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Order-Restricted Score Parameters in Association

Models for Contingency Tables
ALAN AGRESTI, CHRISTY CHUANG, and ABBAS KEZOUH*

The row effects and column effects models for two-way contingency
tables have parameters for the row and column categories pertaining to
the association between the variables. For classifications having ordered
categories, it is often reasonable to assume that the association param-
eters have a corresponding ordering. This article proposes order-re-
stricted estimates of the association parameters in these models. The
maximum likelihood solution can be determined by the solution of a
simple isotonic regression of some of the model sufficient statistics. The
models are primarily log-linear in form and can be expressed in terms
of odds ratios for 2 x 2 subtables consisting of adjacent rows and ad-
jacent columns. For the order-restricted solution, these local log-odds
ratios have uniform sign. Goodness-of-fit statistics for this solution are
related to corresponding statistics for collapsed tables and to statistics
for testing equality of sets of the parameters.

The row effects model discussed in this article has been proposed by
Haberman (1974), Simon (1974), and Goodman (1979), among others.
This model contains parameters for the rows in the contingency table
that describe the structure of the association and can be used to describe
dependence in corresponding logit models. This article deals with ap-
plications of the model in which there is a monotonic relationship be-
tween the variables, in the sense that the population values of the local
log-odds ratios are uniformly nonnegative or uniformly nonpositive. For
instance, one might expect a nonnegative relationship for the data ana-
lyzed by Haberman (1974) and by Goodman (1979) on mental health
and socioeconomic status, and a nonpositive relationship for the data
analyzed in Section 2 of this article on age and severity of disturbances
in dreams. By using the methods described in this article, one can obtain
monotone estimates of the association parameters, which imply a mono-
tone relationship between the variables. With this approach, one obtains
a simpler description of the relationship, and better estimates, when the
parameter scores truly are ordered.

KEY WORDS: Collapsed tables; Isotonic regression; Log-linear model;
Odds ratio; Ordinal variable; Row effects model.

1. INTRODUCTION

Let {n;;} denote the cell frequencies in an r X c cross-
classification of ordinal variables X and Y. Let {m;;} denote
the corresponding expected frequencies. Haberman (1974),
Simon (1974), Goodman (1979), and others modeled the
association between X and Y by using the structural form

(1.1)

lOg mij = u + }.:Y + l]Y + /,liVj,
for which the local log-odds ratio equals
log 6, = log(mijmi+1,j+1)/(mi,j+1mi+1,j)

= (fis1 — w) (Vi1 — V).
This model is referred to as the row effects model when
the {u;} are unknown parameters and the {v;} are fixed,
strictly monotone scores; the column effects model when
the {v;} are parameters and the {y,} are fixed, strictly mono-
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tone scores; the multiplicative row-and-column effects
model when both sets are parameters; and the linear-by-
linear association model when u;v; = Puv; with the {u;}
and {v;} being fixed, strictly monotone scores. Goodman
(1979; 1985) showed that model (1.1) is a discrete analog
for a family of distributions that includes the bivariate
normal, and gave examples of its use. Clogg (1982) used
the {x;} and {v;} in this model as category scores in scaling
variables assumed to have such an underlying distribution.
When researchers use structural form (1.1), their initial
choice of model may depend on whether the classifications
have natural scorings. Any classification having parameter
scores is treated as nominal, in the sense that there is no
inherent order to the {x;} or {v;}, and their maximum like-
lihood estimates can have any order.

In many applications, it is reasonable to assume that the
association is monotonic in the sense of uniformly non-
negative, or uniformly nonpositive, local log-odds ratios.
For model (1.1) this implies that the scores have the same,
or the reverse, monotone ordering as the categories. In
this article we show that when an ordering constraint is
imposed on the parameter scores in the row effects model
or in the column effects model, maximum likelihood es-
timates can be determined from the ordinary fit for an
appropriately collapsed table. We give necessary and suf-
ficient conditions for this collapsing, and we show that it
can be determined from an isotonic regression involving
the model sufficient statistics. A goodness-of-fit statistic
for the order-restricted solution is shown to be related to
corresponding statistics for collapsed tables and to a sta-
tistic for testing equality of sets of score parameters.

