Hence tests of nominal size « based on the exact con-
ditional P value can have actual size considerably less than
that level (see, for example, Suissa and Shuster 1985). This
problem is exacerbated by the overemphasis on testing at
sacred levels, such as .05. One can argue for simply reporting
the P value and not making comparisons to such arbitrary
levels, particularly when data are discrete. But the discrete-
ness also affects interval estimation. If one constructs an “‘ex-
act” confidence interval with nominal confidence coefficient
1 — o, then the actual confidence coefficient is at least that
level and is unknown (Neyman 1935).

To reduce the conservativeness, one can utilize a modified
P value based on a less discrete distribution (Cohen and
Sackrowitz 1992). The modified P value uses a partition of
the sample space that is more refined than using 7 alone.
Within fixed values of T, a secondary partitioning utilizes
the null table probability. For a given value of T, tables that
are less likely under the null are considered to give greater
evidence against the null. Let T denote the set of all tables
that have the same values for the sufficient statistics fixed by
the conditional test. Let B = {Z: ZE€ T, T = t,, P(Z)
< P(N)}, where the probabilities are computed under the
null. The modified P value is

P* = Py (T > t,) + Py,(B). (2)

Cohen and Sackrowitz (1992) used this P value for ordinal
tests in two-way tables. Streitberg and Roehmel (1990) con-
sidered a related idea for nonparametric tests, forming a P
value by partitioning all data sets having a primary statistic
value according to some secondary statistic that also describes
departure from the null.

One can calculate P* for any test statistic having a discrete
distribution, because it satisfies Py, (P* < o) < afor0 < o
< 1. The modified P value cannot exceed the usual one, so
the test of fixed size based on it is less conservative. When
each table with a fixed value of T has the same probability,
P* equals the usual P value. When only one table has each
distinct value of T, such as in the one-sided version of Fisher’s
exact test using T = n,,, they are identical.

We illustrate the modified P value (2) using Table 1, taken
from Mantel (1963). It refers to the effectiveness of imme-

Table 1. Example 1 for Exact Analyses

Response
Penicillin

level Delay Cured Died

1/8 None 0 6

1-1/2 hour 0 5

1/4 None 3 3

1-1/2 hour 0 6

1/2 None 6 0

1-1/2 hour 2 4

1 None 5 1

1-1/2 hour 6 0

4 None 2 0

1-1/2 hour 5 0

Source: Mantel (1963).
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Table 2. Example 2 for Exact Analyses
Treated Control
Day Not crying Crying Not crying Crying

1 1 0 3 5

2 1 0 2

3 1 0 1 4

4 0 1 1 5

5 1 0 4 1

6 1 0 4 5

7 1 0 5 3

8 1 0 4 4

9 1 0 3 2
10 0 1 8 1
11 1 0 5 1
12 1 0 8 1
13 1 0 5 3
14 1 0 4 1
15 1 0 4 2
16 1 0 7 1
17 0 1 4 2
18 1 0 5 3

Source: Cox (1970).

diately injected or 14 hour-delayed penicillin in protecting
rabbits against lethal injection with 8-hemolytic streptococci.
Assuming a constant odds ratio # for the five partial tables,
we test Hy: 6 = 1 against H,: § > 1. The test statistic is 7"
= 2k M1k, given the marginal totals at each penicillin level
(Birch 1964). Rejecting the null for large values of T gives
a test that is uniformly most powerful (UMP) unbiased of
its size (Lehmann 1986, p. 163). For the first and last table,
the zero marginal count implies that the conditional distri-
bution of #,,; is degenerate, and the table makes no contri-
bution to the test. Therefore, we can conduct the test using
the three remaining tables. For these tables, ¢, = 14, and the
four tables with 7' = 14 are {(n,y;, 112, P113) = (3, 6, 6),
(2,6,6),(3,5,6), (3, 6,5)}. The ordinary exact P value
isP= Py (T=14)=(2+9+ 16 + 2)/1452 = .0200. The
modified exact P value is P* = (2 + 2)/1452 = .0028, the
null probability for the tables {(3, 6, 6), (3, 6, 5)}. The
second example uses Table 2, the “crying babies™ data given
by Cox (1970, p. 5),a 2 X 2 X 18 table. Here P = .045 and
P* = 021.

