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The EfFect of Category Choice on Some

Ordinal Measures of Association
ALAN AGRESTI*

Several ordinal measures of association for cross-classification tables
are compared with respect to their stability when various grids are
placed on a bivariate normal distribution. Kendall's tau b usually fares
better than Kendall's tau c, Goodman and Kruskal's gamma, and three
extensions of Spearman's rho for cross-classification tables, in terms
of approximating an associated measure for ungrouped data. The loss
of efficiency of tau b due to grouping in testing the hypothesis of no
association is considered and observed to be strongly related to the
proportion of tied pairs of observations.

1. INTRODUCTION

Several measures have been introduced to describe the
association between two variables measured on an ordinal
scale (see, e.g., Goodman and IKruskal [3], Kendall [4]
and Kruskal [5]), and the pros and cons of using each
have been widely debated (see Blalock [1, pp. 421-6] for
a partial summary). The numerical values of those mea-
sures defined for cross-classification tables depend on the
grid of the table-the numbers of rows and columns and
the choice of categories for each marginal classification.
Although the measure should naturally reflect the choice
of the grid placed on the given bivariate distribution, it
is usually desirable for it to be relatively stable with
respect to changes in the nature of the grid if it is to be
a reliable index of association. For example, if two re-
searchers choose slightly different categorizations for
measuring a pair of variables, hopefully they will reach
similar conclusions regarding the strength of the relation-
ship between them.

In this article, we investigate the behavior of some of
the most commonly used ordinal measures of association
as the grid placed on a bivariate normal distribution with
correlation p = .2, .5 and .8 is varied, by changing

a. the numbers of rows and columns;
b. the marginal categories for each choice of the numbers of

rows and columns.

We assume in using this underlying continuous distribu-
tion that even if two variables are recorded simply in
ordered categories, it often is sensible to interpret the
observations on these variables as representing imprecise,
underdeveloped, or grouped measurements of interval
scale variables, or measurements monotonically related
to possibly unobservable interval scale variables.' To be

* Alan Agresti is assistant professor, Department of Statistics, University of
Florida, Gainesville, Fla. 32611. Computer support was provided by the Northeast
Regional Data Center at the University of Florida. The author is grateful to
Donald R. Ploch for some helpful comments.

1 Goodman and Kruskal [3, pp. 735-6] reference some interesting older articles
which debate just when such an interpretation is reasonable.

reliable in this sense, a measure computed for a cross-
classification table should also be similar in value to an
associated measure for ungrouped data computed for the
underlying continuous distribution.

In addition, the sample size needed to reject the hy-
pothesis of no association at a fixed significance level and
power depends on the grid choice. This sample size for a
test of no association based on Tb iS calculated for various
grids, and a relative efficiency measure is presented by
comparing this to a corresponding sample size when the
data are ungrouped. The relative efficiency is seen to be
approximated by a monotonic function of the proportion
of pairs of observations that are untied on both of the
rankings. As a special case, the test of no association for
a table with a small number of rows or columns is espe-
cially inefficient relative to the underlying test for un-
grouped data.

2. THE ORDINAL MEASURES AND GRIDS
TO BE CONSIDERED

The six measures selected to be compared were those
symmetric measures that seem to be most commonly
used for describing the strength of the association dis-
played in a cross-classification table with r ordered row
categories and c ordered column categories. Let pij be the
probability that an observation falls in the cell in row i
and column i of the table,

m = min (r, c),c r
pi. = E pij, P.j pij,j=l i=lk-1 k-1
Fk. = Epi + pk./2 , F.k p.j + p.k/2i=i i=1r c

81= E ip i., A2 = E ,?p.ji=i j=i
r c

PC = 2 E pij( E E pij)
i=1 j=l i'>i j'>j
r c

Pd = 2 E E pi;( E E pij)
i=l j=i i'>i j'<jr c r c

t= E2 pi.2 + p p.j2 - E pij2i=l j=l i=1 j=i
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50 Journal of the American Statistical Association, March 1976
Then, these ordinal measures of association may be de-
fined as follows:

