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Considerations in Measuring Partial Association

ALAN AGRESTI*

for Ordinal Categorical Data

Some of the measures commonly used to describe association be-
tween two ordinal categorical variables, controlling for the effects
of other ordinal categorical variables, are compared in their closeness
to a corresponding conditional measure for an underlying jointly
continuous distribution. Partial gamma and Kendall's partial tau
are observed to be poorer than a weighted average of the Kendall's
7p's from separate control levels, according to this criterion. The
asymptotic sampling distribution of a particular weighted average
measure is derived, and the behavior of the mean and asymptotic
variance of such a measure is analyzed as the categorical variables
are more finely measured.

KEY WORDS: Ordinal measures; Partial association; Partial tau;
Partial gamma; Weighted average measures; Asymptotic normality.

1. INTRODUCTION

Ordinal categorical data occur frequently in social and
behavioral research, where dependent, independent, and
control variables may in practice be measured in classes
(such as high, medium, low or above median, below
median) or by scales such as the Bogardus social distance
scale or Likert type scales. In this paper, we shall con-
sider methods for measuring the association between two
categorical ordinal variables, controlling for the effects of
one or more other categorical ordinal variables. Many
proposals have been given for obtaining such a general
summary measure, but there seems to be little agreement
among practitioners in choosing among them (see Quade
[12] for a summary).

There are four different settings for each of the vari-
ables in which the various measures of association
could be computed. The phenomena under consideration
could exist at a continuous level or at a discrete level.
Those existing at a continuous level could be measured in
the sample in a continuous or discrete manner. Those
which exist at a discrete level could be measured accord-
ing to the same discrete levels, or could be even more
crudely grouped. In analyzing these measures of associa-
tion, we shall assume that the variables are inherently
continuous, but are measured in the sample using ordered
categories. In many applications involving ordinal vari-
ables, it would seem reasonable to imagine the existence
of an underlying continuum, even though crude or under-
developed measurement or grouping results in sample
categorization.

* Alan Agresti is Assistant Professor, Department of Statistics, University of
Florida, Gainesville, FL 32611. Computer support was provided by the Northeast
Regional Data Center at the University of Florida. The author appreciates some
helpful comments from the referees.

The behavior of each of the coefficients based on dis-
cretely measured variables is considered as the measure-
ment becomes ‘“more continuous;” i.e., as the categoriza-
tion of each of the variables is refined. To distinguish
between the grouped and ungrouped versions of the same
measure of association, we shall conventionally attach a
superseript or subscript » to any symbol which repre-
sents a particular characteristic of the underlying con-
tinuous system of variables.

The term partial measure of association will be broadly
used to refer to any descriptive measure of the degree of
association between two variables X and Y, controlling
for a third variable Z. Thus, the evaluation of a particular
ordinal partial measure of association is dependent upon
how “controlling for a variable” is interpreted. Quade
[12] describes four interpretations of this term which are
prevalent in the statistical and social science literature.
The measures affiliated with the two most commonly used
concepts of control are those based on a formulation of a
linear model for sign scores for all pairs of observations,
and those based on weighted averages of bivariate ordinal
measures which are computed within subgroups of ob-
servations according to the Z classification.

The primary measure corresponding to the first of
these concepts is the Kendall’s [8] partial tau measure for
ranked data. In its (ungrouped) sample form, this mea-
sure is calculated as

txy* — lxz"tyz*

B S T e = D
where txy*, txz*, and tyz* represent the sample values of
the ordinary pairwise Kendall’s taus. This measure is a
special case of the Pearson partial correlation applied to
the set of (—1, 1) sign scores for differences of ranks on
X, Y, and Z for all of the pairs of measurements. The
analogous linear model for these pair scores is described
in detail in [11]. For ungrouped data, this measure is also
obtained by calculating the well-known coefficient

o= (ad —bo)/[(a+ V)b +d)(c+d@@+ol (1.2

for the following tabulation which provides a summary of
concordant and discordant relationships for all pairs.
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(Y, 2) Y, 2)
Concordant Discordant
(X, Z) Concordant, a b
(X, Z) Discordant c d

When the variables are categorized, the recent trend
for many social science methodologists has been to use
(1.1) and the corresponding formulas for higher order
partial measures with the substitution of the ¢, sample
values of the Kendall’s 7, pairwise measure for categorical
ordinal data (see, e.g., [7, 117]). These measures follow
from the application of the linear model to (—1, 0, 1)
pair scores. Another related approach [16] is to select
just those pairs of measurements which are untied on all
of the variables, and use the measure ¢. One could then
apply the standard formulas for higher order partial cor-
relations to these partial ¢’s to obtain higher order partial
Imeasures.

