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Exact Inference for Contingency Tables With
Ordered Categories

ALAN AGRESTI, CYRUS R. MEHTA, and NITIN R. PATEL*

This article proposes an efficient numerical algorithm for small-sample exact inferences in contingency tables having ordinal
classifications. The inferences, which apply conditional on the observed marginal totals, also provide an exact analysis for the
log-linear model of linear-by-linear association for cell probabilities. An exact test of independence has a one-sided P value
equal to the null probability that model-based maximum likelihood estimates of odds ratios are at least as large as the observed

estimates. The conditional nonnull distribution yields confidence intervals for odds ratios having a linear-by-linear structure.
The computations utilize an extension of the network algorithm proposed by Mehta and Patel (1983).

KEY WORDS: Linear-by-linear association; Log-linear models; Multiple hypergeometric distribution; Network algorithm;
Odds ratio; Rank tests; Score tests; Uniform association.

1. INTRODUCTION

This article presents exact small-sample inferences for
cross-classifications of ordinal variables. Let {nij} denote
cell counts in an r x c contingency table, and let {mij}
denote their expected values. Denote the row variable by
X and the column variable by Y. We assume a standard
Poisson or multinomial sampling model for {nij}. Let n =
ES nij.

To eliminate nuisance parameters and permit exact anal-
ysis, the usual approach conditions on marginal totals and
uses the resulting hypergeometric distribution. For ordinal
classifications, powerful tests usually result from basing
the P value on some ordinal measure of distance from
independence. Agresti and Wackerly (1977) used the dif-
ference between the numbers of concordant and discor-
dant pairs. Patefield (1982) suggested alternative ordinal
statistics, and he and Agresti, Wackerly, and Boyett (1979)
implemented sampling schemes to estimate the P value
for cases in which calculations are excessive.

This article presents an alternative analysis that applies
to a popular log-linear model for doubly-ordered tables,
the linear-by-linear association model. For fixed scores ul
< .< Ur for the rows and v<.. < vc for the columns,
this model is

log mjj = u + + + flujvj. (1.1)
Let aij = (mijmrc)I(micmrj). Model (1.1) has odds ratio
structure

log acj = fl(Ur - u)( - j),
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For equal-interval scores, the model implies uniformity in
the values of local odds ratios {Oij = mijmi+,,j+1I
mi,1+1mi+1,i}. A wealth of applications of the model have
appeared in the past decade, many of them summarized
by Agresti (1990, chap. 8).

Minimal sufficient statistics for Model (1.1) are Inj+},
{n+j}, and T = uivjnij. For fixed marginal counts, the
maximum likelihood (ML) estimate f, of fi is a strictly
monotone function of T (Gilula, Krieger, and Ritov 1988).
This suggests that we base exact inference for fi on the
distribution of T, which itself is a monotone function of
the correlation between X and Y for the given scores.
Yates (1948) proposed a large-sample test using T as an
alternative to Pearson's chi-squared test, and Mantel
(1963) used it in tests of partial association. Such tests
concentrate the search for association on a single degree
of freedom, often resulting in greatly increased power
compared to the chi-squared test.

Our test has a P value equal to the null conditional
probability that the ML estimator of fi is at least as large
as the observed value. We also construct confidence in-
tervals for f, and hence for odds ratios, based on the
nonnull conditional distribution. Computations use an ex-
tension of the network algorithm of Mehta and Patel
(1983).

2. EXACT PERMUTATION DISTRIBUTION OF
ORDINAL ODDS RATIOS

Conditional on the marginal totals, Cornfield (1956)
showed that the distribution of {nij} is proportional to

r-I c-1 r c
HH [I fl fl n,1!. (2.1)i=l j=1 i=1 j=1

For Model (1.1), this simplifies to ef#TI(ll nij!). The
conditional distribution of T is therefore

Pr(T = t I {nj+}, {n+j}; f) = C,eltl(Z Cueflu), (2.2)

where C, is the sum of (1111 nij!) - for all tables with the
given marginal distributions having T = t.
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Now, let {x}ij denote a generic set of cell counts, ab-

breviated as x, and let t denote the value of T for the
observed data {nij}. Let S = {x : Xi,= ni, x+; = n+j,
all i and j} and S, = {x: x in S and T t}. To test Ho: f
= flo against H1: fi > /3o, the exact conditional P value is

Pr(T ? t I {nj+}, {n+j}; fbQ)

St, [e#o /(f Xij!)] E- CT e#0 T

L5 [eoT(HlHl xij!)1 T CTef . (

For H1: fi =A fn, there are several possible ways to form P
values. We recommend letting P = Pr[I T - E(T)| - It
- E(T)I], where E(T) is the expected value of T when
A = Af.

