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A Survey of Strategies for Modeling Cross-
Classifications Having Ordinal Variables

ALAN AGRESTI*

A survey is given of the main strategies for modeling
cross-classifications that contain ordinal variables.
Models are described for two-way tables in which one or
both classifications are ordered and for multidimensional
tables in which at least one classification is ordered. Pri-
mary emphasis is given to construction, interpretation,
and implications of loglinear and logit models.

KEY WORDS: Loglinear models; Logit models; Odds
ratios; Ordered categorical data; Association; Tests of
independence.

1. INTRODUCTION

In the past two decades, methods for analysis of cat-
egorical data have become increasingly well developed.
This is reflected by the many books that have recently
appeared on this topic, particularly since publication of
the outstanding compendium by Bishop, Fienberg, and
Holland (1975). Most of these books, however, pay little
attention to methods for ordinal categorical data. Spe-
cialized models for ordinal variables have been developed
more recently and in a somewhat fragmented manner.
Hence, standard loglinear and logit models designed for
cross-classifications of nominal variables are routinely
applied in practice to tables that contain ordinal variables.

The purpose of this article is to describe, in an inte-
grated manner, the main strategies that exist for modeling
cross-classifications that contain ordinal variables. Many
of these methods have been formulated here differently
than in the original sources in order to clarify their re-
lationships with the standard models for nominal varia-
bles and to make comparisons among them easier. We
place special emphasis on providing interpretations and
implications of the models. Throughout the article we
suggest descriptive measures derived from model param-
_eters that aid in interpreting the modeled associations and
that can be used in conjunction with the traditional model-
free measures of association.

We assume that the reader has a basic familiarity with
loglinear and logit models. Most of this article concerns
the construction of these types of models for ordinal var-
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the Mathematics Department at Imperial College. The author is grateful
to Dr. Jane Pendergast and Abbas Kezouh for computing assistance,
and to Dr. Clifford Clogg and Dr. Peter McCullagh for providing per-
sonal computer programs.

iables. Section 2 deals with loglinear models, first for the
case of a two-way table with one ordinal and one nominal
variable, then for the case of a two-way table with two
ordinal variables, and finally for the case of a multidi-
mensional table having at least one ordinal variable. Sec-
tion 3 deals with logit models for the same three settings.
Unlike loglinear models, the logit models require the
identification of a response variable, which we assume
to be ordinal. The same examples are used in Section 3
as in Section 2 in order to facilitate comparisons of the
models and the interpretations of their parameters. In
Section 4 we discuss briefly some alternative models for
ordinal variables. Methods for fitting the models of Sec-
tions 2 through 4 are summarized in Section 5. In the final
section we make a critical comparison of the various
model types.

In what follows, G* denotes the likelihood ratio statistic

G? = 2> nlog(n/m)

for testing the goodness of fit of a model by comparing
observed frequencies {n} to maximum likelihood esti-
mates {1} of expected frequencies satisfying the model.
Pearson chi-squared values are similar to the G? values
for all examples and are therefore omitted. All inferential
statements assume one of the usual sampling models for
categorical data—full multinomial, independent multi-
nomial, or independent Poisson sampling.

To motivate the study of specialized models for ordinal
variables, consider the data in Table 1. These data, re-
ported by Grizzle, Starmer, and Koch (1969), were taken
from a study comparing four operations for treating duo-
denal ulcer. The operations correspond to removal of var-
ious amounts of the stomach and thus have a natural or-
dering. The dumping severity variable describes the
extent of an undesirable potential consequence of the op-
eration. The categories of this variable are also ordered,
with ‘‘none’’ representing the most desirable result. The
operations were performed at four hospitals. Sampling
details are not provided by Grizzle, Starmer, and Koch
(1969), but the near uniformity of operation frequencies
for each hospital suggests that the two-way operation-
hospital marginal counts should be treated as fixed.
Hence, we shall treat the cell counts in Table 1 as out-
comes of independent multinomial samples taken at the
16 combinations of hospital and operation.
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When we fit the standard hierarchical loglinear models
to Table 1, we observe that the model under which dump-
ing severity is jointly independent of operation and hos-
pital fits fairly well. The G? goodness-of-fit statistic
equals 31.64, based on 30 degrees of freedom (df), yield-
ing a P value of P = .385. More complex standard models
do not provide marked improvements in fit. These stan-
dard models ignore the ordinal nature of two of the var-
iables, however. Their parameters do not describe well
the types of departures from independence addressed, for
example, by the question ‘‘Does dumping severity tend
to increase when more of the stomach is removed?”’
Using various analyses in this article, we shall, in fact,
obtain strong evidence of this type of association in
Table 1.

2. LOGLINEAR MODELS

In the standard construction of loglinear models given
in basic references such as Bishop, Fienberg, and Holland
(1975), all variables are treated as if they are nominal in
scale. That is, the parameter estimates and chi-squared
statistics are invariant under reorderings of categories of
any variable. More appropriate models are available
when one uses the extra information provided by the nat-
ural orderings of the categories of the ordinal variables
in the cross-classification.

For example, consider the two-dimensional table, with
row variable denoted by X and column variable denoted
by Y. Let m;; denote the expected frequency in the cell
inrow i and columnj, 1 = i=r, 1 =<j =< c. For this table
we do not usually expect the independence model

lOg my; = m + )\iX + )\jY (21)

to give an adequate fit. However, in the usual hierarchical
scheme, the model of next greater complexity is the sat-
urated one having an additional (r — 1)(c — 1) indepen-
dent \;/*¥ parameters. If one or both variables are ordinal,
though, simple models exist that are more complex and
realistic than the independence model, yet that are not
saturated.

Similar remarks apply to higher-dimensional tables.
Consider the model for a three-dimensional r X ¢ X [
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table,

lOg My = o + )\iX + )\jY +)\kz

+ )\inY + )\ikXZ + )\jkYZ. (22)
This model, for whichdf = (r — 1)(c — 1)(I — 1), includes
partial association terms for each pair of variables but no
three-factor interaction term. The model is quite general
as it assumes no structure for the form of the two-factor
associations. When at least one of the variables is ordinal,
more parsimonious models can be constructed that posit
certain simple types of associations. Also, unlike the stan-
dard models for three nominal variables, unsaturated
models exist having three-factor interaction terms, in
which a simple structure is posited for the nature of that
interaction.

21 Loglinear Model for Ordinal-Nominal Table

Suppose that the column variable of a two-dimensional
table is ordinal and that scores {v;} are assigned to the
columns, where v; < v, <. .. <v.. In many applications
the choice of scores will reflect assumed distances be-
tween categories for an underlying interval scale. In the
absence of such information, the choice of equal-interval
scores results in the,simplest interpretation for the fol-
lowing model (assuming that it fits with that choice of
scores). Further discussion of the implications of having
to assign these scores is given in Section 6.2.

A loglinear model that is more complex than the in-
dependence model (2.1) and uses the ordinal information
is given by

lOg my; = o + )\iX + )\jY + 'T,'X('Uj - 'l—/), (23)
where without loss of generality the model parameters
satisfy

2)\,‘X=2)\jy=27ix=0.

For loglinear models the residual df for testing goodness
of fit equals the difference between the number of cells
in the table and the number of linearly independent pa-

Table 1. Cross-Classification of Duodenal Ulcer Patients According to Operation, Hospital, and Dumping
Severity (Operation A is drainage and vagotomy, B is 25 percent resection and vagotomy, C is 50 percent
resection and vagotomy, D is 75 percent resection)

Dumping Severity
Hospital | Hospital Il Hospital Il Hospital IV
Operation None Slight Mod. None Slight Mod. None Slight Mod. None Slight Mod.
A 23 7 2 18 6 1 8 6 3 12 9 1
B 23 10 5 18 6 2 12 4 4 15 3 2
C 20 13 5 13 13 2 11 6 2 14 8 3
D 24 10 6 9 15 2 7 7 4 13 6 4

Source: Grizzle, Starmer, and Koch (1969).
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rameters in the model. For model (2.3), therefore,

df=rc-[1+@-1D+@C-1D+F-1)]
=@ - Dl -2,

and the model is unsaturated when ¢ > 2.