The other commonly used family of partial measures
for ordinal data is based on the concept of holding the
control variable constant. Under this notion, an ordinal
categorical measure ; is computed for each of the c levels
of a categorical control variable, and a summary partial
measure is formed by taking some weighted average of
these,

I =

Tkék . (13)

1

TMG

The best known of these is partial gamma [4], for
which 8, is the ordinal measure gamma for category Fk,
and 7, equals the probability that a pair of observations
tied with respect to the control variable and untied with
respect to the two noncontrol variables is in category k of
the control variable. Similarly, one could form some
weighted average of a tau type measure such as ¢, &, ¢,
[8], dyx [11], or of a Spearman correlation analog for
contingency tables, or compute one of these measures for
standardized tables such as the ones suggested by
Rosenberg [14] and by Smith [15]. Control is commonly
administered in social science research through analysis
of subgroups (see, e.g., [10]), and weighted average
measures are natural summarizations for such analyses.
Quade [12] has defined an extension to the family of
measures (1.3) based on various definitions of nearly
constant values of possibly several control variables. For
a single categorized control variable, his index of matched
correlation includes, as a special case, measures such as
partial gamma and weighted ¢,.

We shall compare the behaviors of a few of the most
commonly used partial categorical ordinal measures, as
the measurements become finer, in Section 2. Anadditional
partial measure of association { is proposed in Section 3
based on a certain weighted average of Kendall’s ¢’s, and
its asymptotic sampling distribution is derived. It is
shown that 7, is likely to be superior to partial gamma and
analogues of {xy.z* in terms of closeness to a correspond-
ing measure of conditional association, if there is an
underlying continuous system of variables. The impor-
tance of the choice of the number of categories of the

control variable on the population value of the measure
and the variance of the sample value is considered in the
last section.

Throughout, we shall assume that there is no interac-
tion, in the rather imprecise sense that the underlying
degree of association between the two variables remains
the same at each fixed single value of the underlying
control variable, so that it is sensible to compute a sum-
mary descriptive partial measure of this degree of as-
sociation. In many places, precise mathematical state-
ments of the conditions needed for the convergence
arguments to apply are omitted, since they would detract
from the main emphasis of the paper and since they could
be fulfilled for the underlying continuous models typically
used in practice, such as joint normality. (See [2] for a
more thorough treatment of this aspect.)

2. COMPARING ORDINAL PARTIAL MEASURES

In this section, we shall deal with the properties of the
population values of the ordinal categorical measures
defined in Section 1. The reason for this is that the
characteristics of the population measures need to be
well understood before one can decide to routinely use
sample values of that measure. We denote the values of
txy.z, ¢, and f for the categorized form of the underlying
joint population distribution by rxv.z, ¢, and # = Y pibs.
The probabilities of this grouped distribution are de-
noted by

pijg = P(X € Ao, Y € Byj, Z € Cot) (2.1)

where {A..}, {Bs;}, and {C.} are partitions of the pos-
sible values of X, Y, and Z, with a, b, and c categories,
respectively.

A criterion is now needed for the comparison of the
various ordinal partial measures of association. Assuming
no interaction in the underlying continuous system, one
easily interpretable and hence desirable property would
be as follows: the categorical partial measure of associa-
tion based on a particular bivariate ordinal measure of
association is close to the value of that ordinal measure
obtained for the joint distribution of (X, Y) at a fixed
single value of Z, for the underlying continuous system.
We shall refer to this value for this underlying jointly
continuous conditional distribution as the wunderlying
conditional association.

For example, rxr.z, ¢, and weighted averages of v, 74,
b, Te, OF dyx are all fundamentally based on the differ-
ence between the probabilities of concordant and dis-
cordant pairs of observations on the variables. Hence,
they should ideally be close to the value of this difference
of probabilities, namely,

(X, Y|Z) = PL(X; — X)(Y; — ¥j) > 0[Z]

~ P[(X; - X)(Y:—Y) <0[Z], (22)

expected for two pairs (X;, ¥.) and (Xj, Y;) chosen at
random from the underlying jointly continuous condi-
tional distribution at any specific single value of Z. We
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use the symbol 7in (2.2) to recall that Kendall’s definition
[8, p. 124] of the bivariate analog is precisely this differ-
ence. In accord with the concept of interaction in this
article, this underlying conditional difference between the
probabilities of concordant and discordant pairs of mea-~
surements is assumed to be the same at each single value
of Z. Similarly, if one compared partial measures which
are analogous to (1.1) and (1.3) but based on pairwise
Spearman’s rhos, the underlying conditional association
would be the value of rho for this conditional distribution
in the underlying continuous system.

Let us consider now, in more detail, the various ordinal
categorical partial measures for which the underlying
conditional association is 7,(X, Y|Z). Note that inter-
action may exist in the grouped distribution, and the
extent of it depends on the categorization of the control
variable. One would expect the performance of a categori-
cal partial measure to improve, though, in terms of ap-
proximating 7,(X, Y|Z), as the number of categories ¢
of the control variable increases.

As an example, suppose that (X, Y, Z) has a trivariate
normal distribution, with X and Y spuriously related.
That is, pxy* = pxz*pyrz* for the underlying distribution,
and hence pxy.z* = 0. For this normal model, pxy.z* is
also the Pearson correlation between X and Y at a fixed
single value of Z, so that from [8, p. 126]

(X, Y|Z) = (2/7) sin! pxy.z* =

In particular, suppose that the underlying Pearson cor-
relations are pxy* = .64 and pxz* = pyz* = .80, and sup-
pose (for simplicity) that the distribution is categorized
in the form of a 2 X 2 X ¢ table, with

P(XEAz,)=P(Y€Bzi)=5, 1:=1,2.