Since this test uses category orderings, it can give results
very different from tests that ignore the ordering. For an
extreme case, consider the test of independence (fi = 0)
against Hl: fi = 0 for an r x r table having nii = 1 for all
i and ni = O for all i =1 j. This ordinal test has a P value
equal to (2/r!), whereas an exact test using a nominal-
scale statistic such as the Pearson chi-squared statistic has
P = 1.0.

We construct a confidence interval for fi by inverting
the test. An interval having confidence coefficient at least
1 - y is (,-, ,B+), where ET:t P(T I {nj+}, {n+j}, f-) =
yl2 and ETst P(T I {ni+}, {n+j}, #+) = y/2. These sums
are monotone functions of fi and f+, by the same argu-
ment given by Mehta, Patel, and Tsiatis (1984). The con-
fidence interval translates to ones for odds ratios. For
instance, when we assume (1.1) with unit-spaced scores,
[exp(,B), exp(fl+)] is a confidence interval for all (r -
1)(c - 1) local odds ratios.

The ML estimate of fi for multinomial or Poisson sam-
pling treats at most one margin of the table as fixed. Given
both margins, the conditional ML estimate maximizes
(2.2). It satisfies t = E(T), where E(T) refers to distri-
bution (2.2). From this expression, it is simple to show
that the conditional ML estimate is also a monotone func-
tion of T, given the marginal totals. Thus, for H1: f > 0,
the P value is also the probability that the conditional ML
estimator is at least as large as observed.

3. SPECIAL CASES OF THE TEST OF
INDEPENDENCE

A wide variety of exact tests of independence are special
cases of our test, for fio = 0. For the 2 x 2 case, our test
is Fisher's exact test. For the 2 x c case, Graubard and
Korn (1987) tabulated 14 tests based on T. For r x c
tables with fixed scores, the test is an exact test for the
Pearson correlation. For r x c tables, the ridit or midrank
scores are fixed for the set S, and we have an exact test
for the Spearman correlation. For the 2 x c case, this test
is equivalent to an exact Wilcoxon test for ordered cate-
gorical data (Mehta et al. 1984).

Suppose Y is an ordinal response, and X is an explan-
atory variable for which levels have a natural set of scores

{ui}. Let Pr( Yi < j) denote the probability that a randomly
selected subject at level i of X makes response in category
j or below of Y. For the cumulative logit model

log[Pr(Yi < j)/Pr(Yi > j)] = aj - flui,

T with midrank scores for {vj} is the efficient score for
testing Ho: f = 0 (McCullagh 1980). The statistic T with
arbitrary ordered scores is the efficient score for testing f
= 0 in Model (1.1). Thus for these models the tests of
independence presented in this article are locally most
powerful against one-sided alternatives.

Suppose we want to test independence against the more
general alternative that all local log odds ratios are non-
negative, and at least one is positive. Distribution (2.1) of
{n1i} can be expressed in terms of {0ij} by noting that

r-1 c-1 r-1 c-i
fI fI CY .1 = f[ f[ 0 1s,_ H a1-HH 1~i=l j=1 i=1 j=1

where sij = >aci lbsj nab. Hirotsu (1982) showed that
statistics that have a convex acceptance region and are
monotone increasing in each sij (given the marginal totals)
yield efficient score tests. Cohen and Sackrowitz (1988)
showed that such tests form a complete class, being the
set of exact, unbiased, and admissible tests. A simple way
to construct a test in this class is to let the test statistic be
some positive linear combination of {sij} and form the crit-
ical region from large values of the statistic. For strictly
ordered scores, T can be expressed as such a positive linear
combination, so tests discussed here fall in this complete
class.

4. NETWORK ALGORITHM

We use a network algorithm to compute, recursively,
the coefficients {CJ} that specify the conditional null dis-
tribution of T when fi = 0. These coefficients can, in turn,
yield the distribution of T for any fi, through (2.2). Infer-
ence about fi then proceeds in accordance with (2.3).