The independence model is the special case of model
(2.3) with all ¥ = 0. Note that the association term 7%
(v; — ) depends on the ordinal variable Y only through
its scores {v;}. This term reflects a departure of log m;;
from independence, which is linear in Y for fixed X. If
X > 0 (/X < 0), the probabilities in row i are higher
above v (below 7) than would be expected if the variables
were independent.

The {r/} can also be interpreted through log odds and
log odds ratios. For a pair of rows i and ',

lOg mij b lOg mi:;

= A = M)+ @ - ) - 9). 2.4)
That is, on a log scale, the difference between the pro-
portions in any two rows is a linear function of the ordinal
variable Y, with slope equal to the difference in the rel-
evant tau parameters. If X > 7%, the conditional Y dis-
tribution at the ith level of X is stochastically larger than
the conditional Y distribution at the i'th level of X. For

an arbitrary pair of rows i and i’ and an arbitrary pair of
columns j > j’,

my/my
lOg [m::l = (T,'X b T,"X)(‘Uj b ‘Uj'). (2.5)
Hence the log odds ratio is proportional to the distance
between the columns and is always positive if 75 > 7,%.
For the integer scores {v; = j}, the log odds ratio takes
on the constant value X — 7%, for all ¢ — 1 pairs of
adjacent columns.

We will refer to the {t/} as row effects and to model
(2.3) as the loglinear row-effects model. Model (2.3) or
special cases of it have been discussed by Simon (1974,
Formulation A), Haberman (1974), Goodman (1979a),
Andrich (1979), Duncan (1979), Duncan and McRae
(1979), and Fienberg (1980, pp. 61-64). Goodman’s row-
effects model is the special case of model (2.3) in which
the {v;} are equal-interval, so that the log odds ratio for
adjacent columns depends only on the rows involved.

The 3 X 3 cross-classification in Table 2 gives the joint
distribution of the ordinal variable ‘‘political ideology’’
and the nominal variable ‘‘party affiliation’’ for a sample
of voters taken by Hedlund (1978) in the 1976 presidential
primaries in Wisconsin. In analyzing these data, we might
wish to discern whether members of one party tend to be
more liberal or tend to be more conservative than mem-
bers of another party. The first set of parenthesized val-
ues in Table 2 consists of maximum likelihood estimates
of expected frequencies for model (2.3) with integer
scores {v; = j}. This model gives a reasonably good fit,

Joumal of the American Statistical Association, March 1983

Table 2. Cross-Classification of Voters in 1976
Wisconsin Primaries According to Party Affiliation
and Political Ideology (Parenthesized values are
maximum likelihood estimates of expected
frequencies under loglinear model (2.3) and logit
model (3.2), respectively)

Political Ideology
Party
Affiliation  Conservative  Moderate Liberal Total
Democrat 100 156 143 399
(93.6,92.2) (168.7,170.4) (136.6,136.4)
Independent 141 210 119 470
(145.8,144.3) (200.4,203.3) (123.8,122.5)
Republican 127 72 15 214
(128.6,129.1) (68.9,65.0) (16.6,19.9)
Total 368 438 277 1083

Source: Hedlund (1978).

with G> = 2.81 based on df = 2. Maximum likelihood
methods for fitting the row-effects model and other or-
dinal loglinear models are described in Section 5.

For the row-effects model applied to Table 2, the as-
sociation parameter estimates are ;X = .495, #,* = .224,
and 45X = —.719. This indicates that in the sample, the
Democrats tend to be the most liberal group, and the
Republicans tend to be much more conservative than the
other two groups. This model predicts constant log odds
ratios for adjacent columns of political ideology. For ex-
ample, +;X¥ — %X = 1.214 means that the odds of being
classified liberal instead of moderate and the odds of
being classified moderate instead of conservative are
exp (1.214) = 3.37 times higher for Democrats than for
Republicans.

The independence model yields G* = 105.66 based on
df = 4 for these data. The difference in likelihood ratio
statistics for model (2.1) and model (2.3) is 102.85, based
on df = 4 — 2 = 2. Given that the row-effects model
holds, this difference is a chi-squared test statistic for
testing independence (Hop: 7,X = 1% = 75¥ = 0). For
these data it indicates strong evidence of an association.
If the row-effects model holds, this conditional test will
be asymptotically more powerful at detecting an asso-
ciation than the test with df = (r — 1)(c — 1) based on
model (2.1), which ignores the ordinal nature of Y (see
Goodman 1981c). The conditional chi-squared test has df
= r — 1 and is analogous in intent to the Kruskal-Wallis
test for comparing r groups on an ordinal response. The
test statistic there (corrected for ties on the response) also
has a null asymptotic chi-squared distribution with df =
r — 1. For these data the Kruskal-Wallis statistic equals
96.59.

2.2 Loglinear Model for Ordinal-Ordinal Table

Suppose now that both the column and the row vari-
ables of a two-dimensional table are ordinal. We assume
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Table 3. Likelihood Ratio Statistics for Standard
Loglinear Models Fit to Data of Table 1 (D denotes
dumping severity, O denotes operation, H denotes

hospital)
Fitted Marginals G? DF P-value
(D,O,H)® 32.61 39 .755
(DO,H)? 21.73 33 .933
(DH,0)* 24.51 33 857
(OH,D) 31.64 30 .385
(DO,DH)? 13.63 27 .985
(OD,OH) 20.76 24 .653
(HD,HO) 23.54 24 488
(DO,DH,OH) 12.50 18 .820

2 These models are appropriate if the H margin or O margin alone (or neither margin)
are fixed, but not if the O—H marginal distribution is considered fixed.

here that scores {;} and {v;} are assigned to the rows and
columns, respectively, where u; < u, < ... <u,and v;
< vy <...<v.. Asimple loglinear model that uses the
ordinal information but that has only one more parameter.
than the independence model is given by

lOg m; = p + }\,'X + )\jY + BXY(II,' - ﬁ)(vj - ‘l-!). (26)

Here DA =D N =0,anddf = (r — I)(c — 1) — 1.

In model (2.6) the association term BXY(u; — i)(v; —
7) reflects a deviation from independence that is linear
in X for fixed Y and linear in Y for fixed X. We will refer
to this model as the linear-by-linear association model.
The independence model is the special case of XY = 0.
If XY > 0 we expect more observations to have large X
and large Y values or small X and small Y values than if
X and Y are independent. The magnitude of BXY can be
interpreted as follows. For an arbitrary pair of rows i <
i" and an arbitrary pair of columns j < j', note that

log[m;jm;'j'/m;jf m,vj] . BXY(u,-' - u,‘)(‘Uj' - ‘Uj). (2.7)

That is, the log odds ratio is directly proportional to the
product of the distance between the rows and the distance
between the columns. Hence, XY is the log odds ratio
per unit distances 4y — u; = vy — v; = lonX and Y.

Birch (1965), Nelder and Wedderburn (1972), Haber-
man (1974), and Goodman (1979a) have suggested this
model in various forms. Goodman studied it for the spe-
cial case {u; = i}, {v; = j} in which the local odds ratio
0;; = mgm;i1,j+1/m;j1m;+q; for adjacent rows i and
i+1 and adjacent columns j and j+1 is uniformly exp
(B*XY). He referred to that special case as the uniform
association model.

We now reconsider the data in Table 1 on dumping
severity for ulcer operations. Table 3 contains results of
fitting standard loglinear models. We mentioned in the
introduction that G*[(D, OH)] = 31.64 based on df = 30,
where (D, OH) symbolizes the model where dumping se-
verity (D) is jointly independent of operation type (O) and
hospital (H) (that is, the fitted marginals are D and O-H).
The best-fitting model at the next level of complexity in
the standard hierarchy is symbolized by (OD, OH), and
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has G = 20.76 based on df = 24. The statistic
G*[(D, OH)] — G?[(OD, OH)] = 10.88

based on df = 30 — 24 = 6 gives a test of the inde-
pendence of dumping severity and operation, under the
assumption that dumping severity is independent of hos-
pital for each operation. This test is identical to the like-
lihood ratio test of independence for the marginal table
(see Table 4) relating dumping severity and operation,
since for the structure (OD, OH) we can collapse over
the hospital dimension in studying the association be-
tween the other two variables. The P value here of about
.10 provides only weak evidence that dumping severity
and operation are associated, particularly since we used
the maximum improvement in fit in guiding our choice of
model.