Table 1 lists the corresponding values of 7xv.z, ¢,
partial gamma (7), an average of 73’s (#;) weighted by
{p..x}, and another weighted average of 74’s (#s) to be
introduced in Section 3. Notice that neither rxy.z nor ¢
appears to approach the underlying conditional associa-
tion value of 0 as ¢ increases.

1. Values of Partial Measures of Association for
Various 2 x 2 x C Tables with an Underlying
Trivariate Normal Distribution 2

c P(zeC.) ¢ Txyz Y Tp T
1™ 443 — 740 443 443
2 (.1,.9) —.006 377 .666 341 .380

(.5,.5) 137 143 375 144 144

3 (.3,.4,.3) 122 A4 196 .075 .083
4 (.2,.3,3,.2) 127 .148 129 .042 .053
5 (-2,.2,.2,2,.2) .138 153 .069 .023 .027
7 (.1,.1,.2,2,.2,.1,.1) 137 167 .062 .012 .025
10 (.1 each) .163 179 .018 .002 .007

2 pxy = .64 and px; = py; = .80.

In fact, even in the continuous case for the trivariate
normal distribution, rxy.z* = ¢, is not equal to zero
when pxy.z* (and hence ,(X, Y|Z)) equals zero, except

39

for trivial cases. In that situation,
Txv.2"
_ (2/7)sin! pxy*—(2/7)(sin pxz*) (2/7) (sin~ pyz*)
{(1~[(2/m) sin™ pxz*T) (1~ [(2/) sin~ prz*])}¥
(2.3)

by virtue of the functional relationship between Kendall’s

tau and the Pearson correlation for the bivariate normal

distribution. Using differential calculus, it can be shown

from (2.3) that for the spurious normal system (ie.,

pxy.z* = 0),

xy.z* > 0,

if pxz* > 0 and pyz* > 0

or if pxz* < 0 and pyz* < 0 ;
if pxz* > 0 and pyz* <0 ,

or if pxz* < 0 and pyz* > 0 ;

xv.z* < 0,

rxr.z* = 0 , only if pxz* or pyz* equals —1, 0, or 1.

In the categorical setting, rxy.z or ¢ forana X b X ¢
table converge in the limit to (2.3) for the continuous
case, instead of 7,(X, Y|Z), as a, b, and ¢ increase such
that {A.:}, {By}, and {C.} get finer in an appropriate
manner. Thus, for the trivariate normal system (and
more generally), rxy.z or ¢ is not the same as or neces-
sarily close to the underlying conditional association. In
particular, txy.z or ¢ for continuous or categorical data,
even for limitless sample sizes, would fail to detect
spuriousness in an underlying trivariate normal popula-
tion. This also implies that the analog of a partial regres-
sion coeflicient (Somers’ partial d) used in the general or-
dinal linear model for pair scores (see [7, 11]) is nonzero
for the normal spurious system, since it is zero if and
only if the corresponding Kendall’s partial tau is zero.!

Measures of partial association based on holding the
control variable constant represent an averaging of the
degrees of association between X and Y over restricted
ranges of Z values. Hence, by virtue of their construc-
tion, their failure to detect spurious association is no-
where near as severe, at least when the control variable
is measured finely enough. As the categorization for Z is
made uniformly finer, for the spurious normal example,
partial measures such as ¥ and #, converge to zero, the
underlying conditional association (see Table 1). More
generally, as the measurement of Z is refined, a 7 weighted
average type measure converges to the expected value
(with respect to the limiting distribution of the weighting
scheme imposed on the categories of the control variable)
of the ordinal categorical measure upon which it is
based, measured for the given (X, Y) categorization.
As all three variables are measured more finely,
7 — 1.(X, Y|Z), for those weighted average measures
for which r,(X, Y|Z) is the underlying conditional as-
sociation. Of course, it should be realized that refinement

1 The possibility that txy-z could fail to detect what would be interpreted as
spurious association for higher level measurement was also pointed out recently by
Kim [9]. For some artificial three variable causal chains, he showed that the
Pearson partial correlation would be zero, but concluded (p. 274) that *‘.. . ordinal
partials do not allow us to detect even the simplest underlying causal structures.”
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of the categorizations of X and Y alone does not com-
pensate for crude measurement of Z, since the joint
distribution of (X, Y) over a broad range of Z values
may be very different from the joint distribution at a
single Z value. (See [2] for details on these convergence
arguments.)

Kim [9] notes that weighted average measures such
as 7, seem to be better than 7xy.z in detecting spurious-
ness. He concludes (p. 279) that

... the notion of control is most clearly demonstrated by the
traditional subgroup analysis; therefore, partials defined in this
manner have the most clear interpretation. .. Until better mea-~
sures of partial ordinal association are developed, one may con-
sider using this type of partial whenever rankings contain
enough ties.

In summary, if one interprets “ordinal partial associa-
tion” to mean ‘‘bivariate ordinal association between X
and Y at a fixed single value of Z for the underlying con-
tinuous distribution (when there is no interaction),” then
weighted average type measures would be considered
superior to 7xy.z or ¢ in terms of measuring the degree
of this association as finer measurement is achieved. Also,
as researchers become more familiar with them, ordinal
measures of association are likely to be more commonly
used for casual modeling in the social sciences. For such
purposes, weighted average partial measures would seem
to be more reliable in terms of leading to conclusions
which are consistent with those which would be made if
the measurement were accomplished at a higher level.