-Y = (P, - Pd)/(1 - Pt)r c
Tb = (Pc - Pd)/((l - Pi .2)(1 - EpJ))i=1 j=1
Tc = (Pc - Pd)/[(m -1)/M],

r c
R = Z Z (i-l)(j- 12)Pij/

i=1 j=1 r c
Pb =EZ (Fi-1)2Pi.) (( (F - _ )2p.j))il jj=l

r c
pb = Fi. - .5( (F. j .5)(pij)r c

((E (Fi. = .5)12p.) ( E (F j--.5)2p j)) 2i=1 j=1
r c

PC = 1- 6m2 E E pij(Fi. -F.j)21(Tm2- 1).
i=l j-1

The three measures based on the proportions of con-
cordant and discordant pairs of observations (P. and Pd)
are extensions to cross-classification tables of Kendall's
Tra, which is the difference between these proportions for a
continuous bivariate distribution. The proportion of pairs
of observations that are tied on at least one of the two
rankings Pt = 1 - (Pc + Pd) > 0 when the data are
grouped, and Tra uncorrected deflates in value, seriously
so when Pt is large. For example, Tra = .333 = - in
a normal distribution with p = .5; if each marginal dis-
tribution is split at the median, however, the resulting
2 X 2 table has P. = .222 and Pd = .056, so that
ra = .166; if each marginal distribution is split at the
tenth percentile, then P. = .055 and Pd = .009, so that
Ta= .046. In the remainder of this article, Tra denotes
pc- Pd for the underlying normal distribution.

R is the Pearson product moment correlation using
integer row and column scores (see [8]) and Pb and Pc are
two extensions of Spearman's rank order correlation co-
efficient PS to cross-classification tables (see [4, p. 38] and
[12]). Notice that Pb iS the Pearson correlation between
the ranks of the two variables using average ranks for
the category scores, and thus is the same as R (which
treats the row and column numbers as ranks) when, for
each variable, the difference between any two adjacent
average ranks is the same. rC and Pc were proposed by
Stuart as measures of association which have a maximum
absolute value of one for a table of any size, unlike Tb and
Pb, which can only attain an absolute value of one when
r = c.

The table sizes most extensively investigated were
2 X 2,2 X 3,2 X 4,2 X 5,2 X 10,3 X 3,3 X 4,3 X 5,
3 X10, 4 X>4, 4 X5, 4 X 10, 5 X>5, 5 X 10, and
10 X 10. It was unnecessary to consider tables of size
r > c, since each measure considered is symmetric in this
sense. The row and column categorizations reported in

this article were obtained by taking those permutations
of probabilities in the following distributions which yield
different values for at least one of the six measures.

Categories Marginal Probabilities

2 (.5, .5), (.4, .6), (.3, .7), (.2, .8), (.1, .9)
3 (.333, .333, .333), (.1, .3, .6), (.25, .25, .50)
4 (.25, .25, .25, .25), (.1, .1, .4, .4)
5 .2 each category

10 .1 each category

For example, since each measure has the same value
for the 2 X 3 table with marginal distributions (.4, .6)
and (.1, .6, .3) as for the table with marginal distributions
(.6, .4) and (.3, .6, .1), one of these was omitted. As a
result, 226 distinct grids were considered for each value
of p in the underlying normal distribution (e.g., 25 2 X 2
grids, 46 2 X 3 grids, etc.).2

3. STABILITY OF THE MEASURES

In this section we shall observe that as a finer grid is
placed on a continuous bivariate distribution, Tb, T., and
-y converge to Tra whereas R, Pb, and PC converge to ps. We
shall consider an ordinal measure of association for a
cross-classification table to be stable if, for varied grids,
it tends to be close to this limiting value that would be
obtained for ordered measurements without ties. When
p = .2, .5, and .8, the values of Tra are .128, .333, and .590
and the values of Ps are .191, .483, and .786.

For 2 X 2 tables, Tb = Pb = R = (P11P22- P12P21)/
(p1.p2.p.1p.2)`. This quantity is often denoted by 0 (see
[1, pp. 295-301]), and also equals the square root of the
measure r introduced in [3] for nominal variables. Table
1 illustrates the severe dependence on grid of this measure
and of -y, Tc, and Pc for the 2 X 2 table size.