In analyzing the association between dumping severity
and operation, we have not used their ordinal nature. We
can do this by fitting the.linear-by-linear association
model (2.6) to Table 4. The first set of parenthesized val-
ues in Table 4 consists of maximum likelihood estimates
of expected frequencies for the uniform association (in-
teger scores) version of that model. The model gives a
good fit, with G> = 4.59 based on df = 5. The estimated
constant value of the local log odds ratio is BX¥ = .163,
reflecting a tendency for dumping to be more severe when
more of the stomach is removed.

The difference in G? values between the two-dimen-
sional independence model and the uniform association
model is 10.88 — 4.59 = 6.29, basedondf = 6 — 5 =
1. Hence, we obtain fairly strong evidence (P < .02) of
a positive association when we use the ordinal nature of
the two variables, and we may reach a different conclu-
sion than we would with a cursory use of the standard
models. This single-degree-of-freedom test of Hy: XY =
0 is similar in spirit to tests that have been proposed for
other measures of association in ordinal-ordinal tables.
For example, see Yates (1948).

Table 4. Cross-Classification of Duodenal Ulcer
Patients According to Operation and Dumping
Severity (Parenthesized values are maximum
likelihood estimates of expected frequencies
corresponding to loglinear model (2.6) and logit
model (3.5), respectively)

Dumping Severity

Operation None Slight Moderate Total
A 61 28 7 96
(62.5,63.2) (26.2,24.9) (7.3,7.9)
B 68 23 13 104
(62.9,63.1) (30.9,30.4) (10.2,10.5)
C 58 40 12 110
(61.0,60.7) (35.3,35.7) (13.7,13.6)
D 53 38 16 107
(53.7,53.1) (36.6,37.9) (16.7,16.0)
240 129 48 417

Total

Source: Grizzle, Starmer, and Koch (1969).
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2.3 Generalized Model for Two Dimensions

Model (2.6) is appropriate if the linear-by-linear asso-
ciation property holds for the sets of scores chosen by
the researcher. Alternatively, one can treat the scores {u;}
and {v;} as parameters {u;} and {v;} and obtain estimated
scores under which that property is best approximated.
Such a model can be expressed as

lOg mi = Ww + )\,’X + )\jY + BXY}L,'VJ', (2.8)

where without loss of generality >, p; =
2#:'2:2"1'2: 1.

Owing to the constraints on the score parameters df =
rc-[1+@r-D+@C-D+1+F-2)+(-2)]
= (r — 2)(c — 2), and we need a table with dimensions
atleast 3 X 3 for this model to be unsaturated. This model
has been discussed by Andersen (1980, p. 211) and by
Goodman (1979a, 1981a,b), who referred to it as ‘*“Model
II”’ and as the ‘‘RC model.”

Model (2.8) can be interpreted like model (2.6) through
the log odds ratio (2.7) if we replace the fixed scores {u;}
and {v;} by the parameters {j.;} and {v;}. This model differs
from the previous one, though, in being invariant under
interchanges of rows or columns. Hence the {p;} and {v;}
need not be monotonic. Since log 6; = B*XY(pir1 —
w)(vi+1 — v;), lack of monotonicity in the scores indi-
cates nonmonotonic associations, in the sense that local
associations are positive in some locations and negative
in other locations. Also, unlike model (2.6), this model
is not loglinear in its parameters. It is, however, a special
case of the general loglinear model for two dimensions
with association term \;*Y = BXYpv;.

Since model (2.8) is invariant under changes of row and
column orderings, we can also use it when the row or
column variable is nominal. For example, model (2.8)
may be regarded as a generalization of the loglinear row
effects model (2.3) if we identify the {u:} as row effects
and the {v;} as parameter versions of the column scores.
Generally, the {u;} may be regarded as row effects and
the {v;} may be regarded as column effects. We will refer
to model (2.8) as the multiplicative row- and column-ef-
fects (RC) model.

The RC model has its simplest interpretation for ordinal
variables when the parameter scores are monotonic. To
illustrate, suppose that Y is ordinal and that v; < ... <
ve. Then if p; > pi, the conditional distribution of Y in
row i is stochastlcally larger than the conditional distri-
bution of Y in row i'. If we expect stochastic orderings,
it would seem natural to fit the RC model under the added
constraint that the {v;} are monotonic. For the resulting
model, G? would be invariant only to reversals in column
orderings, and the model would be truly ordinal. This
approach does not seem to have been considered in the
literature.

For the political ideology data (Table 2), maximum like-
lihood estimation of the RC model gives G> = 1.67 based
on df = 1. There is little improvement in fit over the row-

> v; = 0and

Joumal of the American Statistical Association, March 1983

effects model, for which G = 2.81 based on df = 2. We
obtain ¥; = —.664, ¥, = —.079, and D3 = .743 for the
estimated scores on political ideology and fi; = .545,
fiz = .254, i3 = —.799 for the party affiliation row ef-
fects. The {#;} are nearly evenly spaced, which illustrates
why the simpler row-effects model having equal-interval
column scores fits almost as well. To make the {#~} from
the row-effects model comparable to the {ji;} from the RC
model, we scale the former so that >, ('r X)? = 1. We then
obtain #,X = .549, ,X = .249, and #:¥ = —.798, very
similar to the {(i:}. Since the {#;} are monotone increasing
and since {i; > {i > fi; in the RC model, we again con-
clude that Democrats are stochastically more liberal than
Independents, who are themselves stochastically much
more liberal than Republicans.

Similarly, the RC model does not fit much better than
the uniform association model for the dumping severity
data (Table 4), as G*> = 2.85 with df = 2 provides a
reduction in G? of only 1.74 based on df = 5 — 2 = 3.
To make the estimated association parameter comparable
for the two models, we need to use the same scaling for
the fixed scores in (2.6) as for the parameter scores in
(2.8). A scaling that results in a meaningful interpretation
for B*Y is to use scores having means of zero and standard
deviations of one with respect to the marginal distribu-
tions; that is,

2 uiPiv = X yPoj =
2 IlizPH- = 2 'Uj2P+j =

ElliPH = Ef’jp«i-j: 0,
2 @fPH_ = 2 1A’j2P+J‘ =1,

where P;; = n;/n. This rescaling yields BXY = 124 for
model (2.6) and BX Y = 140 for model (2.8). Hence, both
models suggest that the odds ratio equals approximately
exp(.13) = 1.14 for distances of one standard deviation
on both dumping severity and operation.

Goodman (1981b) pointed out that for these standard-
ized scores, models (2.6) and (2.8) for expected frequen-
cies have the same form as the bivariate normal density
if we identity B*” with p/(1 — p?), where p is the Pearson
correlation. The XY values obtained for Table 4 corre-
spond to correlation values of .122 and .137. The actual
correlation values 3, >, u;v;P;;and 3, >, i;9;P;; are .122
and .138, respectively. Haberman (1981) introduced a test
of Hy: XY = 0 for the RC model. He showed that under
the null hypothesis of independence, the test statistic is
asymptotically equivalent to one based on a canonical
correlation analysis.

2.4 Loglinear Models for Multidimensional Table

The models of Sections 2.1 through 2.3 can be readily
generalized to multidimensional tables having at least one
ordinal variable. We will illustrate for the r X ¢ X [ cross-
classification of three variables X, Y, and Z having ex-
pected frequencies {m}.