Model (1.1) treats the variables symmetrically. In ap-
plications where it is natural to treat one of the variables
as a response, this model may be more informative when
viewed as a logit model for adjacent response categories,
as in Simon (1974) and in Goodman (1983). For instance,
if the column variable is a response that is assigned scores
{v; = j}, then the row effects model corresponds to the
logit model

log(mi,i’rl/mij) = (},}’“ - /‘L;Y) + U= o + W

If the {u,} are regarded as treatment effects on the logit
scale, then the order restriction implies that these effects
have the same ordering as the levels of X.

2. ORDER-RESTRICTED ROW EFFECTS MODEL

For the row effects model, v; < -+ < v, are fixed and
the {u;} are parameters. Here, we fit this model subject
to the order restriction y; < -+ < u,, corresponding to a
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nonnegative association. Analogous results apply to the
solution for the order restriction y; = -+- = y, or to order-
restricted solutions for the column effects model. For iden-
tifiability, one can also impose a constraint such as 2 u; =
0. Let {2} denote the ordinary maximum likelihood esti-
mates, and let {4}} denote the order-restricted estimates.
The following result is shown in Appendix A.

Theorem 1. A necessary and sufficient set of equations
for characterizing the order-restricted solution {72} } of the
row effects model is

o J— ;] — .
miy = Ny, l_la"'ar’

2.1)

where a plus (+) subscript indicates summation over that
index,

mi=n. j=1,...,¢

2[2 V]m;]$2[z anij] 5 b= 1,...,r, (2.2)
isb L j isb L j
with
S =>>wn;, k=1,...,a, (2.3)
isry j isr j
where {r;, . . . , r,} are such that
At == < = =
< e < Af == 47 (24)

The likelihood equations for the ordinary solution of
the model are Equations (2.1) and (2.3) withr, = k (k =
1,...,n0.LetRy={n 1+ 1,...,nytk=1,...,
a), with ry = 0. Then Equations (2.1) and (2.3) imply the
likelihood equations for the row effects model fitted to
the collapsed table in which the rows in eachof Ry, . . .,
R, are combined. The order-restricted solution is, there-
fore, the same as the solution for the model with equality
constraints for the score parameters in each R;, and this
solution can be determined from the ordinary solution for
an appropriately collapsed table. The new aspect here oc-
curs in determining the partition {R,} for which these equa-
tions give the order-restricted solution. The following re-
sult, proved in Appendix B, is useful for this purpose.

Theorem 2. For the ordinary row effects model, the
{/:} have the same ordering as the sample row means {M; =
2]‘ anij/ni+}.

Hence the partition {R;} must be such that

3 (/3]

iER,
is strictly increasing in k. This partition can easily be
determined using the following result, proved in Ap-
pendix C.

Theorem 3. The partition {R,} for the order-restricted
row effects model is identical to the partition of level sets
obtained in minimizing ¥ (M; — M})n;, in the class of
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functions isotonic with respect to the simple order of the
rows, that is, such that M§ < --- < M}.

In other words, the level sets are the same as those
obtained in the isotonic regression of the sample row means
with respect to the simple order on the rows, using the
row marginal totals as the weights. For the order restric-
tion y; = -+ = u,, Theorem 3 applies to the class of func-
tions isotonic with respect to the reverse of the simple
order.

The correct partition {R,} can be determined with an
algorithm used in isotonic regression, such as the pooling
adjacent violators algorithm (see Barlow, Bartholomew,
Bremner, and Brunk 1972). At each step in this algorithm,
one compares each pair of rows i and i + 1, combining
them and placing them in the same level set if the row
means satisfy M; > M,,,;. One continues to enlarge the
level sets from violations in the ordering of row means
until, at a particular stage, the row means are monotone
increasing. The isotonic regression is unique (Barlow et
al. 1972, p. 12), and the final solution does not depend
on the order in which the algorithm is applied to the rows.