When both sets of marginal distributions are dichoto-
mized at the median, Pii = 4 + sin-' (p)/2r, and thus,
Tb = Tc = Pb = PC = R, and these all equal Ta for the
underlying normal distribution. For the grids presented
in Table 1, Pt increases as (.5 - pi.) increases, Tb(Pb, R)
and Tc tend to decrease relative to Tra, whereas -y increases
in value above Tra; Pc increases sharply when p = .2 and
p = .5 and when the marginal distributions are identical
when p = .8, and tends to be far from p,. Tb iS consistently
better than r,, as would be expected, due to the presence
in the denominator of Tb of a term related to the two
marginal distributions. Certainly, though, none of the six
measures would be judged to be very stable here as Pt
increases.

Table 2 shows the values of the measures of association
for various table sizes with marginal row probabilities all
equal to 1/r and marginal column probabilities all equal
to 1/c. Under these constraints, since

r c
Pt = 1/r + 1/c - E E p,j2

i=l j=l

1/min (r, c) < Pt ? 1/r + 1/c -1/rc . (3.1)

2 The probabilities in the grids were obtained from [13].
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Category Choice for Ordinal Measures 51
1. Ordinal Measures of Association for Various 2 x 2 Grids on a Bivariate Normal Distribution

Values of p1. in marginal distribution

p Meas. P.1 =Pi. P.1=.50 P.,= 1 -P,.
.5 .4 .3 .2 .1 .4 .3 .2 .1 .4 .3 .2 .1

.2 y .252 .262 .268 .294 .337 .254 .263 .272 .308 .256 .269 .301 .383Tb .128 .129 .119 .106 .078 .127 .122 .110 .093 .125 .110 .088 .056TC .128 .124 .100 .068 .028 .124 .112 .088 .056 .120 .092 .056 .020Pc .128 .164 .260 .428 .668 .144 .192 .268 .376 .160 .252 .416 .660

.5 y .598 .604 .621 .648 .719 .602 .624 .649 .719 .614 .666 .739 .849Tb .333 .329 .319 .294 .256 .327 .314 .280 .227 .317 .271 .194 .100TC .333 .316 .268 .188 .092 .320 .288 .224 .136 .304 .228 .124 .036Pc .333 .356 .428 .548 .732 .340 .368 .404 .456 .344 .388 .484 .676

.8 y .877 .875 .881 .902 .917 .879 .905 .936 .968 .896 .945 1.00 1.00Tb .590 .583 .571 .562 .500 .572 .533 .450 .320 .533 .400 .250 .111Tc .590 .560 .480 .360 .180 .560 .488 .360 .192 .512 .336 .160 .040Pc .590 .600 .640 .720 .820 .580 .568 .540 .512 .552 .496 .520 .680
NOTE: For 2 x 2 tables, Tb = Pb = R.

If the table size is increased so that r - oo and c - oo
and the sequence of grids placed on the continuous bi-
variate distribution is such that the marginal probabilities
have these constraints, then Pt -O 0, and PC and Pd con-
verge to the corresponding values for that continuous
distribution, and thus, 'Y Ta, Tbr ) Ta, and Tc T ra.
Under these same conditions, clearly Pb = R converges to
the Pearson correlation of the two underlying marginal
distribution functions G,(X) and G2(Y), which is Spear-
man's PS (grade correlation). Also, PC converges to
1 - 6E[G, (X) - G2 (Y)]2, which is easily seen to be ps.
Hence, as r -+ oo and c -* oo with these row and column
marginals, R S-* p, Pb -- ps, and Pc -- ps. In the case of the
bivariate normal density, ra = (2/1r) sin-' (p) and ps
= (6/7r) sin-' (p/2).

Notice that for the grids summarized in Table 2, Tb
seems to be more stable than T0 and -y, both in terms of
the consistency of the values and closeness to Ta. Gamma

becomes especially inflated for small tables. Also, Pb = R
tends to be superior to pC when r ? c in the same two
ways. Notice that pC tends to be grossly deflated when m
is small (e.g., 2 X c tables). When r = c with these
marginals, Tb = TC and Pb = Pc = R.