4.1 Network Representation for S

It is convenient to represent the reference set S as a
network of nodes and arcs. The network is constructed in
c + 1 stages, labeled 0, 1, . . . , c. Each stage consists of
a set of nodes. Arcs emanate from each node at any stage
k, and each arc is connected to a distinct node at stage k
+ 1. The nodes at stage k have form (k, Wk), where

(Wlk Xll + X12 + + Xlk
Wk w2k = X21 + X22 + + X2k

Wrk Xr1 + Xr2 + + Xrk

represents one possible partial sum for the first k columns
of the r x c tables in S, and wo = 0. There are as many
nodes at stage k as there are possible partial sums for the
first k columns of the tables in S.

The network begins with the single node (0, 0) at stage
0. It is constructed recursively by specifying all successor
nodes that are connected by arcs to each node (k, Wk) at
stage k. These successor nodes have form (k + 1, Wk+1)
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and satisfy, for i = 1, r,
c

max wik, ni + - k2 n+h ' Wi,k+l

min [n, +, n+k + Wik - (Wh,k+l - Whk)J . (4.1)

When we apply (4.1) successively at stages 0, 1, .
c - 1, we end up with a single terminal node (c, wc) at
stage c, and the network is fully constructed.

For 0 c j < k c c, a path connecting two nodes (j, w,)
and (k, Wk) is defined as a sequence of arcs of form (j,
wj) -- (j + 1, wj+1) --- - (k, Wk). A path through the
entire network is a sequence of arcs (0, 0) -> (1, w,) ->
-> (c, wc) connecting the initial node to the terminal
node. It represents a distinct r x c contingency table in
S, with entries (Wk+1 - Wk) in column k + 1. Each table
x in S corresponds to a single path through the network.
This unique path can also be denoted by x, and the net-
work is equivalent to the reference set S.

It is necessary to order all paths through the network
in accordance with the test statistic T, and to assign a
hypergeometric probability to each one. To this end we
define, for an arc connecting two nodes (k, Wk) -> (k +
1, Wk+l), the rank length

ak(Wk, Wk+l) = Vk+1 E U,(W,k+l - Wtk)

and the probability length

bk(Wk, Wk+1) = (Wi, k+1 - Wik)!1

Let the rank length of any path be the sum of rank lengths
of the arcs constituting the path, and let its probability
length be the product of probability lengths of those same
arcs. Then the rank length of any path x in S equals the
test statistic T = uivjxij, and its probability length
equals the (unnormalized) hypergeometric probability
[1111 xij!]-1. The null distribution of T is the same as
the distribution of the rank lengths of all paths through
the network. The tail area Pr(T - t) is proportional to
the sum of the probability lengths of all paths through the
network whose rank lengths are at least t.

The next two sections exploit the network representa-
tion of S to generate efficiently the null distribution of T,
and its tail area.

4.2 Generating the Distribution of T

We have constructed the network such that the distri-
bution of T is equivalent to the distribution of the rank
lengths of paths through the network. This distribution is
obtained by stagewise recursion. Consider each node (k,
Wk) at stage k. Suppose the set of all paths connecting (0,
0) to (k, Wk) yields q(k, Wk) distinct rank lengths, denoted
by {thk; h = 1, 2, . . . , q (k, Wk)}. Let Chk be the sum of
probability lengths of all paths from (0, 0) to (k, Wk) that
have the same t/ik. Thus, the set of records Q~(k, Wk) =

{(thk, Chk); h = 1, . .. , q(k, Wk)} is the probability dis-
tribution of rank lengths of all paths from (0, 0) to (k,
Wk), up to a normalizing constant. If fQ(k, Wk) is known
for each node at stage k, the following recursive procedure
generates fQ(k + 1, Wk + ) for each node at stage k + 1.

Step 1. Select a record thk in fQ(k, Wk).
Step 2. Transmit a copy of this record to each successor

node (k + 1, Wk+l), where the successors are identified
by (4.1).

Step 3. At each successor nodf (k + 1, Wk + 1), transform
the transmitted record to (t*, C ), where t* = thk + ak(Wk,
Wk+l) and C* = Chkbk(wk, Wk+1).

Step 4. Insert (t*, C*) into fQ(k + 1, Wk+ ) as follows.
(a) If there already exists a record (th,k+l, Ch,k+l) in fQ(k
+ 1, Wk+l) such that t* = th,k+l, then merge the two
records by replacing (th,k+l, Ch,k+1) with (th,k+1, C* +
Ch,k+l) in fQ(k + 1, Wk+l). (b) If no record currently in
fQ(k + 1, Wk+1) has rank length equal to t*, then augment
Ql(k + 1, Wk+1) by adding (t*, C*) to it as a new record.