There can be a considerable discrepancy between the be-
havior of the ordinary and modified “exact” P values, the
modified P value having a distribution that can be much less
discrete. For Table 1, the total number of possible P values
equals 9 for the ordinary P value and 35 for the modified P
value. For Table 2, the corresponding numbers are 19 and
13,110. When a test statistic has a continuous distribution,
the P value has a uniform(0, 1) null distribution. In the
discrete case, the P value is stochastically larger than the
uniform. Figure 1 presents the cumulative distribution func-
tions of the ordinary and modified exact P values for null
distributions based on the fixed margins of Table 2. The
modified cdf is practically indistinguishable from the uni-
form.

One can summarize the conservativeness of a P value by
comparing Eg, (P value) to the uniform mean of .5. For the
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Figure 1. Cumulative Distribution Functions of Exact P Values for the
Margins of Table 2: ——, Modified P Value; - — -, Ordinary P Value.

conditional distribution based on the fixed margins of Table
1, Ey,P = .611 and Egy P* = .542. For Table 2, Ey, P = .576
and Eg P* = .501. A P value corresponding to a test using
supplementary randomization has the form

Pu=PHo(T>to)+UPHo(T=to)s (3)

where U denotes a uniform(0, 1) random variable. The mid
P value (Lancaster 1961), defined by

Puia = Pyo(T > 1,) + (1/2) Pgo(T = 1,),

replaces U by its expectation. Both these P values have null
expected value of .5. The mid P value and the modified P
value attempt to reduce conservativeness without the arbi-
trariness of supplementary randomization. A disadvantage
of the mid P value is that tests or confidence intervals based
on it are not “exact,” the actual size possibly exceeding the
nominal value.

The mid P value assigns weight 1/2 to probabilities of
tables comparable to the observed table in the sense that T'
= t,. For the modified P value (2), the comparable tables
are those with 7' = ¢, and P(Z) = P(N). Thus a mid-P
value version of the modified P value (2) is

1
tia = P* =5 Pp({T = 1o, P(Z) = P(NY}). (4)

The modified mid- P value also has null expected value equal
to .5. Note that (P* — P¥;q) < (P — Ppyiq). For Table 1,
Pria = .011 and P¥;q4 = .002. For Table 2, Pyq = .028 and
P ;‘!‘lid = .021.

3. A LESS CONSERVATIVE “EXACT”
CONFIDENCE INTERVAL

One can construct an “exact” confidence interval for a
parameter by inverting an exact conditional test about that
parameter. To construct a narrower interval having actual
confidence coefficient closer to the nominal value, one can
invert the test based on the modified P value.

Journal of the American Statistical Association, June 1995

We illustrate with estimation of an assumed common odds
ratio, 6, in 2 X 2 X K contingency tables. The conditional
probability of any table in the reference set, T, is

P(N;0) = P({nllk}l{nl+k}’ {n+lk}> {n+2k}; 0)

n n
H +1k +2k 0”llk
Rk J\ P14k — Prik
= ) (5)
EZEI‘ Hk( n+lk)( %) )ezk
Zx Rivk — Zk
where {z,, ..., zx} denote values of {nyy, ..., nyx} for

atableinI.LetI', = {Z: ZET, 2 nyy = t}. Ordinary
exact confidence limits for the common odds ratio are con-
structed from the conditional distribution of T = X 71k,
which is

b’

= S o gh’
20 i Cul

6= 3 Hk(n+1k)( Rk )
ZeT, Zk J\Mi+k — 2k
and where fni, = 2x max(0, nyx — Ayx) and foa
= 2, min(n,,x, nyk). The ordinary interval (Cox 1970;
Gart 1970; Mehta, Patel, and Gray 1985; Vollset, Hirji, and
Elashoff 1991) is based on inverting two separate one-sided
tests. It equals (6_, 0.), where for fmin < £, < lmax,

> P(t;0-)=a/2

t=t,

P(T=t0) (6)

where

and

=<ty

(7)

When ¢, = tmin, the lower endpoint is zero; if ¢, = f;,.4, the
upper endpoint is 0.