A useful consequence of Theorem 3 is that one can
determine the partition {R;} before actually fitting the row
effects model. Once the partition is obtained, standard
software that can perform the iterative fitting of the row
effects model (see Agresti 1984, app. D) can be used to
obtain the order-restricted solution. Alternatively, be-
cause of the correspondence between the ordering of the
row means and the estimated parameter scores (see Th.
2), one can discover the partition through successive fitting
of the model, whereby, at each stage, scores are equated
that violate the desired order. The order-restricted solu-
tion can also be obtained using a general-purpose algo-
rithm for nonlinear optimization subject to linear in-
equality constraints. McDonald and Diamond (1983)
described some of these algorithms. We have developed
a program that incorporates the EO4UAF subroutine from
the NAG library (1984), which uses a sequential aug-
mented Lagrangian method, the maximization being solved
by a quasi-Newton method. We have also used the BMDP-
3R (Dixon 1979) nonlinear regression program, by using
one of its options to form G? as the recognized loss func-
tion. Copies of these programs are available from Dr.
Chuang.

Equations (2.1)-(2.3) are implied by the likelihood
equations for fitting the row effects model to a transformed
table {n;} in which the frequencies in R, are replaced by
expected frequency estimates for the independence model
fitted to those rows (k = 1, . . ., a); that is,

ni’;f = I:Z nx].:ll:nH/Z nx+]’ lfllan
XER, XER;

Hence the order-restricted solution can be regarded as the
composite fit in which the row effects model is applied
after the independence model has been fitted to each set
of rows R,.. We use this result in Appendix D to show that
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the goodness of fit of an order-restricted row effects model
can be decomposed into the goodness of fit of indepen-
dence models to the {R;} plus the goodness of fit of the
row effects model to the collapsed table in which each set
of rows R, is combined into a single row. Specifically, let
G*(R) = 22 2 n;log(n;/my;) denote the likelihood ratio
statistic for fitting the ordinary row effects model to the
original table, let G%(R*) denote the fit of the order-re-
stricted model for that table, and let G*(R’) denote the
fit of the row effects model for the collapsed table. In
addition, let G*(I) and G*(I') denote the fit of the inde-
pendence model to the original and collapsed tables, re-
spectively, and let G*(I;) denote the fit of the indepen-
dence model to the set of rows R, (k = 1, . . ., a). Then,
we have the following result.

Theorem 4.
GY(R*)

GXR') + 2, GX(L)
GXR') + G¥I) — GX(I').

We next consider briefly the asymptotic distributions of
G*(R*) and g* = (4f, . . . , ii¥), when the model holds
with ordered score parameters. If y; <y, <--- <y, then
under multinomial or Poisson sampling assumptions,
Pr(4, < - < ) > 1 as n — . Hence Pr(2* = ) —> 1
and Pr{G*(R*) = G*(R)} — 1 as n — %, s0 asymptotically
the order-restricted fit and the ordinary fit are identical.
In particular 2* has an asymptotic normal distribution with
asymptotic covariance matrix obtained from the inverse
of the information matrix for the ordinary model. Suppose
next that the {u;} are monotonic, but that at least two
scores are equal. For illustrative purposes, suppose that
the row effects model holds with 4 < -- <y = 1 <
+++ < u,. Then, with limiting probability .Sasn — «, g =
a* and G¥R*) = G*R), which has an asymptotic
X% 1)c-2) distribution. In addition, with limiting probabil-
ity .5, iy < <y le > Poerrs Besr < 0 < b, and fif <
e K = <o <[IF, s0GHR*) = GAR') + G*(Iy).
For a fixed selection of rows k and £ + 1 for the collaps-
ing, GX(R') and G*(I;) are asymptotically independent
At-2c-2 and x%_; random variables, respectively, so
GXR') + GX(I,) is an asymptotic x¥ _iyc-2+1 random
variable. Hence for large n, G%(R*) has an asymptotic
distribution that is an equal mixture of y%_;).—» and
A% -1)c-2+1 distributions. If more than two of the scores
are equal, the asymptotic distribution is a more complex
mixture of y? distributions that will not be considered here.
Suppose finally that some p; > ;.. Then Pr(jy >
fies1) = 1, and G*(I,) for the table involving rows k and
k + 1, and similarly G?*(R*), is unbounded with proba-
bility 1 as n — .