The hierarchical loglinear models of usual interest for
three dimensions range from the simple mutual inde-
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pendence model

lOg Mijr = W + )\,'X + )\jy + )\kZ (29)

to the model (2.2), which contains all the partial associ-
ation terms but no three-factor interaction term. The next
most complex model beyond (2.2) has the (r — 1)(c —
1)(I — 1) independent three-factor interaction parameters
{\;ix*¥4} and is of little interest because it is saturated. If
one or more of the variables in the cross-classification
are ordinal, though, we can construct a richer hierarchy
of models that includes (a) partial association models that
are more parsimonious and simpler to interpret than
model (2.2), and (b) three-factor interaction models that
are unsaturated and also easily interpretable.

In interpreting these models we refer to two types of
odds ratios. The (r — 1)(¢c — 1) odds ratios

Oy = mijkmi+1,j+1,k/mi+1,j,kmi,j+1,k,
Il=sisr-1L1=j=c¢-1

describe the local conditional association between X and
Y within a fixed level &k of Z. Similar odds ratio 0;:x and
8y« describe the local conditional associations between
X and Z within levels of Y and between Y and Z within
levels of X. The ratio of odds ratios

Ok = O+ /05wy = Oij+ e/OiGe = B+ 1jr/Ojn

is used for describing local three-factor interaction. There
is an absence of three-factor interaction if all (r — 1)(c
— 1({ — 1) of the 6, equal one.

As in the case of two-way tables, a simple way to con-
struct loglinear models is to let the ordinal variables con-
tribute to the association terms through linear departures
of log m;; from independence. Table 5 lists these models
and their residual degrees of freedom for the cases in
which all three, two, or one of the variables are ordinal.

To illustrate, suppose that X, Y, and Z are all ordinal.
Let {u:}, {v;}, and {w,} represent scores for the levels of
X, Y, and Z, respectively. The model

log myx = w + N + N+ M
+ B — W)y — 9) + B — @)(wi — W)
+ BY4(y; — D)(wi — W) (2.10)

has an association term for each pair of variables, yet has
only three more parameters than the independence model
(2.9) and is always unsaturated.

Model (2.10) assumes no three-factor interaction. For
the special case of the integer scores {u; = i}, {v; = Jj},
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and {wy = k},

log 8, = B*Y, log Oy = B*4, log B = BY~.

(2.11)

Thus, the conditional association is uniform for each pair
of variables, and the strength of association is homoge-
neous across the levels of the third variable. That model
can be described as a homogeneous uniform-association
model.

The other models in Table 5 can be interpreted in a
similar manner. To illustrate, consider the model for two
ordinal variables Y and Z. For integer scores, the param-
eter ¥4 pertains to the uniform association between Y
and Z that is homogeneous across levels of X. The {r,~}
represent row effects of X on the X-Y association that are
homogeneous across levels of Z. Thus, the ordering of
their values indicates how the levels of X are stochasti-
cally ordered with respect to the conditional Y distribu-
tions (within each level of Z). Similarly, the {7} rep-
resent row effects of X on the X-Z association that are
homogeneous across levels of Y. For 2 X 2 x 2 tables,
the models in Table 5 are equivalent to the standard model
(2.2). For larger tables, though, they are more parsimo-
nious and simpler to interpret because of the structured
association terms.

The models in Table 5 can also be generalized to allow
for three-factor interaction. For example, a simple model
for the case of three ordinal variables is

log M = W + )\,’X + )\jY + )\kz + BXY(u; - ﬁ)(vj — 7)
+ B¥(u; — W) (Wi — W)+ B4 (v; — D) (wi — W)

+ BXYZ(y; — i) (v — D)(wr — W). (2.12)

This model has only one more parameter than model
(2.10), sodf = rcl — r — ¢ — | — 2. For integer scoring,
the local interaction takes the constant value B**4, and
we can refer to the model as a uniform interaction model.
The association between X and Y is then uniform within
each layer of Z but with strength changing linearly across
the levels of Z. Hence, model (2.12) with integer scores
is a type of heterogeneous uniform association model.

More general uniform interaction models have less
structured associations for some or all pairs of variables.
For example, if the term B*¥?u,v;w, is added to the stan-
dard loglinear model (2.2), then log 8, = p*¥# for integer
scores, but the conditional associations are not uniform.
See Goodman (1981c¢) for further details.

We illustrate multidimensional models using Table 6,

Table 5. Association Terms and DF for Loglinear Models in Three Dimensions with Linear Ordinal Effects

Association Terms

Ordinal Variables X-Y X-2Z Y-Z DF
X.Y.Z B (ui— a) (v, — 9 BX(ui — a) (wk — W) BY(vi — ) (Wi — W) ret-r-c-6-1

Y,Z 'r1ix Vi — Tzix(Wk - W BYZ(Vj — 0)(wx — w) rc¢-3r-c-€ + 3
V4 ijv Tlx(Wk - W T/Y(Wk - W) re-re-r-c€ + 3
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Table 6. Cross-Classification of Detroit Residents

Joumal of the American Statistical Association, March 1983

According to Rated Performance of Radio and TV

Networks, Race, and Year of Survey (The parenthesized values are estimated expected frequencies
corresponding to loglinear modeis (2.2) and (2.10) and logit model (3.6), respectively)

Rated Performance of Radio and TV Networks

Year Race Poor Fair Good Total
1959 White 54 253 325 632
(53.5,49.2,50.8) (246.2,254.0,250.0) (332.3,328.9,331.2)
Black 4 23 81 108
(4.5,3.6,4.6) (29.8,32.3,29.7) (73.7,72.0,73.7)
1971 White 158 636 600 1394
(158.5,165.7,160.2) (642.8,629.2,640.5) (5692.7,599.1,593.3)
Black 24 144 224 392
(23.5,21.5,24.4) (137.2,140.5,135.7) (231.3,230.0,231.8)
Total 240 1056 1230 2526

Source: Duncan and McRae (1979).

a2 X 2 X 3 cross-classification of X = race, Y = year,
and Z = rated performance of radio and TV networks,
taken from Duncan and McRae (1979). This table is based
on surveys taken in the Detroit area in 1959 and 1971 to
study social change in metropolitan communities. The
standard no three-factor interaction model (2.2) fits these
data fairly well, as evidenced by G* = 3.57 based on df
= 2, but it does not use the ordinal nature of Z. All models
listed in Table 5 are equivalent for these data, since the
nominal variables X and Y each have two categories. The
homogeneous uniform association (integer scores) ver-
sion of model (2.10) provides an adequate fit, with G2
5.58 based on df = 4 and the difference in G? values for
the two models equaling 2.01 based on df = 4 — 2 =
2. The estimated conditional local log odds ratios are
BXY = 561, f¥Z = .543, and B¥2 = —.307. Thus, per-
formance of the networks tends to be rated higher by
blacks than by whites and lower in 1971 than in 1959.
The uniform interaction version of model (2.12) gives
a slightly better fit than either of the above-mentioned
models, with G2 = 2.22 based on df = 3. It also allows
a more detailed interpretation of the data. The estimated
parameters ¥ = .812, BXZ = 671, "% = —.462, and
BXYZ = — 405 reflect the fact that the tendency of blacks
to rate performance of the networks higher than do whites
is greater in 1959 than in 1971. That is, the two conditional
X-Z local log odds ratios are predicted to be ¥4 — .5

BXYZ = 874 in 1959 and B*Z + .5 BX*Z = .469 in 1971.
Similarly, the negative shift from 1959 to 1971 in rated
performance of the networks tends to be more substantial
for blacks than for whites.

The models discussed in this section can be suitably
modified when certain marginal distributions are fixed by
the sampling design. For example, the {ri} for model
(2.10) will satisfy for all i, j, k,

Miy + = Niy 4, m+j+ = Ryj+, My vk = Ny sk,
2 u,~v,-n‘1,~j+ = 2 Uivinij+
2 u;wkrﬁ,-+k = 2 UiWERi+ ks
2 'ijkm.'.jk = 2 UViWkh + jk .