If the researcher believes that the underlying con-
tinuous variables are jointly normally distributed, he may
be more interested in a summary partial measure such as
pxy.z* than in the underlying conditional (ordinal)
association 7,(X,Y|Z). In that case, 7.(X,Y|Z)
= (2/7) sin~! pxy.z* Thus, pxy.z* could be approximated
by sin [ (x/2)#s] when the observed data are ordinal
categorical, and the approximation would improve as
measurement of the variables is refined.

Of course, alternative concepts of control lead to differ-
ent preferred ordinal partial measures. For example,
Somers [16, 17] believes that if the control variable is
ordinal, the summary partial measure should incorporate
some aspect of the ordering of the control levels. He shows
that the partial (Somers) d regression coefficient contains
components summarizing information lying between and
within the conditional distributions for the control
variable. The between component is treated as irrelevant
for the weighted average measures, and they could be
used even if the control variable is nominal in level.?

3. AN ALTERNATIVE WEIGHTED =, MEASURE

Consider a 7 type measure of partial association
for which the underlying conditional association is
7.(X, Y|Z). The inadequacy of 7 in measuring the under-
lying conditional association is due to the bias introduced

2 The reader is referred to articles by Quade [12] and Somers [16] for discussions
about the difficulty of choosing one completely representative ordinal partial mea-
sure to satisfy all concepts of control.

by grouping Z, and the fact that a categorical two-way
generalization of IKendall’s tau need not produce the
same value as Kendall’s tau for continuous variables.
Roughly speaking, the first type of bias can be reduced
by increasing ¢, and the second type of bias can be reduced
by increasing ¢ and b and by basing 7 on a measure which
is relatively stable to choice of cross classification in terms
of approximating Kendall’s tau for continuous data.

Unfortunately, the most popular measure of this type,
partial gamma, is likely to be very poor in the last
respect in most situations, especially when a and b are
small (see [1, 137). For example, notice in Table 1 that
for ¢=1, ¥ =.74 whereas 7xy* = (2/7) sin~! pxy*
= 443, the limiting value of ¥+ when X and Y are mea-
sured continuously. Of the many ordinal measures
available, 7, seems to be least susceptible to this type of
bias [1], suggesting a partial measure of the form

kzi pers({Aa}, 1B} | Cer) .

where 75({A4.:}, {Byi}|Cx) denotes the value of 7, for a
given (X, Y) cross classification conditional on Z in Cy.
This measure has a clear interpretation, since each
75({As:}, {Bs;} | Ca) can be considered an approximation
to the underlying 7(X, Y|C.), the value of Kendall’s
tau between X and Y for the continuous (X, Y) dis-
tribution, when Z is in C; this, in turn, itself is close
to 7.(X,Y|Z) if C, is small. Reynolds [13]
used the weighting schemes {p;, = 1/¢}, {px = p..x}, and
{or = p.42/2n p.a2} (the probability that a random pair
of measurements tied on the control variable falls in Cy)
in some simulation studies with the trivariate normal
model, and reported similar results with each. Let

Pijp® = 2 2 puj+ 2 2 puik
1> 1>5 i< 51 <i
and 3.1)
P = 3% > Dirjrr + IS Pirjk -
> < i <i 1>
Then

Py =2 ¥ piePijn® , Pe® =2 2 piPi®

i g T 7
are the probabilities that a pair of observations are in
C,. and are concordant and discordant, respectively,

and let
P, — P; =3 (P — Pp@®) .
k

Davis’ partial gamma is

P, — P, P 4 P\ P — P (@
R ) . 32
P,+Ps %\ P,+Ps ]P® 4 P
Also
m6({Aai}, {Bos}|Cer)
= (1/p..s?)(Pr® — P@)/
(A = Z (er/p-0)(A =X (P.x/p--0)) It
= (P — P @) /[AnAs ]}, (3.3)
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where

Ay = p..k2 - Z p,-.kz y Aoy = p..k2 bl Z p.jk2 . (34)
[ J

The weight (Pp® 4 P,@)/(P, 4+ P,) is a natural one
to attach to the kth control table in forming a partial
measure for gamma, which ignores all pairs tied with
respect to the X or Y classification. Similarly, a natural
weight to choose for a partial measure based on {75 ({4.:},
{By;}|Cet), 1 < k < ¢}, which uses

LA =X ar/p. )M = X (.an/p..)) ]

to adjust for the effect of (X, Y) cross-classification ties in
the kth table, would be (AwA%)t/X s (AmAzm)!. That is,
let

7o = 2 [(AweA2r)¥/ 2 (Anndan)¥]re({A4i}, {Bos}|Cer)
k b
=Y (Pr® — PrD)/3 (Awrhar)?

= (Ps — Pa)/ % (Auvden)t . (3.5)
k

In the special case that the adjustment factor for
ties is the same in each control table, the kth weight
(AAg)t/>on (AnAsn)t reduces to p.x2/Yn p..s2 Thus,
this weighting scheme may be considered to be an exten-
sion of the weighting scheme {p. /> p.:} which
further adjusts for ties with respect to the (X, Y) cross
classification within each control level.