The technique of hashing with a linear probe (Sedgewick
1983, p. 201) is used to search for matches and either
merge or augment records in Ql(k + 1, Wk + 1). This ensures
an optimum trade-off between efficient use of available
memory and fast search.

Step 5. Return to Step 1 and select another record from
fQ(k, Wk). Repeat Steps 2-5 with it. When every record
in fQ(k, Wk) has been processed, select another node at
stage k and repeat Steps 1-5 with it. When all nodes at
stage k have been exhausted, increment k by 1 and repeat
Steps 1-5 for the new stage k.

Starting with fQ(O, 0) = (0, 1) and moving through stages
0, 1, . . . , c - 1 in accordance with these five steps, we
end up with fQ(c, wc) as the null distribution of T, up to
a normalizing constant. To keep notation consistent with
that introduced in Section 3, we hereafter drop the sub-
scripts representing stage c and denote the null distribution
of T by the set of records fQ(c, wc) = {(t, CQ); t = tl, .
tN}. To compute the distribution of T when fi = 0, we
multiply each coefficient C, by exp(flt), and divide by the
normalizing constant lu Cu exp(flu). When f = 0, the
normalizing constant is the sum of rank lengths of all paths
through the network, which equals n!I[lfll (ni+!)(n+,!)]
(Mehta and Patel 1983).

Step 1 relates to the efficiency of this algorithm. The
more often records merge with other records, the fewer
records remain for processing at later stages. We refer to
the merging of two records as clubbing. The extent of
clubbing depends on the choice of scores {u,} and {v,}.
Greater clubbing results in fewer possible values for T.
For any table and sets of scores, nrc is a crude upper bound
for the number of possible values of T; uiv, can assume rc
values, and the sum of this cross-product can take at most
nrc values for the n subjects in the sample. Maximum
clubbing occurs for equal-interval scores, such as {u; = i}
and {v; = j}. For this case, suppose r = c and n1+ =n+
= nir for all i and]j. It follows from theorems in the next
section that the maximum value of T occurs when {nii -
n/r} and the minimum occurs when {ni,r_,+i = n/r}. Thus,
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T is bounded below by (nlr) > [i(n - r + i)] = n[(r +
1)2/2 - (r + 1)(2r + 1)/6] and bounded above by (nlr)
I i2 = n(r + 1)(2r + 1)/6. For these scores, Tcan assume
each integer value between the bounds. Thus, the number
of possible values for T equals n(r2 - 1)/6 + 1.

4.3 Computing the Tail Area of the
Distribution of T

Often we are not interested in the entire distribution of
T, but merely need to compute a P value, such as Pr(T
-t). It is then possible to improve the network algorithm
considerably by conducting a shortest path and a longest
path test on each record (t*, C*) prior to its insertion into
Ql(k + 1, Wk+l). If the record passes either test, it is
dropped from further processing, thereby reducing the
remaining work.

Define SP(k + 1, Wk+1) as the shortest rank length and
LP(k + 1, Wk +1) as the longest rank length among all
paths from node (k + 1, Wk +) to the terminal node (c,
wc). Also define TP(k + 1, Wk+,) as the sum of the prob-
ability lengths of all paths from node (k + 1, Wk + ) to
node (c, w,). By a slight modification of the method in
the appendix of Mehta and Patel (1983), we can show that

(n - Ek.:; n+j

TP(k + 1, Wk+1) = J7J n +j-! fr
J~I=k+2 " =1 Wi+ Wik_

Now, perform the longest path test on record (t*, C*). If

t* + LP(k + 1, Wk+ 1) < t, (4.2)
then no completion of the record can exceed t. Therefore,
this record cannot contribute to the P value, and can be
dropped from Ql(k + 1, Wk+l).

If (4.2) is not satisfied, perform the shortest path test
on (t*, C*). If

t* + SP(k + 1, Wk + ) 2 t (4.3)
then every completion of the current record must exceed
t and thereby contribute to the P value. Of all of these
completions of the current record, the total contribution
to the P value can be shown to equal

r c
C* x TP(k + 1, Wk+1)(n!)-l I ni+! HI n+j!. (4.4)

i=1 j=1
The record can be dropped after adding its contribution
(4.4) to the desired tail probability. If neither Test (4.2)
nor Test (4.3) is satisfied, we insert the record (t*, C) into
fQ(k + 1, Wk+,) and proceed with the algorithm described
in Section 4.2.