If we also wanted to constrain, say, all #i;+ = n;., we
would substitute the general term \;*Y for the X-Y as-
sociation term. To illustrate, a simple model for Table 1
has the form

=|L+)\,'o+)\jD+)\kH

+ )\ikOH + BOD(I/I,' - ﬂ)(vj - 17)

log Mijk
(2.13)

This model treats the O-H marginal table as fixed, as-
sumes a linear-by-linear association for dumping severity
and operation, and assumes conditional independence be-

Table 7. Analysis of Association for Table 1

Association Terms

Difference Difference

O-H oO-D H-D G? DF in G? in DF
NPH Ni°P NjPH 12.50 18 457 s
NijPH B°Puv; Njk2H 17.07 23 ) s

5.38
NikPH B°Pu,v; v, 22.45 26

2.90 3
NP B°Pu,v; - 25.35 29

6.29 1
i - — 31.64 30
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tween hospital and dumping. For integer scores we obtain
G?* = 25.35 based on df = 29.

As with standard loglinear models, hierarchical com-
parisons are often useful. Table 7 summarizes the results
of fitting several nested loglinear models to Table 1. This
analysis of association reveals that model (2.13) is a good
one for Table 1. The difference in G? values of 6.29 be-
tween structure (D, OH) and model (2.13) is the same as
we obtained in Section 2.2 for the analogous comparison
with the marginal two-way table (Table 4). This is because
model (2.13) implies that we can collapse over the hos-
pital dimension in studying the D-O association. Both
analyses indicate fairly strongly that there is a positive
D-O association (8°° = .163).

Generalizations of the above models to more than three
dimensions are easily formulated. For example, a simple
model that includes all pairwise associations has linear
effects of ordinal variables through terms of the form
B*¥(u; — a)(v; — ) for pairs of ordinal variables and
terms of the form 7% (v; — ) for pairings of ordinal with
nominal variables, and it has general association terms
for pairs of nominal variables. Models that are more com-
plex than this can be constructed to permit parameter
scores, to allow for interaction, or to allow nonlinear ef-
fects of ordinal variables. Clogg (1982) and Agresti and
Kezouh (1983) give further details on models for multi-
dimensional tables.

3. LOGIT MODELS

Let P; denote the probability that a randomly selected
observation falls in the ith category of a variable, i = 1,
., ¢. For dichotomous variables, the log odds or
“logit”’ log (P»/P;) is commonly formed for a response
when one wishes to model that variable as a function of
qualitative or quantitative explanatory variables (see,
e.g., Cox 1970; Fienberg 1980, Ch. 6). When ¢ > 2 there
are several ways of forming a set of ¢ — 1 logits (see
Fienberg 1980, p. 110). For ordinal variables the most
meaningful logits are those that take category order into
account. Some examples of these are the ‘‘accumulated”’

logits
Lj = log[EP,/EP,],J = 1,2, e

i>j i=j

50—19

the ‘‘continuation ratio’’ logits
lOg[Pj+1/EPi],j = 1, 2,...,¢c— 1,

i=j
and the ‘‘adjacent categories’’ logits
log[PjH/Pj],j = 1, 2, N 1.

A nice feature of the continuation-ratio logits is that
the results of fitting models to separate logits are inde-
pendent. The accumulated logits use all categories for
each logit, and are necessarily monotone since they are
logits of distribution function values. The difference be-
tween two groups on this logit scale will be constant if
the underlying continuous distributions are of the logistic

18

form, since the logit transform of the logistic distribution
function F(x) = [1 + exp(—(x + 7))]~! is an additive
function of the location parameter . We shall use this
type of logit in the models in this section, though the
models still make sense with the other types.

Logit models are of special interest when one variable
is a response variable. In this section we will describe
logit models for ordinal response variables, first for the
case of a two-way table where the other variable is nom-
inal or ordinal and then for a multidimensional table.

3.4 Logit Model for Ordinal-Nominal Table

Suppose that the column variable of a two-dimensional
table is ordinal, and let L;; denote the jth accumulated
logit within row i; that is,

Ly = log (m,,jf '++..'."++m':"“) .G
A simple additive model for the logits is
Lij=p+1%5i=1,...,nj=1,...,¢c -1,
3.2)

where >, 7X = 0. For logit models df is obtained by
subtracting the number of linearly independent parame-
ters in the model from the number of logits formed within
the table. For model (3.2) there are r(c — 1) logits and
(c = 1) + (r — 1) independent parameters, so df = (r —
D(c — 2), the same as for the loglinear model for this
setting (model (2.3)). Among the authors who have sug-
gested model (3.2) in various forms are Snell (1964), Wil-
liams and Grizzle (1972), Simon (1974, Formulation B),
Clayton (1974), Bock (1975, pp. 544—546), and McCullagh
(1979,1980).

The parameters in model (3.2) are quite easy to inter-
pret. Note that >,; L;;/r = p;, so the {u,} are average logits
and are monotonic decreasing. The {rX} are row-effect
parameters that specify the nature of the association. For
an arbitrary pair of rows i and i’, the difference in logits

Lij - L,"j = TiX - Ti’X (33)

is constant for all ¢ — 1 logits. If X > 1,%, then the
conditional Y distribution is stochastically larger in row
i than in row i’. Also note that

L; - Ly

- 1o [(mi’l + o+ mi)lmigay + 0 + mi'c)]
(ma + - + my)/(mijer + - + mic)

3.4

is the log odds ratio for the 2 x 2 table formed by taking
rows i and i’ of the table and dichotomizing the response.
The logit model (3.2) assumes that all ¢ — 1 of these
collapsings yield the same log odds ratio.

The independence model is the special case in which
all ¥ = 0; that is, each of the ¢ — 1 logits takes on the
same value for every row. Given that model (3.2) holds,
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its reduction in G? relative to the independence model
gives a test of independence (Hp:1X = ... = 7,5 = 0).
As in the corresponding test for the loglinear model (2.3),
the test statistic has asymptotically a chi-squared distri-
bution with df = r — 1 under H,.

We fit model (3.2) to the data in Table 2 on Y = political
ideology and X = party affiliation, using methods de-
scribed in Section 5. The second set of parenthesized
values in Table 2 consists of maximum likelihood esti-
mates of expected frequencies. For this fit, G2 = 4.70
based on df = 2. The estimates of the average logits are
fiy = .532 and (i, = —1.325 and the estimates of the
effects of party affiliation are +,X = .670, ,X¥ = .282, and
—.952.

The model predicts constant differences between pairs
of rows in the two logits. The differences are also constant
predicted log odds ratios for the two collapsings of each
pair of rows into 2 X 2 tables. For example, #X — %%
= 1.622 means that the odds of being classified liberal
instead of moderate or conservative and the odds of being
classified liberal or moderate instead of conservative are
exp(1.622) = 5.06 times higher for Democrats than for
Republicans. This model gives strong evidence of an as-
sociation, as the reduction in G? from the independence
model is 100.96 based on df = 2.

The results obtained here are very similar to those ob-
tained using the corresponding loglinear model (2.3). For
that model with integer column scores, the differences in
tau parameters reflect constant predicted log odds ratios
for the ¢ — 1 2 X 2 tables formed using only adjacent
columns. Figure 1 contrasts the two types of constant
odds ratio upon which the loglinear and logit strategies
are based. When both models fit reasonably well (as with
Table 2), the | X — %% | will tend to be smaller for the

'?3X =

j*l c

| j

j+ c

Figure 1. Odds ratios AD/BC that are constant for ¢ — 1 cutpoints
of column variables. Loglinear model (upper section): constant
odds ratios for adjacent columns. Logit model (lower section): con-
stant odds ratios for dichotomized response.
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loglinear model since local associations will tend to be
weaker than associations involving two aggregates of col-
umns. For example, suppose that the underlying condi-
tional density f; of Y in row i is N(w;, ). Then

| log fi(v1)fi(v2)/filv2) fr(vr) |
= 07| (W — w)ws — v2) |

is a monotonic increasing function of | v; — v, |.