Table 2 shows the weights for 7, and for ¥ for the
spurious normal relationship considered in Section 2
when ¢ =10 and P(Z & Cyox) = .1 for all k. The
weights would each be .10 for the weighting schemes used
by Reynolds [13]. Notice that ¥ penalizes control tables
more heavily than 7, for having ties on the (X, Y) cross
classifications. On the other hand, the weighting schemes
{1/c}, {p.x}, and {p.. /2 p.4?} give no consideration

2. Probabilities for Trivariate Normal Distribution with
Pxy = .64 and px, = py; = .80 Categorized in a
2 x2 x 10 Table with {p;,. = .5}, {p,; =.5},
{p.x =.1},and Corresponding Weights
for T, and y?

Weight

k i Pk Pizke s ¥

1 1 .0968 .0016 .011 .001
2 .0016 .0000

2 1 .0837 .0078 .055 .022
2 .0078 .0007

3 1 .0666 .0149 107 .087
2 .0149 .0037

4 1 .0477 .0218 151 .166
2 .0218 .0088

5 1 .0331 .0237 175 .223
2 .0237 .0195

2 The probabilities {p,y} were obtained using the formulas given by Steck [18]. For
k=6,7,8,9, 10, the weights are symmetric to k' = 11 — k.

41

to such ties as having the effect of reducing the total in-
formation available for measuring partial association.
Naturally, if there is little variability in the {7,({Aa:},
{By;}|Ca), 1 <k < ¢}, each of the weighting schemes
produces about the same result for the summary measure.

An important benefit of using the weights as defined in
7p is that the asymptotic sampling distribution of the
random sample version of 7 is much simpler to derive
than that of other weighted averages of the {7:({d.:},
{Bs;} | Cex)}, and of partial measures such as 7xy.z and ¢.
Let

2(Pijx® — Pyp®)
2 (A1nlAgn)?
h

bijk =

_ (P = Pa)[As(p--k — pi-) + Aur(pok — pi) ]
(A1rBei)i[X (ArnAgn)¥]?

(3.6)

Then if # is the random sample of size n version of 7,
(i.e., p.s is replaced by its maximum likelihood estimate
Pije = Majr/N), it is shown in the Appendix that

Vs — 1)/c S N(O, 1) , (3.7)

where
ot =3 2 2 piindiin® . (3.8)
T j k
Of course, (3.7) still holds if ¢ is replaced by its maxi-
mum likelihood estimator ¢ (obtained by substituting
{Pije} for {p:i} in (3.6) and (3.8)), as would be the usual
case in practice. Thus, an asymptotic 100(1 — «) percent
confidence interval for 7 is given by

&y & U.,/zé/\/n ,

where U,; is the 100(1 — «/2)th percentile of the stan-
dard normal distribution. Similarly, the null hypothesis
that 7, = 0 can be tested for large » using the fact that
\/nly/¢ is asymptotically distributed N (0, 1) under the
null hypothesis.

To the extent that measurement of the variables is
refined and there is no interaction, these procedures could
be considered in practice to approximate corresponding
inference procedures for the wunderlying measure
(X, Y| Z). Notice also that , and its asymptotic sam-
pling distribution may be used even if the control is multi-
variate or only nominal in scale, although in this last case
the prior discussion on refining measurement of the con-
trol variable might not apply (e.g., controlling for sex).

We next consider an example of the calculation of the
value of I,. Table 3 is taken from an article by Smith [15].
The relationship between “attitude towards abortion”
and “years of schooling” is exhibited for three regions of
values of the control variable “ideal number of children,”
for a sample of size n = 1425. The three corresponding
sample t, values are .2645, .0855, and .1725. These values
show evidence of some interaction, though this may be
due to the crudeness and variability in size of the control
categories (see the end of Section 4).
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3. Attitudes Toward Abortion by Years of Schooling Completed with Ideal Number of Children Controlled ?

Ideal number of children

Attitude
toward None to two Three Four or more
abortion
Years of schooling Years of schooling Years of schooling
0-11 12 13+ Total 0-11 12 13+ Total 0-11 12 13+ Total
Generally
disapprove 58 55 2 115 44 48 8 100 107 48 6 161
Middle
position 43 51 10 104 19 37 6 62 39 38 5 82
Generally
approve 104 244 104 452 67 114 24 205 66 68 10 144
Total 205 350 116 671 130 367 212 154 21 387

199 38

2 Data from the 1972 General Social Survey of the National Data Program.

We use the sample proportions {pz} as estimates of
the {p:ix}, and functions of the {p.;} as estimates of the
corresponding functions of the {p;}. For example, A
may be estimated by

— (1152 4 1042 4 4522) /14252 = 1093 ,
and Ap; may be estimated by
Ay = (671/1425)2

— (2052 43502 4 116%)/1425% = 1341 .

In a similar manner,
1312 = 0388 ) 1322 = 0378, 513 = 0475 y 323 = 0397

Hence, Y (Aplg)t = .2028, and the weights for the
three sample ¢, values are

(Aunda)¥/Y (AunAa)t = 5969, .1889, and .2142 .
Finally,
i = .5969(.2645) + .1889(.0855) + .2142(.1725) = .211,

according to the sample analog of (3.5).