It remains only to obtain LP(k + 1, Wk+1) and SP(k
+ 1, Wk+l). The following two theorems show how these
quantities can be rapidly computed from any node of the
network.

Theorem]1. Let ui< u2 < **<urand vi< v2 < *.
K vc, be fixed. To maximize SE uiv1x,1 subject to xij 2 0
and integer, xi+ = ni+ x+; = n+1 for i = 1, . . . , r and

j = 1, . .. , c, an optimal solution must satisfy x1i =
min(nl+, n+l).

Theorem 2. Let ul < u2 < .. < ur and vi <v2 < .*
< vC be fixed. To minimize SE uivjxij subject to xi1 2 0
and integer, xi+ = ni+, x+j = n+j for i = 1, . . . , r and
j = 1, . . . , c, an optimal solution must satisfy x1c -
min(nl,, n,c).

The proofs are given in the Appendix. Theorem 1 can be
used repeatedly to determine the unique optimal solution
{x, } that maximizes SE uivjxij. The flow chart in Figure
1 shows how. By applying the flow chart at each node (k,
Wk), we can easily compute LP(k, Wk). In a similar man-
ner, Theorem 2 is used to compute SP(k, Wk).

5. COMMENTS

For large samples with Model (1.1), we can test inde-
pendence using the statistic z = ,B/ASE, obtaining the
estimated asymptotic standard error (ASE) from the in-
verse information matrix. Alternatively, we could use a
likelihood-ratio test, or a statistic based on the efficient
score,

z = [T - uivj(ni+n+jln)]

* {[E u0ni+ - (> uini+)2In]

x [v V2n+j - (E vjn+j)21n]}l"2.

The exact test given in this article should be used when
the sample may be too small to use such tests. Guidelines
for validity of these large-sample tests are not yet well
developed, though the tests apply for smaller samples and
sparser tables than tests of fit (Agresti and Yang 1987).
We note that ML estimates of parameters do not exist
when T assumes its maximum or minimum possible value
for the given margins. In that case, our methodology still
yields an exact P value and produces a confidence interval
for fi of form (f l, oo) or ( - oo, fl+).

For fixed sample size n, the number of tables in S in-
creases rapidly as r and c increase or as the row and column
totals become more homogeneous. Gail and Mantel (1977)
and Good (1976) gave approximations for the cardinality
of S, and Agresti and Wackerly (1977) gave upper bounds
for several table dimensions and sample sizes. Using a
FORTRAN 77 program on a high-speed computer to im-
plement our algorithm, we can handle tables of moderate
dimensions for which asymptotics may not apply. In fact,
we can use a personal computer when the order of the
cardinality of S is no more than about 106 or 107. The first
two columns of Table 1 illustrate the maximum central
processing unit (CPU) time the algorithm needed to com-
pute the entire distribution of T, using MS-DOS with an
IBM PS 2 (model 70) personal computer, running at 20
megahertz with a math coprocessor. For each r, c, and n
these maxima occur for tables having homogeneous mar-
ginal totals. The times represent the maximum CPU time

needed to construct an exact confidence interval for fi, or
to calculate a moderate-sized P value. Results are reported
for both equally spaced row and column scores and the
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Figure 1. Flow Chart for Determining {x,, That Maximize T.

unequal spacings {ui = 2i- 1} and {vj = 3 1- 1}. For times not
reported, the memory limitation of 640K under MS-DOS
was insufficient. These cases can be handled using com-
puters with larger memory, however.

The CPU times are faster when we only need a P value,
and that P value is small, since the algorithm then exploits
the longest and shortest path tests. To illustrate, Table 1
also reports CPU times for calculating a P value of about

Table 1. Maximum CPU Time (seconds) to Compute the Distribution
of T or a P Value on an IBM PS 2 (model 70) Personal Computer

Distribution P = .05 Extreme P value

Score spacing Score spacing Score spacing
Sample

Dimension size Equal Unequal Equal Unequal Equal Unequal

3 x 3 10 2 2 1 1 1 125 5 6 3 4 1 140 16 18 13 15 1 14 x 4 10 5 6 2 3 1 125 190 340 97 248 1 140 15,730 - 1,430 4,779 3 35 x 5 10 17 41 3 5 2 125 3,290 - 834 3,925 3 340 - - - - 6 5
NOTE: A dash represents infeasibility under MS-DOS because of its 640K memory limitation.