3.2 Logit Model for Ordinal-Ordinal Table

Suppose again that the column variable is an ordinal
response, but that now the row variable is also ordinal.
As with the loglinear model (2.6) for this setting, we as-
sume that scores {u;} are assigned to the rows. It will not
be necessary to assign scores to the levels of the response
variable, since the accumulated logits (3.1) within each
row again form the responses. A simple linear model for
these logits is

Ly =w + ¥ — a),

i=1,... (3.5

For this model df = (r — 1)(c — 1) — 1, the same as for
the loglinear model (2.6).

As in model (3.2), p; represents the average across the
r rows of the values of the jth accumulated logit. Each
of the (¢ — 1) logits is linearly related to the row variable,
with slope X being the same for all logits. Hence for an
arbitrary pair of rows i < i’, the difference in logits

Lyj — L = B*ur — w)

is proportional to the distance between the rows. If pX
> 0, the logit increases as X increases, which implies that
the conditional Y distributions are stochastically larger at
larger values of X. For integer row scores, B* represents
the constant value of the log odds ratio for the (r — 1)(c
— 1) 2 x 2 tables obtained by taking all pairs of adjacent
rows and all dichotomous collapsings of the response.
The independence model is the special case of model (3.5)
in which ¥ = 0.

We fit model (3.5) with integer row scores to the data
in Table 4 on Y = dumping severity and X = operation.
The second set of parenthesized values in Table 4 consists
of maximum likelihood estimates of expected frequencies
corresponding to that fit. The fit is very good, with G?
= 4.27 based on df = 5. The estimates of the average
logits are fi; = —.320and ji, = —2.074, and the estimate
of the linear effect of operation on the logit of dumping
severity is fX = .225. Hence, the odds that dumping se-
verity is above a certain point rather than below it are
exp(.225) = 1.25 times higher for operation i + 1 than
for operation i, i = 1, 2, 3. This model also gives mod-
erately strong evidence of an association, as the reduction
in G? from the independence model is 6.61 based on df
= 1.

Again the results and substantive interpretations that
follow from this model agree with those made with the

,rhji=1,...,¢c— 1.
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corresponding simple loglinear model (2.6). The esti-
mated expected frequencies are very similar. For model
(2.6), though, the association parameter estimate XY =
.163 reflects constant predicted log odds ratios for 2 X
2 tables for which the columns as well as the rows are
adjacent. When the loglinear and logit models with integer
scores fit reasonably well (as with Table 4), | ** | will
tend to be smaller than | 3% | since XY refers to local
association in both dimensions.

3.3 Logit Models for Multidimensional Table

Logit models for multidimensional tables resemble
multiple regression models for quantitative response var-
iables. To illustrate, we consider the three-dimensional
table in which the layer variable Z is an ordinal response
having [ categories. Within each combination of X and Y,
there are (/ — 1) accumulated logits

Mije+1 + 0 + My
mij1 + e+ Mijk

L;jk=log( ),k=1,...,l—1.

Table 8 lists simple models having linear effects of or-
dinal variables. The effects in these models are homo-
geneous across the [ — 1 ways of forming the logits. The
parameter interpretations are the partial analogs of those
given in Sections 3.1 and 3.2. The residual df for testing
the models are also given in Table 8. For these to be the
same as for the corresponding loglinear models in Table
5, we must use general terms for partial associations
among explanatory variables in the loglinear models.
That is, the X-Y association term in the first two models
in Table 5 must be replaced by \;*”. Interaction terms
can be added to the models in Table 8 as in multiple
regression, analysis of covariance, and analysis of vari-
ance models, respectively.

A notable feature of the logit models discussed thus far
is the assumption that the effects of the explanatory var-
iables are the same for the different ways of forming the
accumulated logits. These models may be generalized to
include nonhomogeneous logit effects. For example, the
model for nominal variables X and Y may be generalized
to

_ X Y
Lijix = pie + 1™ + T,

(3.6)

where DX = Dy =0, k=1,...,1— 1, and
where df = (r — 1)(c — 1)(I — 1). The nice interpretation
possessed by the simpler model (that the levels of X, or

Table 8. Association Terms and DF for Logit Models
in Three Dimensions with Ordinal Response Z and
Linear Ordinal Effects.

Association Terms

Ordinal

Variables X -Y X-2Z Y-2 DF
XY,z — BX(u; — a) BY(vj— %)  ret-rc-€-1

Y,Z — T BY(vi — W  rce-rc-f-c + 1
z - T Tj re€-re-r-c-{ + 3
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Y, are constant location shifts of each other on an ac-
cumulated logit scale) is lost with model (3.6). This model
with nonstructured differences in logits resembles the
general loglinear model (2.2) for no three-factor inter-
action, except for the asymmetry of identifying a re-
sponse. For the two-dimensional table the nonhomoge-
neous logit model L; = p; + 7;/~ is a saturated model.

For Table 6 relating Z = rated performance of radio
and TV networks to X = race and Y = year, we fit the
first logit model in Table 8 (which is equivalent to the
other models in the table since r = ¢ = 2) using integer
scores. The model fits reasonably well, with G = 3.66
based on df = 4. The estimated effect parameters of
BX = .669 and B¥ = —.396 reflect the tendency of rated
performance to be higher for blacks than for whites and
lower in 1971 than in 1959. Again the results are similar
to those obtained with the corresponding loglinear model
(2.10).

4. ALTERNATIVE MODELS

The loglinear and logit models are only two of many
types of models that have been suggested for ordinal var-
iables. In this section we briefly describe several alter-
native types of models.

41 Mean Response

Many researchers do not find parameters based on
odds measures or log transformations to be as easily in-
terpretable as those in standard regression models. If we
regard the process of ranking observations on an ordinal
scale as being more similar to the measurement process
with interval scales than with nominal scales, then we
can argue that models for ordinal response variables
should resemble regression models for interval response
variables more than loglinear and logit models for nominal
variables. Indeed, ordinal variables are treated like in-
terval variables once we assign scores to their levels in
the models of Sections 2 and 3. To obtain a regression-
type model having easily interpretable parameters, we
can model the conditional mean of the response variable.

To illustrate, consider the two-way cross-classification
of ordinal variables X and Y having scores {u;} and {v;}.
Within level i of X, the conditional mean of Y is M; =
2; vimyiini+, i = 1, . .., r. The usual linear regression
model is

Mi=w+Bw—a), i=1,...,r. @41

The parameter . is the average of the conditional means,
and B* is the change in the conditional mean per unit
change in X.

Williams and Grizzle (1972) (see also Bhapkar 1968 and
Grizzle, Starmer, and Koch 1969) used the weighted least
squares method to fit this type of response function. For
model (4.1) there are r responses and 2 parameters, so df
= r — 2 and we need r = 3 to obtain an unsaturated
model. Corresponding models for multidimensional ta-
bles are equally easy to construct and interpret. The
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model for a single nominal explanatory variable is satu-
rated, though.

We fit model (4.1) to the data in Table 4 on Y = dump-
ing severity and X = operation, obtaining i = 1.537 and
BX = .075 for a weighted least squares solution when
integer scores are used. The predicted increase in the
mean dumping severity is .075 categories for every ad-
ditional 25 percent of stomach removal. The test of Ho: %
= (0 yields a chi-squared statistic of 6.37 based on df =
1. The model fits adequately, as evidenced by a residual
chi-squared of .23 based on df = 2. Model (4.1), like the
loglinear and logit models fit earlier to these data, gives
evidence of a relatively weak positive association be-
tween operation and dumping severity.

4.2 Alternate Response Functions

Models like (4.1) can be formulated just as simply with
response functions other than the mean. For example, let
Y* denote the response on Y for a randomly selected per-
son from the combined population, and let Y; denote the
response for a randomly selected person in level i of X.
The response P(Y; > Y*) + 3P(Y; = Y*), which is equiv-
alently a mean ridit score for Y in level i of X, is not
dependent on assigning scores to the levels of Y (see
Bross 1958). A weighted least squares analysis for this
response function was given by Semenya and Koch
(1979).