To obtain a narrower “exact” interval, we invert the one-
sided tests using the modified exact P value. Let B(0) = {Z:
ZET,, P(Z;9) < P(N; 0)}. The modified “exact” confi-
dence limits are found using the functions

PT(0) = X P(t;0) + P[B(6); 0]

>,
and

P3(6) = X P(¢;0) + P[B(9); 6]. (8)

t<ty

The lower limit, 6%, is the smallest 4 to satisfy PT(8) = «/2,
and the upper limit, 9%, is the largest # to satisfy P3(6)
> /2. When PT(#) and P53 (#) are strictly monotone,
PT(6%) = P3(0%) = a/2.

Appendix A shows that the probability that this interval
excludes 6 is at most «. It is contained within the ordinary
one. Hence the modified confidence interval is “exact,” yet
it has actual confidence coefficient closer to the nominal value
than the ordinary “exact” interval. One can solve for the
modified endpoints numerically, using the ordinary end-
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points as initial values. When the ordinary and modified P
values are identical, the observed table has the largest null
probability among tables having T = ¢,. From (5), one can
show that it also has the largest probability among those
tables having T = t, for arbitrary 6. Hence P(T = t,; 6)
= P[B(60); 6], and the ordinary and modified confidence
intervals are identical.

The 95% “exact” interval for a common odds ratio using
the ordinary approach is (1.08, 531.51) for Table 1 and (.86,
21.37) for Table 2. The modified “exact” confidence interval
is (2.08, 67.35) for Table 1 and (1.04, 14.87) for Table 2.
Inferences can be considerably sharper with the modified
approach. For Table 1, the ordinary lower bound indicates
that the true odds ratio could be quite close to conditional
independence. The modified interval suggests that the odds
ratio is substantively different from conditional indepen-
dence.

4. “EXACT’ CONFIDENCE INTERVALS BASED ON
TWO-SIDED TESTS

Confidence intervals discussed so far are based on inverting
two separate one-sided tests each of level &/2. An alternative
approach forms confidence intervals by inverting a single
two-sided test, rather than two one-sided tests. Sterne (1954)
used this approach in constructing confidence intervals for
a binomial parameter, and Baptista and Pike (1977) used it
to construct confidence limits for odds ratios in 2 X 2 tables.
This approach extends directly to common odds ratios in
2 X 2 X K tables.

For testing a particular value of 0, a two-sided P value is
given by

P(0) = 2

{t:P(;0)<P(15;0)}

P(t;0). 9)

When the distribution of T has probabilities increasing in ¢
up to some point and then decreasing after that, this is simply
a two-tail probability. (This has happened for all examples
we have considered.) The two-sided exact confidence interval
consists of all § for which this two-sided P value equals at
least «.. Alternatively, one could base the two-sided P value
on a nonnull test statistic and construct the confidence in-
terval by inverting that test.

This two-sided approach produces an interval that is usu-
ally shorter than the ordinary one based on inverting two
separate one-sided tests. Under certain conditions, the two-
sided approach is necessarily better, at least for one of the
endpoints. For instance, when the upper limit 6, of this in-
terval is quite large, the distribution of T often satisfies P(z;
0.) > P(t,; 0.) for all ¢ > t,. A special case of this holds

Table 3. Various 95% Confidence Intervals for the Common Odds Ratio

Inverted test Data set 1 Data set 2
Ordinary one-sided (1.08, 531.51) (.86, 21.37)
Modified one-sided (2.08, 67.35) (1.04, 14.87)
Ordinary two-sided (1.29, 261.49) (.88, 15.92)
Modified two-sided (1.38, 40.45) (1.01, 11.14)
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Figure 2. Coverage Probability for Confidence Intervals Based on In-
verting One-Sided Tests, for Conditional Distribution Based on Margins
of Table 1: - - -, One-Sided Modified P; ——, One-Sided Ordinary P.

when the probabilities are monotone increasing in ¢, which,
from (6), is guaranteed when 6, > max,{c,—;/c,;}. In this
case one can show directly that this upper limit 6, is the
same as the upper limit obtained using the one-sided testing
approach with double the error probability. For instance, the
upper limit of the 95% interval based on inverting a two-
sided test is then the same as the upper limit of the 90%
interval for the approach based on inverting two separate
one-sided tests. Analogous remarks apply to the lower limit.
In such cases, the approach based on two-sided tests has a
clear advantage.