To illustrate order restrictions in the row effects or col-
umn effects model, we consider the data in Table 1. The
table, analyzed most recently by Anderson (1984), cate-
gorizes boys by age and by severity of disturbed dreams.
We assigned midpoint scores (6, 8.5, 10.5, 12.5, 14.5) to
the age variable. When we assume equal-interval scores

[-74]

Table 1. Severity of Disturbances of Dreams in Boys, by Age:
Observed Data, With Estimated Expected Frequencies
(in parentheses) for Order-Restricted
Column Effects Model

Not severe Very severe

Age 1 2 3 4

5-7 7 4 3 7
(4.06) (5.15) (5.02) (6.78)

8-9 10 15 11 13
(14.25) (11.27) (11.01) (12.47)

10-11 23 9 1 7
(20.55) (10.14) (9.90) (9.42)

12-13 28 9 12 10
(31.92) (9.83) (9.59) (7.66)

14-15 32 5 4 3
(29.23) (5.62) (5.48) (3.68)

for severity of disturbed dreams, the linear-by-linear as-
sociation model gives G2 = 14.61 with 11 residual df, a
large improvement over G2 = 32.46 with 12 df given by
the independence model. In the column effects model we
treat the severity scores as parameters and obtain a some-
what better fit, with G%(C) = 9.75 and 9 residual df.
The estimated parameters ¥ = (.189, —.061, —.008,
—.120) suggest a negative trend in the association, though
P, < ¥s.

Anderson fitted the column effects model to these data.
Noting the closeness of ¥,, ¥5, and ?,, he suggested using
a simpler model in which these scores are constrained to
be equal. We could, instead, assume that v; = --- = v,and
conjecture that 9, < 95 is simply due to sampling error. In
other words, given that the column effects model holds,
we could assume that boys of higher ages are stochastically
lower on severity of disturbed dreams. This order-re-
stricted column effects model gives #* = (.189, —.034,
—.034, —.120) for Table 1. The {1} are also shown in
the table. This order-restricted fit has G*(C*) = 10.13,
very nearly as good as the unrestricted fit.

3. COMMENTS

Goodman (1985) presented tests about equality of score
parameters for model (1.1). His test statistics can be re-
lated to goodness-of-fit statistics for order-restricted so-
lutions. For instance, to test v, = v, given that the column
effects model holds, Goodman (1985) showed that one
can use the statistic T = G*(I) — G¥(I') + G¥C') —
G*(C), where I' and C' refer to the collapsed table in
which columns two and three are combined. When the
model holds with v, = v,, T has an asymptotic chi-squared
distribution with df = 1. Now if an order-restricted fit
gives equality only to 95 and 95, then G*(C*) = G¥(I) —
G*(I') + G¥(C') = G¥C) + T.Forinstance, to test Hy :
v, = v, for Table 1, Goodman’s statistic is 7 = .38, based
on df = 1. This is identical to G*(C*) — G*(C) for that
table. The statistic T should here be regarded only as an
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informal index, since H, was suggested by the data. Since
9, < 9, was the only out-of-order pair, this statistic sup-
ports our conjecture that this violation may simply reflect
sampling error. When there is substantial evidence that
the true scores are out of order, so that some true local
log-odds ratios are positive and some are negative, then
the ordinary fit is useful for describing the nonmonoto-
nicity. In many applications, though, such as when we posit
a bivariate normal distribution for underlying continuous
variables, it is quite reasonable to assume a uniform sign
for the local log-odds ratios. Then, if there is not strong
evidence of nonmonotonicity, an order-restricted solu-
tion is appealing because simpler interpretations follow
from it.