Suitable response functions may sometimes be sug-
gested by the form of an assumed underlying response
distribution. For example, let {F;;,j = 1, . . . , ¢} denote
the distribution function of Y within level i of X. When
it is reasonable to assume an exponential-type underlying
distribution for Y, or an underlying distribution of the type
used in survival analysis (see Cox 1972), we expect log
(1 — F;) to be approximately the same constant multiple
of log (1 — Fyj) for 1 =j = c — 1. We might therefore
pose the model with a constant difference between levels
of X on the log-log scale of the complement of the dis-
tribution function. McCullagh (1979,1980) suggested the
response function log [—log(l — F;;)] in addition to the
logit model (3.5), and he argued that it would be appro-
priate for a wide class of underlying distributions that
includes the Pareto and Weibull.

Yet other approaches have been suggested for ordinal
response variables. McKelvey and Zavoina (1975) as-
sumed an underlying normal distribution and generalized
the probit model. Hawkes (1971) and Ploch (1974) sug-
gested a linear model for sign scores for differences be-
tween pairs of observations. Schollenberger, Agresti, and
Wackerly (1979) suggested a logit model for the proba-
bility of concordance for pairs of observations. For the
case of two ordinal variables, Clayton (1974) and Wah-
rendorf (1980) estimated an assumed common odds ratio
for all (r — 1)(c— 1) collapsings of X and of Y into a 2
x 2 table. Their approach assumes that the joint distri-
bution is contained in a class proposed by Plackett (1965).
Goodman (1981b) gave examples for which this assump-
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tion does not seem as appropriate as the assumption of
constant local association that is inherent with the uni-
form association loglinear model. Semenya and Koch
(1980, pp. 103-118) defined more general models in terms
of the odds ratios for the collapsed tables.

Many specialized models have also been proposed for
square tables with ordered categories. These models are
most naturally applied when the two sets of categories
are identical, as occurs in matched-pairs experiments.
Discussions of these models are presented by Bishop,
Fienberg, and Holland (1975, pp. 285-286), Goodman
(1972,1979a,b), and McCullagh (1977,1978).

5. ESTIMATION

Maximum likelihood (ML) and weighted least squares
(WLS) methods can be used to fit the models introduced
in Sections 2 through 4. Computer packages and pro-
grams are available for obtaining ML and WLS estimates
for most of these models.

51 Maximum Likelihood

ML estimates for loglinear models are identical for the
three standard sampling schemes, provided that the
model fits fixed marginal counts. If the estimates are fi-
nite, they are unique, which is always the case when none
of the cell counts equals zero. The likelihood equations
imply that certain functions of expected cell frequencies
are equated to sufficient statistics that are the same func-
tions of observed cell counts. For ordinal loglinear
models, the sufficient statistics include sample condi-
tional or joint moments and low-order marginal distri-
butions.

To illustrate, for independent Poisson sampling in the
r X c table, the kernel of the log-likelihood function is
> n;log my; — >, m;;. For the row-effects model (2.3),
the likelihood equations are:

M. — niy =0, i=1,...

m+j_ j=1,...

> gy — 2y =0, i =
J 7

n+j = 0,

|
—
<
.
<

For the linear-by-linear association model (2.6), the third
set of equations is replaced by the single equation

2 n”c,-ju,-vj - 2 nijUiv; = 0.

The likelihood equations can be solved using various
types of iterative methods. Under the Poisson sampling
model, loglinear models are special cases of Nelder and
Wedderburn’s (1972) generalized linear models. That is,
the cell counts are independently distributed according
to a member (Poisson) of the exponential family, and the
natural parameter (log m) is linked directly to independent
variables through a linear model. The computer package
GLIM (Baker and Nelder (1978)) is designed for fitting
generalized linear models, and we have found it very sim-
ple to apply to the ordinal models of Section 2. GLIM
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uses the Newton-Raphson procedure, which corresponds
to iterative calculations of a weighted least squares form.
The asymptotic covariance matrix of the model param-
eter estimates is produced as a by-product of this process.
Haberman (1979) contains a Fortran program (FREQ)
that also fits loglinear models using the Newton-Raphson
method and that reports adjusted cell residuals; page 377
gives Haberman’s formulation of the row effects model
and page 385 the linear-by-linear association model.

An iterative scaling method for fitting ordinal loglinear
models follows from Theorem 1 of Darroch and Ratcliff
(1972). Simon (1974) and Fienberg (1980, pp. 61-64) apply
it to the row-effects model (2.3). In that case, a single
cycle has three steps. The approximation m;” for r; at
the rth stage is multiplied by n;./m;.® to obtain the next
approximation, m;¢* V. The {m;“*V} satisfy m; . “*" =
niv, i = 1, ..., r. Next, my“*? is multiplied by
n./m.*" for all i and j to obtain values {m;*?} that
satisfy m, “*? = n,;,j =1, , c. At the third step,
m¢+? equals m;+? multlphed by

3 w*nul> vt mu P
k k
S a = vwHna/> A - Vk*)mik(’”)]l_"j*,
P P

where the {v;*} are a linear rescaling of the column scores
{v;} that satisfy 0 = v* = 1. For the linear-by-linear as-
sociation model (2.6), the row scores {u;} are also rescaled
to satisfy 0 < u;* =< 1, and the multiplicative factor in the
third step is

KoK
[ we*v*nul D, wtv me 214
ol Tl
1—uiky*

> A - wtuFng
ol

> A - wro)m P
ol

Duncan and McRae (1979) show how to fit ordinal log-
linear models through iterative use of the computer pro-
gram ECTA of Fay and Goodman (1975), which is based
on iterative proportional fitting. Goodman (1979a) and
Clogg (1982) describe another iterative approach in which
each step is a unidimensional application of the Newton
approximation method. The calculations in these meth-
ods and in the iterative scaling method just described are
very simple compared with those in the Newton-Raphson
method, since no matrix inversion is necessary. How-
ever, a very large number of cycles may be needed for
adequate convergence, and a separate inversion of the
negative of the information matrix is required to obtain
the asymptotic covariance matrix of the model parameter
estimates. Let m be a vector having the expected fre-
quencies as elements, let B be a vector having the model
parameters as elements, and let X be the design matrix
for the formulation of the model as

logm = XB
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with the sum of the expected frequencies equal to n. Then
for full multinomial sampling, the estimated information
matrix is

—X'[Dyn — mhm'/n]X,

where Dy, is a diagonal matrix with the expected fre-
quency estimates on the main diagonal.

If one set of parameter scores is known, then the mul-
tiplicative model (2.8) becomes loglinear. ML estimates
for multiplicative models can be obtained through re-
peated application of any of the above procedures, in
which alternate sets of scores are fixed. For model (2.8),
in each cycle one treats the column scores as known and
estimates the row scores (as in a row-effects model), then
one treats those estimates as fixed and estimates the col-
umn scores.

McCullagh (1980) shows that the accumulated logit
models comprise a multivariate analog of the generalized
linear model. In the appendix to his paper he shows how
to obtain ML estimates for a class of models for mono-
tonic transformations of the distribution function of the
response. He reports fast convergence using the Newton-
Raphson method, even for poor initial estimates. See also
Simon (1974) and Bock (1975, pp. 544-546) for Newton-
Raphson approaches for ML fitting of the accumulated
logit models. The computer package MULTIQUAL
(Bock and Yates 1973) can be used to fit the accumulated
logit models.

5.2 Weighted Least Squares

The logit models, loglinear models, and alternative re-
sponse models can be fit simply using the WLS approach
for categorical data as described by Grizzle, Starmer, and
Koch (1969). The ordinal loglinear and logit models can
be expressed in the form

K log (Am) = XB.

To illustrate, for the accumulated logit model (3.2) applied
to Table 2,

B’ = (w1, 2, 75, 725), m' = (myy, Mz, . . ., M33),

1 0 1 0

01 1 0

{10 0 1

X= 0 1 0 1

11 -1 -1

01 -1 -1

K =1®K*and A = 1 ® A*, where
1 0 0

01 1 -1 1 00
L J— b
A‘110’K‘(10—11>’

0 0 1

and I is the 3 x 3 identity matrix. For loglinear models
K log(Am) can be taken as the vector of local log odds
ratios.