Table 3 summarizes the behavior of the six ordinal
measures for the 226 tables described in Section 2. Tb
tends to be closest to the associated measure for un-
grouped data, in the sense of having the smallest mean
squared error MSE about that value. Notice that M5SE
increases for each measure as p increases. Another way to
present the behavior of these measures is to describe the
pattern of the values of each measure against Pt. To an
approximation, -y is convex increasing in Pt; Tb and rT are
concave increasing then decreasing functions of Pt; R and

Pb are concave decreasing functions of Pt. To a linear ap-
proximation, the magnitude of the tendency to increase
or decrease is reflected by the slope of the least squares

2. Ordinal Measures of Association for the R x C Grid with pi. = 1 IR and
p. j = 1/C, on a Bivariate Normal Distribution

Grid size r x c
p Meas. 2x2 2x3 2x4 2x5 2x10 3x3 3x4 3x5 4x4 4x5 5x5 5x10 lOxlO
.2 y .252 .234 .225 .211 .206 .211 .201 .211 .194 .190 .185 .170 .157Tb .128 .136 .139 .134 .138 .141 .143 .139 .146 .148 .148 .145 .141Irc .128 .157 .170 .170 .186 .141 .151 .137 .146 .152 .148 .154 .141

Pb .128 .145 .152 .150 .162 .162 .166 .166 .174 .180 .185 .188 .192PC .128 .065 .045 .030 .026 .162 .143 .189 .174 .170 .185 .176 .192
.5 y .598 .559 .537 .517 .487 .527 .507 .487 .478 .467 .450 .419 .391Tb .333 .344 .347 .339 .332 .365 .370 .364 .368 .370 .366 .360 .354TC .%J.333 .398 .424 .429 .446 .365 .392 .399 .368 .382 .366 .381 .354Pb .333 .365 .373 .379 .388 .410 .424 .426 .429 .438 .443 .453 .463PC .333 .305 .293 .289 .286 .410 .408 .403 .429 .432 .443 .444 .463
.8 y .877 .863 .845 .832 .804 .831 .817 .797 .796 .784 .764 .727 .688Tb .590 .598 .590 .582 .565 .627 .635 .626 .641 .643 .643 .640 .634TC .590 .691 .722 .736 .758 .627 .674 .686 .641 .664 .643 .677 .634Pb .590 .635 .646 .650 .660 .686 .707 .709 .726 .737 .742 .751 .767

Pc .590 .598 .597 .596 .598 .686 .699 .697 .726 .734 .742 .748 .767
NOTE: For these grids, Pb = R; when r = c, Tb = T., and Pb= pc = R.
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52 Journal of the American Statistical Association, March 1976
3. Summary of Measure Values and Relationship to

Independent Variable Pt, for 226 Grids Placed
on a Bivariate Normal Distribution

Measure
Statistic p )' Tb Tc R Pb Pc

Mean .2 .239 .128 .125 .142 .141 .212
.5 .573 .321 .302 .351 .351 .405
.8 .869 .538 .506 .578 .582 .620

Standard deviation .2 .033 .018 .031 .025 .025 .094
.5 .068 .047 .078 .061 .061 .061
.8 .053 .097 .142 .116 .116 .076

(MSE)* about under- .2 .116 .018 .032 .056 .056 .096
lying measure .5 .249 .049 .084 .145 .145 .098

.8 .284 .110 .165 .238 .235 .182
Slope of l.s. line with .2 .166 -.004 -.018 -.077 -.077 -.045

intercept equal to .5 .364 -.029 -.065 -.207 -.207 -.110
underlying measure .8 .432 -.106 -.165 -.346 -.341 -.267

line, which is constrained to equal the measure for un-
grouped data when Pt = 0. The figure contrasts the
values for -y and for Tb relative to the Pt values, for the
underlying rT = .333 when p = .5. This inflationary be-
havior of y with respect to collapsings of tables has been
noted by many researchers.3

Gamma and Tau Ba

MEASURE
.00

0.90
Gamma

*Tau b-

0.800.70 A0,60 , C
0.50

0.400.30 V i rt e
0.20

0.0 0G 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 IO.
PROPORTION OF TIED PAIRS

a For 226 grids on a normal distribution with p = .5.