If the row effects (or column effects) model holds and
the true scores are strictly monotonic, then the order-
restricted estimates and the ordinary estimates can have
quite different small-sample distributions. The ordinary
estimates are less likely to be monotonic as # or the strength
of association decreases. A simulation study by Kezouh
(1984) indicates that order-restricted estimates can have
much smaller mean squared error than the ordinary esti-
mates when the true scores are monotonic. Such behavior
is consistent with the improved performance obtained with
isotonic regression methods in other contexts (see, e.g.,
Lee 1981). In addition, although the order-restricted so-
lution produces groups of row scores that are equal, the
purpose of this procedure is not necessarily that of col-
lapsing the table to obtain simpler scales. For instance, if
I > iy and i = g, one would often expect larger
samples to produce [ < f4,; and a properly ordered
scale.

It would be useful in some applications to fit the model
having both row and column effects, subject to order re-
strictions such as iy < y, < - < gy, and y; < vy, < -+ <
v.. By using the same argument as in Appendix A, one
can show that an order-restricted fit necessarily satisfies
equations that correspond to likelihood equations for fit-
ting the ordinary row-and-column effects model to a col-
lapsed table. Based on the same arguments given in Ap-
pendix D, the goodness of fit of the order-restricted model
can be expressed in terms of the fit to the collapsed table
by G¥(RC*) = G*RC') + GX(I) — GX(I'). To obtain
an order-restricted solution, one can use a nonlinear op-
timization program. However, we have been unable to
obtain a sufficient condition for the solution. The difficulty
here is that the log-likelihood is not necessarily concave,
since the row-and-column effects model is not log-linear.
If the model holds and there is dependence, then the like-
lihood function is locally concave around the global max-
imum when the sample size is large, since the information
matrix at the true parameter values is positive definite.
Hence a judicious choice of initial trial values improves
the chance of obtaining proper convergence. The discov-
ery of sufficient conditions for the solution of the ordinary
or order-restricted row-and-column effects model, plus the
development of an algorithm for fitting these models, are
important problems for future research.

Joumal of the American Statistical Association, June 1987

APPENDIX A: PROOF OF THEOREM 1

If the {n,} are independent Poisson random variables with
means {m,}, then the log-likelihood is

L= n;logm, — > > m;=pun+ > nAf + 3 nif

+ D > vny — > > exp(u + AF + A + pvy).

To maximize a function subject to constraint functions, one can
refer to the Kuhn-Tucker conditions. These are discussed, with
particular attention to convex or concave functions, in Manga-
sarian (1969, chap. 7). In the context of maximizing L subject to
the linear inequality constraints 4, < g, (= 1,...,r = 1),
these conditions are as follows:

1. < - < pr

2. VL + (Vg)'n = 0, where VL is the column vector of partial
derivatives of L taken with respect to the model parameters, Vg
is a matrix whose jth row contains the partial derivatives of the
jth constraint function g, with respect to the model parameters,
where g, = u* — p, <0(j=1,...,r — 1)andyisacolumn
vector of Lagrange multipliers satisfying conditions 3 and 4.

3.7,20@=1,...,r—=1).

4. g'n = ZiZin(ar — At) = 0.

The second of these conditions corresponds to the equations

Ak y - .
mi, = N, 1_19'--9r,

mi=ny, j=1,...

St - v+ -, =0, i=1,...
i

i

> €5
> b

where 5, = 7, = 0. The nonnegativity of {,}, therefore, is equiv-
alent to Equation (2.2). Because of the constraints on {/*} and
{n}, the fourth condition is equivalent to the condition that , =
0 whenever ff < i%;. Thus if the partition for the solution is
as shown in (2.4), it follows that the fourth condition is equivalent
to (2.3).

The Kuhn-Tucker conditions are necessarily satisfied by a so-
lution to the order-restricted problem (Mangasarian 1969, pp.
103 and 105-106). The row effects model is log-linear, so L is
concave, from which it follows that these are also sufficient con-
ditions (Mangasarian 1969, p. 94).