Alternatively, f, could be calculated directly using the
sample analog of the second formula in (3.5). The pro-
portions of pairs of observations which are concordant
and which are discordant and in the first subtable are

P, = 2[58(51 + 10 + 244 + 104) + 55(10 + 104)
+ 43(244 + 104) + 51(104)7/1425% = .0495 ,
and

P.@ = 2[2(43 + 51 + 104 + 244) + 55(43 + 104)
+ 10(104 4 244) + 51(104)7/1425% = .0175 .

Similarly,

P, = 0127 , P,@ = 0094 , and

Py = 0168 , P,;@ = 0093 .

Thus,

P, — P, = (0495 — .0175) + (.0127 — .0094)
+ (.0168 — .0093) = .0428 ,

and since Z (Alkﬁzlc)* = .2028,
&, = .0428/.2028 = .211 .

Finally, we illustrate the calculation of the maximum
likelihood estimate of the asymptotic variance. Let
t=j ==k =1 Then

P = 58/1425 = .0407 ,
P1©® = (51 4+ 10 + 244 + 104)/1425 = .2870 ,
p ll.l(d) = 0 y

so that
. 2(.2870)
o111 = —2658— .
' .0428{.1341[(671/1425) — (115/1425)]
+ .1093[(671/1425) — (205/1425) 1}
[(.1093)(.1341) ]*(.2028)*
= 2.0741 .

When this is calculated for all 27 combinations of
(z, j, k), we obtain

# = S Y pundin = 0407(2.0741)2 +. . .
[ ]k
’ - 7763 ,

and hence ¢ = .8811. If these data were obtained by a
random sample, an approximate 95 percent confidence
interval for 7, would be

211 4 1.96(.8811)/(1425)%
= .211 & .046 = (.165, .257) .

The calculation of the large sample standard error of
fy can be quite cumbersome when the table dimensions
are large. If the expression for ¢;; is substituted into
(3.8) and the formula is expanded, there is little can-
cellation and the resulting expression is messy. In prac-
tice, 42 is easily obtained on a computer using the sample
analog of (3.8). When ¢ = 1 so that 7, is just Kendall’s
s for a two-way classification, (3.8) reduces to the
asymptotic variance of the random sample version of
Kendall’s 75 (see [1]).
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4. CATEGORY CHOICE FOR THE CONTROL
VARIABLE

The choice of the number of categories for the control
variable seems to be too often neglected in multivariate
categorical analysis. The social science literature reveals
that many researchers exert control by simply dichoto-
mizing (see, e.g., [6, p. 1507]), and that most textbooks
on statistical methods for the social sciences fail to even
mention the undesirability of crude categorization and
collapsing of tables (see, e.g., [3, 107).

However, unless the conditional relationship between
X and Y is very similar to the unconditional relationship,
(X, Y|Z) may not be properly revealed if ¢ is small or
if one of the levels has a much higher probability of oc-
currence than the others, as shown by Tables 2 and 6 and
some examplés in [13]. In fact, for many systems of
variables it would be reasonable to assume that
(X, Y| C) is a monotone function of C, in the sense that

[7(X, Y|C) — ru(X, Y|2)]
< 71X, YIC) — 1u(X, Y[2)|

if 2 € C, which is itself contained in €. In fairness, crude
categorizations are probably used often in practice to
make it easier to absorb the results and to ensure enough
observations in each control category to have reasonable
power in detecting interaction.

Many researchers who recognize the benefit of having
a large ¢ to reduce bias of the nature just described warn
that the sampling variance of a partial measure increases
as ¢ increases, since the number of pairs of observations
which are tied with respect to the classification of Z, and
are thus used in forming the measure, decreases (see,
e.g., [12, pp. 389, 393]). To see that the asymptotic
variance need not increase, note Table 4, which compiles
the asymptotic variance of +/nf, under full random
sampling for various categorizations of Z, for the example
of the underlying trivariate normal distribution.

4. Asymptotic Variance of n(t, — 7,), for Various
2 X 2 X C Tables with an Underlying
Trivariate Normal Distribution @

P(ZECy) Variance

.5) 1.108
3) 1.216
.2) 1.207
1.164
1.229
1171

~Noarwn | ©

10

® pxy = .64 and px; = pyz = .80.

As another, more analytically feasible example, con-
sider the situation in which the control variable is
naturally split into the ¢ strata {C, 1 <k < ¢}, and a
random sample of fixed size n; is taken independently
from the kth stratum (X ne = n). Suppose that we use
the partial measure 5@ = X", mity({Aai},{Bsi} | Cer),
where ¢, is the sample value of 7, and {r,} are sample

43

weights converging with probability one to some weights
{pr} as {mx— o}, and suppose that ny/n— N\, as
n— o, forl <k <c Now

Vrilts({Aai}, {Bos} | Cor) — m6({Aai}, {Bss}|Cor) ]
o({Aai}, {Boi}|Cer)