We shall not give a more detailed account of which
types of changes in the marginal distributions have the
greatest impact on these measures, since this is discussed
to some extent by Blalock [2]. His predictions concerning
the direction and magnitude of changes in these measures
as adjacent categories are combined, are consistent
with the results we observed for the bivariate normal
distribution.

a For example, Reynolds [10] has concluded that partial measures of association
based on y are unsatisfactory, due to this tendency to overstate the true relation-
ship. Quade [9] shows that an explanation of these higher values is the fact that
,y treats P,/ (Pc + Pd) of the tied pairs as concordant and Pdl (P, + Pd) as dis-
cordant. Ordinarily, one would not expect a pair of observations from a subpopula-
tion in which at least one of the variables is restricted in range to exhibit as strong

an association as a pair of observations picked at random from the entire population.

Another ordinal measure occasionally used for cross-
classification tables is Pa (see [4, p. 38]), which is equal to

Pb( - = pi.3) (1- = p.j3)) Since Pb itself typi-
cally underestimates P8 for the underlying normal distri-
bution, Pa would be consistently poorer yet, especially
when Pt is large.

If it is necessary to recommend the use of one of these
ordinal measures, my choice would be Tb. It tends to be
closer to Ta for the underlying continuous distribution (at
least in the normal case) than y and rT, and closer to Ta
than R, Pb, and pc are to P8. In fact, when Pt is large, R,

Pb, and p, tend to be better approximations for Tra than
for P. Tb -Ta I < lTa for nearly all of the grids con-
sidered here for which Pt < .75. When Pt > .85 for a
table of any size, one should keep in mind that Tb could
seriously underestimate Ta, although probably not by as
much as -y overestimates it.

Although Tb does not have as simple an interpretation
as -y (the difference in the proportions of concordant and
discordant pairs of untied observations), it is meaningful
when considered as an approximation for the difference
between these two proportions in an underlying con-
tinuous distribution, and it can be shown to equal the
geometric mean of two useful asymmetric gamma-type
measures (see [11]). In addition, Tb2 has been given
proportional reduction in error interpretations which
parallel the one for the square of the Pearson correlation
coefficient (see [7, 14]). In fact, Tb is a natural analog of
the Pearson correlation coefficient in a linear model for
pairs of observations measured on an ordinal scale, and
can be extended naturally to multivariate settings (see,
e.g., [7 or 4, Ch. 2 and Ch. 8]).

The criterion of closeness to a corresponding ordinal
measure for ungrouped data arises naturally from the as-
sumption of ordinal level measurement. If it is reasonable
to assume that there is an underlying higher level of
measurement with the bivariate relationship represented
by the normal model, one might instead wish to approxi-
mate the correlation p and consider closeness to it as the
criterion of goodness. Since Tb tends to be closer to Ta than
do Tc or y, inversion of the formula Ta = (2/ir) sin-' (p)
and substitution of Tb for Ta (yielding p . sin (7rTb/2))
would usually result in a better approximation for p than
the corresponding substitution with Tr or -y. Since

ap/ap. = (a/p84) [2 sin (rP8/6)]
> (3) (/araE)[sin (lrTa/2)] = (2) (3P/1Ta) (3.2)

whenever P. < 3Ta, this would also produce a better ap-
proximation than inverting P. = (6/7r) sin-' (p/2) and
substituting P8' equal R, Pb, or Pc for P. at least when
|Tb -Ta I < 23 1 p - p, I and max (p,', p,) < 3 min (Tb, Ta)
These inequalities hold for P8' equal R, Pb, and pc for most
of the grids considered of size 3 X 5 or smaller. Of
course, interval level categorical measures (such as the
tetrachoric correlation or an analog of R allowing other
row and column scores) would also be considered if the
observed measurements were themselves of higher level,
although easily interpretable ordinal measures such as Ta
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Category Choice for Ordinal Measures 53
are even then descriptively very useful for nonnormal
relationships.