Let V denote the sample covariance matrix of the ob-
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served data, n. For example, suppose that independent
multinomial samples of sizes {n,+, . . . , n, }are selected
at r combinations of levels of explanatory variables.
Then, V is a block diagonal matrix whose ith block V;
satisfies

ni.V; =
nia(ni+ — ny) —NiNi2 —NiNic
—Ni2Nj np(ni+ — np) —Ni2Nic
—Richiy —Nicnp nic(niv — nic)

By the delta method, the estimated asymptotic covari-
ance matrix of the vector of sample responses F = K
log(An) is

S = (KD 'A)V(KD 'A),

where D is a diagonal matrix with element d;; equal to the
ith row of A multiplied by n. The WLS estimate of B is
b = (X'S7'X)"!'X'S'F, its estimated covariance ma-
trix is (X'S™'X)~!, and the goodness-of-fit statistic is
(F — Xb)'S™(F — Xb).

The WLS approach is especially useful for models,
such as the mean response model, for which the ML ap-
proach cannot be easily applied using existing computer
packages. It has the advantage (relative to ML) of not
requiring iteration, but this is of minor importance as ef-
ficient computer programs become more widely available
for the ML approach. The computer program GENCAT
(Landis et al. 1976) can be used to provide WLS fits for
the models considered in this article. See Williams and
Grizzle (1972) and Semenya and Koch (1980) for further
details about WLS estimation for ordinal models.

6. COMPARISON OF MODELS

The major theme of this article has been the importance
of using the quantitative nature of ordinal variables in
analyzing categorical data. When doing so, (a) we have
available a greater variety of models, most of which are
more parsimonious and have simpler parameter interpre-
tations than do the standard models for nominal variables,
(b) we can describe the data using parameters that are
similar to those used in ordinary regression for continu-
ous variables (e.g., correlations, slopes), and (c) we ob-
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tain greater power for detecting important alternatives to
null hypotheses of independence, conditional independ-
ence, or no interaction. For the data sets analyzed in this
article, we have obtained similar substantive results
whether the ordinal method being used is a loglinear
model, a logit model, or a model having an alternative
type of response function. However, some distinctions
can be made that may help us in selecting a strategy for
analyzing ordinal data.

6.1 Comparison of Responses

The mean response models have the advantage of
closely resembling regression models for continuous re-
sponse variables. Fitting them is a reasonable strategy if
the categorical nature of the response variable is due to
crude measurement of inherently continuous variables.

For the loglinear, logit, and log-log models, cell prob-
abilities are determined by the model parameters. This is
not the case for the mean (or mean ridit) models. Hence,
we cannot easily use these models to make conclusions
about structural aspects such as stochastic orderings on
the response. If model (4.1) holds, for example, p*¥ = 0
is not equivalent to independence. The loglinear and logit
models directly reflect the actual discrete way we have
measured the variables, and special cases of those models
correspond to conditions such as independence.

6.2 Logit vs. Loglinear Models

When there are only two response categories, the or-
dinal logit models are special cases of corresponding or-
dinal loglinear models. The association parameters in the
logit models then equal those in the corresponding log-
linear models, when the two response scores are one unit
apart in the loglinear model. This equivalence does not
occur when the number of response categories exceeds
two, and neither model is then a special case of the other.

Table 9 summarizes the results of fitting the two types
of models to Tables 2, 4, and 6. The similarity of results
observed here will probably occur often in practice, since
both model types imply that different levels of variables
are stochastically ordered on ordinal response variables.
On structural grounds, neither model is clearly preferable
to the other, and the implications for odds ratio behavior

Table 9. Analyses of Association for Loglinear and Logit Models Fit to Tables 2, 4, and 6

Association Parameter Estimates

Table Model DF G? (standard errors in parentheses)
2 Independence 4 105.66 zero
Loglinear 2 2.83 #X = 495(.062), 1% = .224(.059), 75X = —.719(.080)
Logit 2 4.70 #X = .670(.083), 7. = .282(.079), 75X = —.952(.102)
4 Independence 6 10.88 ) zero
Loglinear 5 4.59 XY = .163(.065)
Logit 5 4.27 BX = .225(.088)
6 Independence 7 84.37 A . zero
Loglinear 4 5.58 B*? = 543(.084), 87 = —.307(.070)
Logit 4 3.66 BX = .669(.101), ¥ = —.396(.086)
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seem theoretically reasonable for both model types. More
precisely, just as the logit model will tend to fit well if
the response variable has an underlying logistic distri-
bution, so the loglinear models will tend to fit well if un-
derlying distributions are approximately normal and if ap-
propriate scores are used. For example, if an underlying
joint distribution is bivariate normal with density f, then

loglf (ur, v1)f(uz, v2)/f(ur, v2) f(uz, v1)]
= (uz — w)(v2 — v)pl/(l — p*)oxoy

is analogous to property (2.7) for loglinear model (2.6).
See Goodman (1981b) for an example of the excellent fit
that loglinear model (2.6) can give to a bivariate normal
distribution.

McCullagh (1980, pp. 121-122) argues that the logit
model is preferable to the loglinear model because with
the logit model it is easier to state conclusions about as-
sociation parameters without reference to the groupings
of response categories. If the logit model holds for the
true cell proportions, then if response categories are com-
bined it will still hold and the association parameters will
not change values. If a loglinear model holds for the true
cell proportions, on the other hand, it may not hold when
categories of any variable are combined. Even if it does
hold, the association parameters may not be of the same
order of magnitude.

In practice, this behavior is probably not a serious de-
ficiency of the loglinear model, since (a) the real under-
lying distributions are unlikely to be such that either
model will fit for all categorizations, and (b) scoring sys-
tems such as the standardized scores can be used to make
the association parameters in the loglinear model less de-
pendent on the choice of categories. To illustrate, sup-
pose that the ‘‘slight”” and ‘‘moderate’’ categories of
dumping severity are combined in Table 4, so that dump-
ing is measured as ‘‘none’’ or ‘‘some.”’ For the resulting
4 x 2 table, the ML estimate of the association parameter
in loglinear model (2.6) and logit model (3.5) (which are
identical since ¢ = 2) is .229. As expected, this is similar
to the value éx = .225 for the logit model for the original
table, but it is not similar to B*¥ = .163 for the loglinear
model for Table 4. If we use standardized scores in the
loglinear model, however, we get XY = .124 for Table
4 and XY = .125 for the collapsed table.

It is advantageous that the logit model does not require
the assignment of scores to levels of a response variable
that is inherently ordinal in scale. Even with the logit
model, though, scores must be assigned to levels of or-
dinal explanatory variables. For both model types, how-
ever, it is not really necessary to treat these scores as
reasonable scalings of the ordinal variables in order for
the models to be valid. For example, consider loglinear
models (2.6) and (2.8). The row and column scores in-
dicate how far apart the rows and columns must be judged
to be in order for the association to be linear-by-linear.
If the model fits when a particular pair of row scores are
relatively close, this tells us that the association is rela-
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tively weaker in that part of the table. This information
is useful even if we do not truly believe that those two
rows would be close together for an underlying interval-
scale measurement of that variable. In fact, such an un-
derlying scale has monotone scores, whereas score es-
timates for model (2.8) will tend to be nonmonotonic
when associations change directions over various parts
of the table. Thus, we can use such scores to provide
information about the nature of the association without
needing to regard them as indices of how far apart the
ordered levels truly are.

In summary, both the logit and loglinear models pro-
vide sensible strategies for analyzing ordinal categorical
data. The main issue that dictates the choice of one model
over the other is whether it is important to identify a
response variable. As can be seen by comparing Tables
5 and 8, for multidimensional tables it is easier to for-
mulate the logit model than the loglinear model, since
association patterns among the explanatory variables do
not have to be considered.

[Received February 1981. Revised September 1982.]
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