L5NO,1), 1<k<c, (41)

where 2({A.:}, {Bs;j}|Ce) is (3.8) applied for ¢ =1
(bivariate 75) to the proportions {p.#" = p:/p..x}. Since
the {t({Aai}, {Bsi}|Ca), 1 < k < ¢} are independent,
1, is asymptotically normal with asymptotic mean
7 = 3 pero({Aas}, { Boi} | Cox) and asymptotic variance

03°(8) = 2 pi’o*({Aai}, {Bos}[Cor) /e

= [Zk: pi2a?({Aai}, {Byi} [Cor)/M]/n (4.2)
That is,
V@ — #,9) /[ pr?e?({Aai}, {Bos}|Cor)/Me]E

LN@O, 1) . (43)

We shall consider the simplest special case in which the
sampling is proportional {\; = p.:} and {pr = p..+}, so
that the asymptotic variance of +/n#,® reduces to
>k 0402 ({As:}, {Bosi}| Cex). Now suppose that the under-
lying trivariate distribution is such that

liin o*({Aai}, {Boi} [C) = o*({Aai}, {Bos}|2) (4.4)
Ciz
for all z, where o2({Aa:}, {Bs;}|2) is the asymptotic vari-
ance corresponding to & ({A4a4:}, {Bsi}|2) calculated from
a random sample taken at Z = z. Then, it can be shown
that as the strata {Cu, 1 < k < c} get finer,

% p--k0'2({Aai}r {Bb;'} |Cck)

—-—-)/0'2({11“'}, {Bbj} |z)sz(z) y (45)

where Py is the probability measure corresponding to the
(ungrouped) distribution of Z.

When a =b =2, $:2({Az}, {Ba}|:) = x*/m for a
sample of size m, where x? is the usual statistic with
df = 1 for the test of independence. Thus in the spurious
normal case, for which 7,({42}, {Bs}|2) =0, and
pxy.z = 0 implies independence between X and Y given
Z =z,

mEt?({ Az}, {Baj}|2)
= Ex? =1 asymptotically (as m — ) ,
so that 62({As:}, {Bs;}|2) = 1 for all 2, and hence
X p.ao?({An} , (B2} |[Ca) — 1.
k

€ >0

(4.6)

Thus, it appears that with stratified random sampling,
the asymptotic variance of v/n,® (as n — «) need not
increase as the control variable is more finely measured
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(as long as {n} are kept large enough to apply asymp-
totically derived formulas). Suppose now that, in addition,
measurement of X and Y is refined in such a way that

o?({4dai} , (Buj}[e) —= 0u(X, Y[2) ,  (47)

b—

the asymptotic variance of the random sample value of
Kendall’s 7,(X, Y|z) for observations with Z = z. Then
one would naturally expect the asymptotic variance to
decrease, since more information on the strength of the
association is provided when there are fewer ties on the
(X, Y) cross classification (see [1]). Under an appropriate
refining process on the measurement of the three vari-
ables, it again follows that

% P-x®({Aai}, {Bos} [Cor)

N (4.8)
b—ow

c—®

c.2(X, Y|2)dPz(z) .

In the trivariate normal case, the conditional jointly
continuous distribution of (X, Y) is identical, apart from
location, at each fixed value of Z = ¢z, and it follows from
[8, p. 126] that this limiting value of the asymptotic
variance of v/n,® is

, / " (X, Y|2)dPs(z)
- = 4[5 — ((2/m) sin™* (pxv.z%/2))?] . (4.9)

In particular, a maximum value of 4/9 occurs for the
spurious example. By comparison, the asymptotic vari-
ance of v/ni,,* is 4[3 — ((2/) sin™! (pxy*/2))?], so that
the asymptotic variance of v/n® exceeds this uncondi-
tional variance (c = 1) as measurement of the control
variable is refined, roughly speaking, only when
lpxy.z*| < |oxv*|.

Similar conclusions probably apply to other weighting
schemes (such as the one used for f, in Section 3), al-
though the limiting variances would have different ex-
pressions and would not be as easy to compare in this
context of stratified random sampling. Naturally, one
should ideally choose enough observations in each stra-
tum such that asymptotic variance formulas and asym-
totic normality apply. The actual value, however, of the
asymptotic sampling variance will probably not fluctuate
drastically in most situations as {C.} is changed. As long
as these asymptotic considerations are satisfied, one
should choose c large to reduce the difference between the
measure and 7,(X, Y|Z). If {(P(ZE Cu), 1 <k < ¢}
are approximately equal, it appears that ¢ = 5 levels
would usually be sufficiently large (see Table 1 and [13,
p. 4077). A guideline that has been suggested [12] for
applying the asymptotic formulas requires that both the
total number of conditional concordant pairs and condi-
tional discordant pairs exceed 200.

If there is interaction, it is still advantageous to choose
several control levels to try to illuminate the nature of
this interaction and to make a valid comparison between

each conditional association and the original uncondi-
tional association. In many practical situations, of course,
restrictions in sample size necessarily place limits on such
a strategy, since then a different parameter is being esti-
mated in each level. In forming subtables to obtain a
weighted average measure such as f;, the researcher is
probably more likely to notice when there is interaction
or nonmonotonicity than in computing a measure such
as txy.z (based just on bivariate measure values). When
the {ts({4a:}, {Bsi}|Cew)} are based on independent
samples from a given classification {C.}, the null hy-
pothesis that

mo({4ai}, {Boi}[Cer) =...= ms({4as}, {Bei}|Ceo)

can be tested using the analog for =, of the chi-square test
that Goodman and Kruskal [5, p. 3187 present for testing
equality of values of the measure lambda.