4. EFFICIENCIES FOR CROSS-CLASSIFICATION TABLES

For a given grid, the random sample version of each
measure is asymptotically normally distributed about the
population value with variance depending on the grid and
underlying distribution and inversely proportional to
sample size. Proctor compared the sample size required
for each of a collection of ordinal measures to attain equal
power in rejecting the null hypothesis of independence of
row and column categories for some tables based pri-
marily on an underlying normal distribution with p = .8
and a model for measurement error. In comparing y, Tb,
r,, and R, he concluded that

Generally speaking, under certain conditions one measure will
be best while under other conditions another will be .... While
variations in the error process and in the underlying pattern of
association will lead the relative efficiencies to change a bit, the
four measures of association are all quite similar [8, p. 378].

The introduction of measurement error had some effect
in improving the efficiency of an ordinal measure such as
y relative to R, which is based on equal intervals between
category scores.

Naturally, the efficiency of each ordinal measure de-
pends on the grid. We investigated the nature of the
change in the asymptotic sampling distribution of tb (the
random sample version of rb), using the grids and under-
lying normal distributions of Section 3. The asymptotic
variance4 of tb is o-2/n (see [8]), where

O.2 _ (4/A1A2) I (Pc - 2Pcd + Pdd)

(Pc - Pd)2(1/Al + 1/A2)2/4
r c

+ (Pc -Pd) E E Pi 2 Pi'j' + pi iZ
i==l j=l i' >i j' >j ir^<i j <j

- Pirj' - Ef E pir)(pi./Al + P.j/zA2)i'>i j'C:j i'<i j'>,
r c

+ (Pc - Pd)2 E E pii(pi./A1 + p.j/A2)2/4J , (4.1)
i=l i=l

and

r c
PCC E E ii(E E pi.jr + E E 2

*=l j21 il>i jl>j il<i jl<j
r cPdd E pij( pi,j + E E j,) 2

iljl i >i j,<j il<i jr>j
7 c

Pcd = E E pij(A E E pi'j + E2 F2 p*rj)i=l j=l il>i jl>j ir<* jl<j
* E pi'j' + E E piu)il>i j <j il<i j>jr cA 1p,=2*=1 j

4 The formula as presented by Proctor [8] is printed incorrectly (part of it is
missing), but it does not seem to be presented anywhere else in the literature. A
derivation is available from this author.

The sample size needed to attain a fixed power at a
fixed significance level for the null hypothesis of no
association (Tb = 0) is then approximately

n = c-'I/rb' , (4.2)
where c is a constant related to these levels.

We compared this sample size to the standard of the
sample size needed for the same test based on ungrouped
measurements from a normal population. Then the
asymptotic variance of ta (the sample version of Ta = Tb)
in this continuous case is 0.oo/n (Kendall [4, p. 126]),
where

0o- 4 E [(2/ir) sin-' (p/2)]2} . (4.3)
The sample size required here to achieve the same

power at the same significance level as previously is
approximately

no = c0a2/Ta2 . (4.4)
The asymptotic efficiency of the test based on grouped
data relative to the test based on ungrouped data can
then be defined by the ratio

RE = no/n = oo2Tb2/2.2Ta2 (4.5)

A comparison of RE values for various grids gives insight
into one of the types of information loss that occurs in
grouping data or collapsing categories.

Table 4 presents the relative efficiencies for the 25
2 X 2 tables, when p = .5. Even for the best 2 X 2 table
(when both marginal distributions are split at the
median), the grouped data procedure requires 1/.380
= 2.63 times as many observations as the ungrouped data
procedure. The situation deteriorates as the cutting point
for each marginal distribution is drawn away from the
median; when pi. = p., = .10, for example, RE = .095.

Results similar to those in Table 4 occur when p = .2
and p = .8, with the test for grouped data performing
poorest relative to the test for ungrouped data when

4. Asymptotic Efficiencies for a Test of No Association
(Tb = O) in a 2 x 2 Table Relative to the Test
for Ungrouped Data, Based on a Normal

Distribution with p =.5

p., above diagonal
Pi. .50 .40 .30 .20 .10
.50 .380 .372 .359 .305 .234
.40 .376 .360 .334 .285 .208
.30 .356 .360 .301 .247 .171
.20 .322 .334 . ;29 .202 .134
.10 .226 .297 .231 .182 .095

.60 .70 .80 .90
p., below diagonal
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p = .8 and best when p = .2. For example, when p = .2,
RE = .434 for the 2 X 2 table with pi. = p., = .50, and
RE = .106 for the 2 X 2 table with Pi. = p., = .10;
when p = .8, the corresponding values are .263 and .059.
For all values of p, as r and c increase in such a way that
Pt decreases toward zero, RE increases toward one. For
example, when p = .5 with pi. = 1/r and p.j = 1/c, the
test for the 4 X 4 table is about twice as efficient as the
test for the 2 X 2 table (.778 vs. .380), and RE = .926 for
the 10 X 10 table.