We have now considered two modifications of the usual
“exact” confidence interval, one based on inverting tests us-
ing a modified P value and one based on inverting one two-
sided test instead of two one-sided tests. To incorporate both
of these modifications simultaneously, we define a modified
two-sided P value for testing a particular value of 6 as

P*(9) = P(0) — P({Z: ZET, P(¢;0) = P(t,; 0),

P(Z;0)> P(N;0)}). (10)

The confidence interval consists of the shortest interval con-
taining all values of 6 for which P*(f) = «. Appendix B
shows that this confidence interval is “exact.” This approach
tends to give even narrower intervals than those obtained
by inverting the two-sided test with the ordinary P value.

For Tables 1 and 2, Table 3 displays 95% confidence in-
tervals obtained by inverting tests using two separate one-
sided ordinary or modified p values and using the ordinary
or modified two-sided P values. The confidence interval
constructed using the two-sided P value is shorter than the
ordinary interval based on two one-sided P values. In fact,
for each data set, the upper endpoint for the two-sided—based
intérval equals the endpoint for the one-sided method for a
90% confidence interval. For each type of interval, the ones
based on modified P values are narrower yet.

For the conditional distribution having the fixed marginal
counts of Table 1, Figure 2 shows the actual coverage prob-
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Figure 3. Coverage Probability for Confidence Intervals Based on In-
verting Two-Sided Tests, for Conditional Distribution Based on Margins
of Table 1: - - -, Two-Sided Modified P, —, Two-Sided Ordinary P.

ability as a function of the true log odds ratio, for 95% con-
fidence intervals based on inverting separate one-sided tests
using the ordinary or modified P value. There is a clear ad-
vantage to using the interval based on the modified P value.
For either approach, for sufficiently large 6, all tables with
those margins would have lower bound of the interval below
0; for sufficiently small 6, all tables would have upper
bound above 6. In such cases the actual probability of cov-
erage of a 100(1 — )% confidence interval has lower bound
1 — a/2. That bound is achieved at values of 6 that are
potential endpoints of the intervals (Neyman 1935).
Figure 3 is an analogous display for the confidence inter-
vals based on inverting two-sided tests using ordinary or
modified P values. Again, there is an advantage to the interval
based on the modified P value. A comparison of Figures 2
and 3 shows there is almost always an advantage to using
confidence intervals based on inverting two-sided tests. In
fact, for the conditional distribution with the margins of Ta-
ble 1, the interval based on the ordinary two-sided test is
always contained within the interval based on two ordinary
one-sided tests. Figure 3 shows that for the two-sided ap-
proach, for large |log 6|, the true coverage probability has
.95 as a lower bound, rather than .975. This relates to the
property mentioned previously, by which an endpoint for
the two-sided approach with error probability o can equal
one for the one-sided approach with error probability 2c.
Figure 4 compares average lengths of the confidence in-
tervals for log 6 under the four approaches, for conditional
distributions with the margins of Table 1. These are com-
puted conditionally on 7"not equaling its minimum or max-
imum value, since the length is then infinite. Again, we see
best results with inverting the two-sided test with modified
P value. With the modified approach, the effects of discrete-
ness diminish quickly as the sample size or K increases. To
illustrate, Figure 5 shows coverage probabilities for the ap-
proaches based on two-sided tests, using the first three and
using the first nine of the 18 strata from Table 2. For K = 9

Journal of the American Statistical Association, June 1995

LENGTH
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Figure 4. Average Lengths of the Confidence Intervals for Log 6, for

Conditional Distribution Based on Margins of Table 1: ——, One-Sided
Ordinary P, - - -, One-Sided Modified P; ---, Two-Sided Ordinary P;
- - -, Two-Sided Modified P.

strata, the ordinary approach still is quite conservative, but
the modified approach is almost uniformly very good.

For each approach, one can construct even narrower in-
tervals (albeit not “exact” ones) by inverting the tests based
on corresponding modified mid- P values. Though approx-
imate, confidence intervals based on the ordinary mid-P
value have been observed empirically to behave well (Mehta
and Walsh 1992).