In many situations the control levels as naturally
chosen will not be uniform in size. In that case, the sepa-
rate t({As:}, {Bsj}|Co) measures might indicate the
existence of interaction, when in fact it would not exist
under finer measurement (or vice versa). For example,
suppose that ¢ =3 and that P(Z & C;) = .1,
P(Z € C3) = .7, and P(Z € C3;) = .2. Then, even if
the underlying partial association were the noninteractive
spurious one considered in Section 2, the three control
level 7,’s as measured here would be —.010, .256, and
.020 (see Table 5 for values of 7, for a wide variety of
control level widths). Similarly, if a finer categorization
had been used for the control variable in Table 3, the
observed ¢ values might have been more similar, apart
from sampling error. The first category is quite large, and
if it ' had been replaced (for example) by the categories
{(0), 1 —2)} or {(0), (1), (2)}, different results could
have occurred. This again magnifies the importance of
measuring the variables as finely as possible.

5. Value of T, for Relationship Between X and Y (Each
Dichotomized at the Median) for Various Control
Categories, for an Underlying Trivariate
Normal Distribution 2

Width w of control category
Control
quantiles 1 2 3 4 S5 6 7 8 9 1.0

Value of 7,

(0,0 +w) -—.010 .020 .064 .088 .144 .201 .252 .315 .380 .443
(1,1 +w) —.003 .031 .045 .096 .149 .195 .256 .319
(2,,2+w)  .016 .011 .056 .101 .140 .196
(.3,,3 +w) —.026 .023 .062 .091
(4,4 +w) .034 .052
‘pxy=.64:and pxz = pyz = .80.

APPENDIX

The derivation of the asymptotic behavior of the sample version
of 7 follows the standard methods used by Goodman and Kruskal
[5] for simple bivariate measures. Suppose that we have a random
sample of size n over the full multinomial collection of probabilities
{piix}, and let {pix} denote the maximum likleihood estimates of
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the proportions in the threefold table. Let &, P, Ps, {A1n}, and
{As:} denote the corresponding maximum likelihood estimates of
7b, P, Pa, {A1}, and {Aq} as defined in Section 3, and assume that
Ay > 0 and Az > 0 for at least one value of k. Then

Vn(ly — 7)
= /nl[(P, — P)/T (RAudu)t — (Ps — Pa) /L (Auder)t]
k k

V[ (P, — Pa) ;; (Ardar)t — (Py — Pg) >k: (Aurdan)¥]

— , (A1
[% (Auhm TTZ (Auam)] (A-D
k 2
which has asymptotically the same distribution as
Vn[(Ps — Po) T (Aurbar)t — (Ps — Pa) 3 (Anrhai)]
k k (A.2)

[ (Anhep) ]2
k

by Slutzky’s Theorem. This quantity (which we shall denote by
V/nQ({p.;x}), being a continuous function, with continuous first
partial derivatives, of asymptotically normally distributed sample
proportions, is itself asymptotically normally distributed with mean
0 and variance ¢? = d’Xd. X is the covariance matrix of the {v/np.;:},
where the covariance between \/npijr and ~/npijin is dijuirirwpish
— PijrPirjrrey With 8ipejr = 1if =7, j =5, and k = ¥/, and 0
otherwise, and d is the vector of partial derivatives of @ with respect
to the {px} evaluated at {pijz}. Now

Po=2Y T T pu( & X bis) ,
i 7k >80 >]
so that
(9P,/0pi) | {Pijk)
=2( X ¥ puin+ X X pigw) = 2Pi® . (A3)
>4 5 >5 1 <ijr<j
Similarly,
(0Pa/0piin) | tmige) = 20 T Z psn+ L X pij) = 2Pyjp®
> 0 <j i1<g ' >j
In addition,
/D> (A!h;lz};)*]/aﬁiik) I{Pi,‘k}
»
Ao (Pt — pi-k) + Ae(Dock — Djr)
- A4
(A1xlAar)? y (A4
so that
. 2(Pijx’® — Pijx@)
0Q/dp+; iik) =
(8Q/dpijx) [ {pis) T (AmAm)?
)
P, — Py)[A ek — Di. ek — D.j
_ a) [Azk(p..s — pir) + Are(pox — piw) ] (A5)

[X (AnAm) ¥ P(AnAz)}
3

Thus, letting ¢:x = (0Q/8p:ir) | tr:zr), the asymptotic variance of
\/nf;, is
0= Y XX T X bijsbirirr (Siju,iri iDisk — DijkPirgrr)
P T T
=2 X X i — (X X X pindin)? . (A6)
i ik ik

Using the fact that Pp( = Y ; ¥; pijePijr(® and P, = 3 Pp(®
(and similarly for Pg), it can be seen through substitution that

45

2 25 L pijadise = 0. Thus
ot = 3 ¥ 3 pirbist .
i ik

7

(A7)

[Received January 1976. Revised August 1976.]
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