.05, when the sample counts have a uniform association
pattern and homogeneous marginal totals. The table also
reports CPU times when T takes its maximum value, again
for the worst case of homogeneous marginal totals. The
CPU times are much faster when the marginal counts are
highly nonuniform. For instance, a 5 x 5 table with mar-
ginal totals of (96, 1, 1, 1, 1) took five seconds. For such
highly unbalanced cases, one is especially wary of us-
ing asymptotic approximations. For tables in which the
algorithm is infeasible, one could use an importance-
sampling algorithm (such as in Mehta, Patel, and
Senchaudhuri 1988) to estimate precisely the exact P
value.

Our procedures assume Model (1.1) is correct, but they
would normally be applied in situations where sparseness
makes model checking difficult. Regardless of whether the
model holds, the P value based on T is a valid way to
summarize a type of evidence against the hypothesis of
independence. When the association contains a strong
monotone component, the exact test using T is usually
more powerful than exact tests that ignore the ordering.
Confidence intervals for odds ratios no longer apply when
the model does not hold, however, and the extent of de-
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parture from (1.1) determines their validity as approxi-
mations. The smoothing induced by the model does imply
that for small samples, model-based conditional ML es-
timates of odds ratios tend to be better than empirical
estimates corresponding to the fit of the saturated model.

One can construct an exact goodness-of-fit test of the
model by also conditioning on T. Given {ni}, {nj,}, and T
and given the fitted values for Model (1.1) that these suf-
ficient statistics determine, one could evaluate a goodness-
of-fit statistic (such as the Pearson chi-squared statistic)
for all tables having those sufficient statistic values. The
P value for testing the model is then the conditional prob-
ability that the value of the goodness-of-fit statistic is at
least as large as the observed one.

Some results in this article extend naturally to multiway
tables with ordinal classifications. We are currently gen-
eralizing the network algorithm to handle exact analyses
for multiway tables with ordinal variables.

Upon receipt of a floppy diskette, we will be pleased to
supply an executable code for performing the exact two-
way analyses described in this article on IBM-PC-com-
patible machines. A more complete implementation of the
algorithm will be available subsequently in the StatXact
package distributed by Cytel Software Corporation.

APPENDIX: PROOF OF THEOREMS

Theorem 1. Any feasible solution {x,,} must have xi, c
min(n1+, n+1). Suppose x11 < min(n,+ n+1). Since xl+ =nl+,
there exists k =# 1 such that Xlk 2 1. Also, since x+1 = n+1, there
exists h =# 1 such that x,,, - 1. Now, consider feasible solution

{x,} with x', = xII + 1, X k = Xlk - 1,hx' = I - 1, X ,k = Xhk
+ 1, and x, = x,, for all other (i, j). Now,

u,v,x,, = u,v,x,, + (Uh - Ul)(Vk - VI).
Since (u,, - ul)(vk - vI) > 0, SE u,vx' > SE u,vx,,, and thus
{x,,} cannot be an optimal solution.

We have established that xll = min(n1+, n+,) is a necessary
condition for an optimal solution. Now there is only a finite
number of nonnegative integer arrays {x,,} satisfying x,+ = ni+
and x+, = n+, all i and j. One or more of them must maximize
EE u,v,x,, thereby guaranteeing that an optimal solution exists.

The proof of Theorem 2 is similar to that of Theorem 1.

[Received April 1989. Revised October 1989.]

REFERENCES

Agresti, A. (1990), Categorical Data Analysis, New York: John Wiley.
Agresti, A., and Wackerly, D. (1977), "Some Exact Conditional Tests

of Independence for R x C Cross-Classification Tables," Psycho-
metrika, 42, 111-125.

Agresti, A., Wackerly, D., and Boyett, J. (1979), "Exact Conditional
Tests for Cross-Classifications: Approximation of Attained Signifi-
cance Levels," Psychometrika, 44, 75-83.

Agresti, A., and Yang, M. (1987), "An Empirical Investigation of Some
Effects of Sparseness in Contingency Tables," Computational Statistics
& Data Analysis, 5, 9-21.