APPENDIX B: PROOF OF THEOREM 2

For any two rows a and b, the ordinary maximum likelihood
estimates satisfy
fia)s
j=1...

log(rit,thiy a1/ Mo jitfts)) = (Vo1 — vi)(dy —

,c — 1.

Since v; < v;,, for all j, these ¢ — 1 local log-odds ratios all have
the same sign as fi, — f,. It follows (see Agresti 1984, p. 22) that

()3, 2)/ (32 )]

j=1...,¢c—-1

have the same sign as 2, — f,. The sign of this log-odds ratio
determines a stochastic ordering of the conditional distributions
{thgle., j =1, ..., ctand {rhy,;/M,,.,j=1,...,c} Thus
the conditional distributions in the rows are stochastically or-
dered according to the values of the {f}. It follows that the {j}
have the same ordering as the fitted row means {Ej vt .,
i=1,...,r}. The likelihood equations {r,, = n,, i = 1,
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., rtand {&; v, = 2, vn,, i = 1, ..., r} imply that the
{/x} also have the same ordering as the sample row means {M}.

APPENDIX C: PROOF OF THEOREM 3

Consider the problem of minimizing 2 (M; — M})’n;, subject
toAM <. < M} . The Kuhn-Tucker conditions for the solution
(M§, . .., M}) are as follows:

1. M} < - < M*.
2. (Mi* - M)n,, + 5, —n_,=0@G=1,...,r), where
7o = 1, = 0 and where the {,} satisfy conditions 3 and 4.

3. ThZO(if L...,r=1.
4. ZiZin(M} - M}, = 0.
If {M?*}is constant on level sets Sy = {s,_; + 1,...,s} (k =
1, ..., a), then conditions 2-4 correspond to equations
S Mn, =3 Mtn,, b=1,...,r (C.1)
isb isb
S Mn, = Mn,,, k=1,...,a. (C2)

issp issg

Having obtained the {M}} using an algorithm for isotonic regres-
sion, suppose that one obtains the fit of the row effects model
corresponding to the likelihood equations

ok __ 5 — .
miy, = Ny, l_l’~-~9ra

L J— — .
mii=n.g j=1...,¢
S vy = Min,, i=1,...,r.
i

Since M;n,, = Z,v;n;, it follows from (C.1) and (C.2) and from
Theorem 2 that this solution satisfies (2.1)-(2.4), with R, = S,
(k =1,...,a). Hence, from Theorem 1, this solution is the
order-restricted one for the row effects model.

APPENDIX D: PROOF OF THEOREM 4

Let G*(Ry) = 2 Z X n} log(n}/m}), the goodness of fit of
the row effects model to the transformed table described in Sec-
tion 2. The collapsing of the original table in which all of the
rows in R, are combined into a single row (k = 1, ..., a) is
identical to the corresponding collapsing of the transformed ta-
ble. For any table, when two rows are combined that have iden-
tical sample conditional distributions across the columns, the row
effects model gives the same fit (i.e., the same ;) for all cells
in remaining rows as it does when the rows are separate. Hence
it follows that G%(R;) = G*(R’). In addition, since the {n}} in
R, factor in terms of the product of row and column totals of
R,, and since those totals are the same for the {n;} as the {n;},
it follows that = X n,; log(n}) = = 2 njf log(n}). The {i*} are

623

identical within each R,. Hence the {r;'} also can be expressed
as independence estimates in each R,, and thus

2 2 n;log(hy) = 2 2 nj log(hy).
It follows that

G¥R*) =23 > n,log(n,/n)
+ 22 > nylog(ng i)
= 2 G(1) + 2 X X nj log(n} /1

=Y G¥I,) + G*R").

From standard chi-squared partitioning arguments, 2 G*(I,) +
GYI') = G%(I), from which G¥R*) = G¥R') + G*(I) —
G{(I').

[Received March 1984. Revised October 1986.]
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