5. EXACT, UNBIASED, ADMISSIBLE TESTS

Consider now I X J X K tables. When X and Y are ordinal,
it usually makes sense to test conditional independence
against a narrow alternative, corresponding to a monotone
trend in the partial association. One would then form a test

K=3
o PROB
; i i
* o, i N % i "
.. e | S P

g \”k.:' "‘\g \| \\: i KV Ef"l I
<
*
) >
° P
]

-4 -2 0 2 4

LOG THETA
K=9
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©
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o
]
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Figure 5. Coverage Probability for Confidence Intervals Based on In-
verting Two-Sided Tests, for Conditional Distribution Based on First K
Partial Tables of Table 2. - - -, two-sided modified P; ——, two-sided
ordinary P.

This content downloaded from 128.227.24.141 on Wed, 20 Nov 2024 18:42:09 UTC
All use subject to https://about.jstor.org/terms



Kim and Agresti: Exact Inference for Contingency Tables

statistic using a model that is a special case of (1) and reflects
the ordinality. For instance, the model

log my = N+ N+ N+ N+ Buv; + NEE+NE, (1)
replaces the general association term A} by a linear-by-linear
term Bu;v;, where {u; } and {v;} are monotone scores for
levels of X and Y. Conditional independence of X and Y is
its special case of 8 = 0. For this model, the sufficient statistic
for Bis Zx [ Z; 2 u;v;n]. The test that orders tables in T’
by this statistic is sensitive to “correlation” alternatives to
conditional independence. For K = 1, Agresti, Mehta, and
Patel (1990) and Cohen and Sackrowitz (1992) presented
exact tests of independence for model (11).

This section discusses tests of conditional independence
of fixed size « for the ordinal alternative (11). We generalize
a result of Cohen and Sackrowitz (1991) regarding exact,
unbiased, and admissible tests. As a special case, we obtain
results for tests of conditional independence in 2 X 2 X K
tables that relate to use of the modified P value.

Let Tyxy = 2=t Zh=1 Mimks T = (Tiiays Tiageys - - -5
Tiv-tyi)s i=1,..., I — 1,and T = (T{", ..., T{Y,
TP, ..., TE, .., T, ., TED). Let s = ({nux},
{ny}) and let Oy = (MM o) (M idMicn, ji) s
i=1,...,I-1,j=1,...,J—1,k=1,..., K Note that
(T, s) is a one-to-one linear transformation from N. A ran-
domized test is characterized by a critical function, ¢, sat-
isfying 0 < ¢(N) < 1 for all N. For a test ¢(N) of size a,
denote the conditional test as a function of the observed
value t of T, for each fixed s, by ¢4(t). The test ¢ (t) must
have conditional size «; that is, Eg—y[¢s(t)|s] = « for all s.

Suppose that for each s, ¢4(t) is monotone nondecreasing
in t; that is, when all elements of t are fixed except for any
one, ¢,(t) is nondecreasing in that variable. Next, for each
fixed s, let A;(t) = {t: ¢4(t) < 1} denote the acceptance
region of the test, except for possible randomization. A point
a in A is called an extreme point if a is not an interior point
of any line segment in 4. For K = 1, Cohen and Sackrowitz
(1991) showed that a test ¢ (t) that is monotone nonde-
creasing in t is conditionally unbiased, and the original test
¢(IN) is unconditionally unbiased. Furthermore, they showed
that ¢(N) is admissible if and only if for each fixed s, A(t)
is convex and ¢(t) is zero at nonextreme points of As(t).
Though their proof applies to two-way tables, it can be easily
generalized (Kim 1994). The proof for three-way tables is
outlined in Appendix C.

We next illustrate exact, unbiased, and admissible tests
for testing conditional independence against the alternative
H,: 8> 0 in model (11), using 7' = 2y [2; Z; u;v;n].
We can express T as T = 2; [Z5] 275 (wi — i)
(v;— Vj41) Ty ] + C, where Clis a constant depending on the
scores and the fixed marginal totals. Thus 7 is monotone in
{ Ty} if the scores satisfy (#; — t4;41)(V; — Vj4) > O for i
=1,...,I—1,j=1,...,J— 1; that s, if the scores { %, },
{v;} are both monotone increasing or both monotone de-
creasing.