Cohen, A., and Sackrowitz, H. B. (1988), "Tests for Independence in
Contingency Tables With Ordered Categories," unpublished manu-
script.

Cornfield, J. (1956), "A Statistical Problem Arising From Retrospective
Studies," in Proceedings of the Third Berkeley Symposium on Math-
ematical Statistics and Probability (Vol. 4), ed. J. Neyman, Berkeley:
University of California Press, pp. 135-148.

Gail, M., and Mantel, N. (1977), "Counting the Number of r x c Con-
tingency Tables With Fixed Margins," Journal of the American Statis-
tical Association, 72, 859-862.

Gilula, Z., Krieger, A., and Ritov, Y. (1988), "Ordinal Association in
Contingency Tables: Some Interpretive Aspects," Journal of the Amer-
ican Statistical Association, 83, 540-545.

Good, I. J. (1976), "On the Application of Symmetric Dirichlet Distri-
butions and Their Mixtures to Contingency Tables," The Annals of
Statistics, 4, 1159-1189.

Graubard, B. I., and Korn, E. L. (1987), "Choice of Column Scores for
Testing Independence in Ordered 2 x K Contingency Tables," Bio-
metrics, 43, 471-476.

Hirotsu, C. (1982), "Use of Cumulative Efficient Scores for Testing
Ordered Alternatives in Discrete Models," Biometrika, 69, 567-577.

Mantel, N. (1963), "Chi-Square Tests With One Degree of Freedom:
Extensions of the Mantel-Haenszel Procedure," Journal of the Amer-
ican Statistical Association, 58, 690-700.

McCullagh, P. (1980), "Regression Models for Ordinal Data" (with dis-
cussion), Journal of the Royal Statistical Society, Ser. B, 42, 109-142.

Mehta, C. R., and Patel, N. R. (1983), "A Network Algorithm for
Performing Fisher's Exact Test in r x c Contingency Tables," Journal
of the American Statistical Association, 78, 427-434.

Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1988), "Importance
Sampling for Estimating Exact Probabilities in Permutational Infer-
ence," Journal of the American Statistical Association, 83, 999-1005.

Mehta, C. R., Patel, N. R., and Tsiatis, A. A. (1984), "Exact Significance
Testing to Establish Treatment Equivalence With Ordered Categorical
Data," Biometrics, 40, 819-825.

Patefield, W. M. (1982), "Exact Tests for Trends in Ordered Contingency
Tables," Applied Statistics, 31, 32-43.

Sedgewick, R. (1983), Algorithms, Reading, MA: Addison-Wesley.
Yates, F. (1948), "The Analysis of Contingency Tables With Grouping

Based on Quantitive Characters," Biometrika, 35, 176-181.

This content downloaded from 128.227.24.141 on Wed, 20 Nov 2024 18:41:10 UTC
All use subject to https://about.jstor.org/terms


	Contents
	p. 453
	p. 454
	p. 455
	p. 456
	p. 457
	p. 458

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 85, No. 410 (Jun., 1990) pp. 273-608
	Front Matter
	Editors' Report for 1989 [pp. 273]
	Applications and Case Studies
	Estimating the Electoral Consequences of Legislative Redistricting [pp. 274-282]
	Estimating Fecundability From Data on Waiting Times to First Conception [pp. 283-294]
	The Deterrent Effect of Capital Punishment: An Analysis of Daily Homicide Counts [pp. 295-303]
	Inference from Coarse Data Via Multiple Imputation with Application to Age Heaping [pp. 304-314]
	Multinomial Runs Tests to Detect Clustering in Constrained Free Recall [pp. 315-320]
	Evaluating Screening for the Early Detection and Treatment of Cancer Without Using a Randomized Control Group [pp. 321-327]
	Modeling and Monitoring Biomedical Times Series [pp. 328-337]
	An Application of the Seasonal Fractionally Differenced Model to the Monetary Aggregates [pp. 338-344]
	Sliding-Spans Diagnostics for Seasonal and Related Adjustments [pp. 345-355]
	Homophily and Social Distance in the Choice of Multiple Friends: An Analysis Based on Conditionally Symmetric Log-Bilinear Association Model [pp. 356-366]
	The Relationship Between the Length of the Base Period and Population Forecast Errors [pp. 367-375]