A more thorough inspection of the 226 grids for each
value of p reveals that the RE values are linearly related
to the 1 - Pt values to a good approximation (see Table
5). For example, the Pearson correlation between RE and
1 - Pt equals .956 when p = .5. Now to the extent that
the number of untied pairs of observations is a measure of
the available information for a test of no association, one
might expect that no observations (which yield
no(no - 1)/2 pairs) in the test for ungrouped data are
equivalent to n observations in the test for grouped data,
where

no(no - 1)/2 . (1 - P)n(n - 1)/2

This implies that RE should be on the order of (1 - Pt) 1.
Scatter diagrams between 1 - Pt and RE for rb display
slight concave deviations from linearity when p = .2 and
p = .5, and in fact, the root mean square error of RE
about (1 - Pt)' is not much larger than about the least
squares line for these cases.

5. Relationship Between RE and 1 - Pt for
Tb, Calculated for 226 Grids Placed on
a Bivariate Normal Distribution with

Correlation p

Pearson (MSE)f of RE about
P rRE,1-P Least squares line 1. s. line (1 - Pd4

.2 .973 .15 + 1.26(1 - Pt) .042 .060

.5 .956 .13 + 1.16(1 - Pt) .050 .081

.8 .938 -.03 + 1.31 (1 - Pt) .070 .179

Since -y and rT are similar in structure to Tb and approxi-
mately equal in efficiency according to Proctor [8], the
results in this section can also be interpreted as an indica-
tion of the dependence of the efficiency for these measures
on the grid. In particular, one could conjecture that
1-(1 - Pt)' is a crude but simple measutre for approxi-
mating the relative loss of efficiency (1 - RE) due to
grouping for such ordinal measures in testing the hy-
pothesis of no association, at least when the observations
are taken from a bivariate normal distribution with small
to moderate correlation.

5. CONCLUSIONS

Many criteria have been applied by social scientists
and statisticans to evaluate the various measures of
association, including the following.

i. meaningful operational interpretation (such as proportional
reduction in error),

ii. simplicity of the measure and its sampling distribution,
iii. sensitivity to form of distribution,
iv. efficiency in rejecting the null hypothesis of Ino association.

A criterion that unfortunately seems to be given greater
importance by many practitioners is size of the measure-
the one with the largest absolute value being chosen be-
cause it makes the results seem more striking.

This article emphasizes that in many situations an im-
portant criterion is that a measure computed for a cross-
classification table should be similar in value to a corre-
sponding measure that would be computed if the data
were measured more precisely. Thus, the measure should
be reasonably stable as various grids are placed on the
underlying distribution. According to this criterion, per-
haps the most commonly used ordinal measure (gamma)
fares very poorly for a wide range of tables based on a
bivariate normal distribution. Although tables can be
artificially constructed so that any one of these measures
appears better than the others, and the results in this
article relate strictly only to those grids and those three
normal distributions considered, these results are con-
sistent with other more limited investigations of this
behavior (see [2, 9, 10]). A natural extension of this study
would be the consideration of grouping effects for a less
structured underlying distribution, perhaps one of the
families listed in [6].

In summary, Kendall's rb seems more stable overall
than the others in terms of approximating the corre-
sponding measure for ungrouped data. Also, whenever
possible, care should be exercised in choosing a grid for a
table. When the number of rows or columns is increased
or the marginal proportions are selected to minimize the
proportion of tied pairs of observations, the efficiency of a
hypothesis test of no association tends to improve and the
value of the measure tends to be closer to the value for
the underlying continuous distribution.

[Received December 1974. Revised June 1975.]
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