In constructing critical regions, we follow the Cohen and
Sackrowitz (1992 ) approach of ordering the tables for which
T = t, by their conditional null probabilities. This relates
naturally to the modified P value (2). Let C, be a constant,
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depending on s, such that P{7T = C,} = e and P{T > C,}
= o/ < a. The test rejects if 7> C,. When T = C,, tables
having smaller probabilities are more contradictory to the
null hypothesis, so we reject also for those tables whose prob-
abilities are smallest and total at most (¢ — o). We allow
randomization only at extreme points of a convex acceptance
section of the remaining points, so the test is exact, unbiased,
and admissible. We denote a test of this form by ¢*. This
test is less likely to require randomization than the usual test
¢ that randomizes whenever T = C,. Also, the modified test
is better than ¢, because usually that entire set contains non-
extreme points, making ¢ inadmissible.

We utilize the middle three subtables of Table 1 to illus-
trate. We consider size o = .05 tests based on 7' = 2 1y,
which results from the scores u; = v, = 1, u, = v, = 0. Now,
P{T =13} = .1136 > a and P{T > 13} = .0200 < a, sO
randomization is required for tables with T'= 13. The usual
.05-size conditional test based on T is

e=1 if(ni1, Rz, u3)
=(3,6,6),(2,6,6),(3,5,6),(3,6,5),
=.3206 if(my11, Pyr2, P113)

=(1,6,6),(2,5,6),(3,4,6),
(2,6,5),(3,5,5),
=(0 otherwise.

Because table (2, 5, 6) is an interior point of the line segment
between tables (1, 6, 6) and (3, 4, 6), it is not an extreme
point of a convex acceptance region, and this test is inad-
missible.

The exact test ¢* that orders the tables by their probabil-
ities is

o*=1 if(n,n2,M13)
=(3,6,6),(2,6,6),(3,5,6),(3,6,5),
(1,6,6),(2,6,5),(3,5,5),
=.3200 if(myq, P2, Pi3) = (3,4, 6),

0 otherwise.

This test randomizes only at an extreme point (3, 4, 6) of
its convex acceptance region, so it is unbiased and admissible.
Compared to the previous test, it requires randomization for
only a single table. The probability that randomization is
required is .0207, rather than .0937.

6. CONCLUSIONS

In practice, tests using supplementary randomization to
achieve a fixed size are unacceptable. Thus even the tests
described in Section 5 that require less randomization than
usual are not intended for practical use. But results of that
section suggest a way of forming critical regions to achieve
actual size closer to a desired value (such as .05) than is
possible with the ordinary test.

Using inferences based on modified P values moves us in
the direction of the optimal procedures based on supple-
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mentary randomization. For instance, the UMP unbiased
test of size o (Lehmann 1986, p. 163) corresponds to making
a decision based on comparing « to a P value using supple-
mentary randomization, such as (3) for the one-sided case.
After generating a uniform random variable, one could invert
such a test to obtain a confidence interval, which (uncon-
ditionally) would be uniformly most accurate unbiased
(Lehmann 1986, p. 217). Our tests and confidence intervals,
though not achieving optimality for an arbitrary size «, have
the advantage of using properties of the data, rather than
being data independent. Our modification, unlike the mid—
P value, maintains at least the guaranteed level and uses the
data for the P value adjustment. In addition, the modified
procedures are less conservative than the usual ones based
on the ordinary P value. The improvement can be consid-
erable when K is large but the sample size is not, in which
case many tables with different probabilities may have the
same test statistic value.

We used the table probability to generate a secondary par-
titioning of tables having the observed value of 7. When T
is a score, Wald, or likelihood ratio statistic for a particular
alternative, it would not help to form a modified P value by
using simultaneously either of the other two statistics. Be-
cause these tests all depend only on the sufficient statistics
under the alternative, they induce the same partitioning.