	Theory and Methods
	A Multivariate Generalization of Quantile-Quantile Plots [pp. 376-386]
	Testing the Goodness of Fit of a Linear Model Via Nonparametric Regression Techniques [pp. 387-392]
	Influence on Confidence Regions for Regression Coefficients in Generalized Linear Models [pp. 393-397]
	Sampling-Based Approaches to Calculating Marginal Densities [pp. 398-409]
	Kernel Quantile Estimators [pp. 410-416]
	Refining Bootstrap Simultaneous Confidence Sets [pp. 417-426]
	Small-Sample Confidence Intervals [pp. 427-434]
	Extension of the Stein Estimating Procedure Through the Use of Estimating Functions [pp. 435-440]
	Components of Pearson's Phi-Squared Distance Measure for the k-Sample Problem [pp. 441-445]
	Breakdown Robustness of Tests [pp. 446-452]
	Exact Inference for Contingency Tables with Ordered Categories [pp. 453-458]
	The Relative Efficiency of Goodness-of-Fit Statistics in the Simple and Composite Hypothesis-Testing Problem [pp. 459-463]
	The Evaluation of Integrals of the Form ∫<sup>+∞</sup><sub>-∞</sub> f(t)exp (- t<sup>2</sup>) dt: Application to Logistic-Normal Models [pp. 464-469]
	The Maximal Smoothing Principle in Density Estimation [pp. 470-477]
	Signed-Rank Tests for Censored Matched Pairs [pp. 478-485]
	Bootstrap Prediction Intervals for Autoregression [pp. 486-492]
	Sensitivity of Two-Sample Permutation Inferences in Observational Studies [pp. 493-498]
	Modeling Time-Varying Dynamical Systems [pp. 499-507]
	Bounded-Influence Rank Regression: A One-Step Estimator Based on Wilcoxon Scores [pp. 508-513]
	The Accuracy of Approximate Intervals for a Binomial Parameter [pp. 514-518]
	Efficiencies of Interblock Rank Statistics for Repeated Measures Designs [pp. 519-528]
	Two-Sample Inference for Median Survival Times Based on One-Sample Procedures for Censored Survival Data [pp. 529-536]
	A Simulation Study of the Analysis of Sets of 2 × 2 Contingency Tables Under Cluster Sampling: Estimation of a Common Odds Ratio [pp. 537-543]
	Confidence Curves in Nonlinear Regression [pp. 544-551]
	A Multivariate Signed-Rank Test for the One-Sample Location Problem [pp. 552-557]
	Models for Distributions on Permutations [pp. 558-564]
	Tests of Hypotheses in Overdispersed Poisson Regression and Other Quasi-Likelihood Models [pp. 565-571]
	Statistical Densities, Cumulatives, Quantiles, and Power Obtained by S-System Differential Equations [pp. 572-578]
	Comparison of Linear Estimators Using Pitman's Measure of Closeness [pp. 579-581]
	Testing the Mixture of Exponentials Hypothesis and Estimating the Mixing Distribution by the Methods of Moments [pp. 582-589]

	Book Reviews
	[List of Book Reviews] [pp. 590]
	Review: untitled [pp. 591]
	Review: untitled [pp. 591-592]
	Review: untitled [pp. 592]
	Review: untitled [pp. 592]
	Review: untitled [pp. 593]
	Review: untitled [pp. 593-594]
	Review: untitled [pp. 594-595]
	Review: untitled [pp. 595-596]
	Review: untitled [pp. 596]
	Review: untitled [pp. 596-597]
	Review: untitled [pp. 597]
	Review: untitled [pp. 597-598]
	Review: untitled [pp. 598]
	Review: untitled [pp. 598-599]
	Review: untitled [pp. 599]
	Review: untitled [pp. 599-600]
	Review: untitled [pp. 600]
	Review: untitled [pp. 600-601]
	Review: untitled [pp. 601]
	Review: untitled [pp. 601-602]
	Review: untitled [pp. 602-603]
	Review: untitled [pp. 603-604]
	Review: untitled [pp. 604-605]
	Review: untitled [pp. 605-606]
	Review: untitled [pp. 606]
	Review: untitled [pp. 606]

	Publications Received [pp. 606-607]
	Letters to the Editor [pp. 608]
	Correction: Bootstrap Confidence Regions for Directional Data [pp. 608]
	Correction: Contrasts for Identifying the Minimum Effective Dose [pp. 608]
	Back Matter