For approaches based on ordinary or modified P values,
we prefer confidence intervals based on inverting two-sided
tests. Even if one prefers not to base inference on modified
P values, one can obtain confidence intervals that are often
much narrower than the ordinary intervals by inverting re-
sults of two-sided tests rather than results of separate one-
sided tests, such as is done in existing software (e.g., StatXact
1991).

We have presented our ideas in the context of three-way
contingency tables, but they extend to other settings in which
exact conditional inference applies. An example is logistic
regression modeling. Exact inference in logistic regression is
often highly discrete, even degenerate. One can often alleviate
this problem somewhat by treating the data as a contingency
table and using the modified approach.

The first author has prepared a FORTRAN program, de-
signed for IBM-compatible PC’s or UNIX workstations, for
computing modified P values and modified confidence in-
tervals for a common odds ratio in 2 X 2 X K tables. It is
available from the first author by sending a formatted
3-1/2 inch floppy disc. This program is an adaptation of
one written by Vollset and Hirji (1991) for ordinary exact
inference for such tables.

APPENDIX A: EXACTNESS FOR THE MODIFIED
CONFIDENCE INTERVAL BASED
ON ONE-SIDED TESTS

The lower limit is the smallest value of 8 for which P} () = a/
2. For 0 < 0*, PY(6) < /2. It follows that

Pr(0* > ) < Pr(P’,"(O) < g)

< Pr(Pf(o) < %) -E Pr(P’.*(o) < %

<g
s =3

Journal of the American Statistical Association, June 1995

where s denotes a possible sufficient marginal configuration, and
the last step follows because of discreteness. For the upper limit,
by the same arguments we have Pr(6% < 6) < «/2. Thus the ex-
clusion probability Pr(6% < 6) + Pr(6* > 6) is at most a.

APPENDIX B: EXACTNESS FOR THE MODIFIED
CONFIDENCE INTERVAL BASED
ON TWO-SIDED TESTS

The lower limit 6_ is the smallest 6 satisfying P*(6) = «, and the
upper limit 6, is the largest § satisfying P*(8) = a. For all values
of @ lying outside the closed interval 6_ < 6§ < 6., it follows that
P*(0) < a. Then

Pr(6 <6_,0> 0,) < Pr(P*(0) < &)
< Pr(P*(0) < &) = E Pr(P*(0) < a|s) < a.

Hence Pr(f- <0 <6,)=1— a.

APPENDIX C: EXACT, UNBIASED,
AND ADMISSIBLE TESTS

For the proof of unbiasedness, we need a lemma that generalizes
lemma 3.2 of Cohen and Sackrowitz (1991) to three-way tables.
The same techniques are applied, with appropriate modifications
for three-way tables. We use T and s as defined in Section 5. For
nondecreasing functions W(T) and W*(T), one can show that
under conditional independence,

E{W(T)W*T)|s} = E{W(T)|s}E{W*(T)|s}.

Let f(t]|s) and f,(t|s) denote the conditional densities of (T |s)
under the alternative and null. We see that W*(t) = fi(t|s)/fo(t|s)
is nondecreasing for any 6 in the alternative space, and by the as-
sumption, the test ¢,(t) is also nondecreasing in t. Then for 8 in
the alternative space,

Efps(t)[s) = 2 os(t)fi(t]s)
=2 es(OW*(t) fo(t]s)

= [2 sos(t)ﬁ)(tIS)][Z W*(t)ﬁ(tls)], (A1)

= Eops(t) = a. (A.2)

This expression implies conditional unbiasedness of ¢,(t), which
in turn implies unbiasedness of the original test ¢(N).

Next, we outline the proof of admissibility. Using the distribution
of N, we test conditional independence against (1). Eaton (1970)
gave an essentially complete class for an exponential family. This
class consists of tests for which the acceptance region is convex,
with possible randomization on the boundary of the acceptance
region. Applying his theorem, our tests lie in the complete class of
tests. Furthermore, Ledwina (1978, 1984) gave the class of admis-
sible rules for multivariate exponential distributions with discrete
support. Ledwina considered the connection between admissible
tests based on conditional and joint distributions, and showed that
if the conditional test is admissible for every fixed value of nuisance
parameters, then the original test is admissible. Admissibility of
tests in three-way tables is obtained using the same arguments given
there.

[Received October 1993. Revised June 1994.]
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