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FALLACIES, STATISTICAL

The rapid growth in the development and
application of statistical methodology in this
century has been accompanied by a corre-
sponding increase in fallacious statistical
reasoning and misuses of statistics. The po-
tential for statistical fallacies has been en-
hanced by the development of statistical
computer packages (creating greater access
to complex procedures) and the increasing
need for statistical analyses in government
agencies, industries, and diverse academic
disciplines. The fallacies included in this ar-
ticle were chosen because of their frequent
occurrence and because they merit mention
in introductory courses in statistical meth-
ods. We have not attempted to provide an
exhaustive catalog. An indexing of types of
fallacies and a discussion of a greater variety
of them are given by Good [12,13]. Other
sources with several good examples of statis-
tical fallacies and misuses of statistics in-
clude Campbell [8], Cohen [10], Freedman et
al. [11], Huff [14, 15], Moran [18], and Wallis
and Roberts [23].

We first describe three major types of
errors, each of which seems to be responsible
for a variety of fallacious arguments, and
then we describe briefly several other falla-
cies which occur in other settings.

FAILURE TO INCLUDE
RELEVANT COVARIATES

Many bivariate associations disappear or di-
minish when appropriate control variables
are introduced. Failure to recognize this fact
often leads to wrong conclusions about rela-
tionships between variables.

For categorical data*, it is misleading to
restrict attention to a two-dimensional con-
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tingency table when that table is more prop-
erly viewed as a marginal distribution of a
higher-dimensional array. Bickel et al. [3]
illustrate this in their discussion of data con-
cerning admission into graduate school at
Berkeley. Investigation of the 2 X 2 table of
admissions decision (admit, do not admit)
by sex revealed that relatively fewer women
than men were admitted into the graduate
school. When admissions were considered
separately by academic department, how-
ever, the apparent bias against women dis-

_appeared. The explanation for the shift in

results is that the proportion of women ap-
plicants tended to be highest in disciplines
that were most competitive for admissions in
having the highest rejection rates. Bishop et
al. [4, pp. 41-42] present a similar example.
An apparent association between amount of
prenatal care and infant survival disappears
when the data are considered separately for
each clinic participating in the study. A
pooling of the data from the clinics ignores
the dependence of both infant survival and
amount of prenatal care on clinic.

The fact that partial associations may be
very different in nature from unconditional
bivariate associations has been expressed
through conditional probabilities as Simp-
son’s paradox (see Simpson [20] and Blyth
[5,7]). This paradox states that even if
Pr(4 | BC) > Pr(4 | BC) and Pr(4|BC*)
> Pr(A4 | BC¢), it is possible that Pr(4 | B)
< Pr(4| B°). In the context of a 2 X2 X2
cross-classification of three dichotomous
variables X, Y, and Z, Simpson’s paradox
implies that it is possible to have a positive
partial association between X and Y at each
level of Z, yet a negative unconditional asso-
ciation between X and Y, due to the nature
of the association of Z with both X and Y.
For a numerical example, see Blyth [5, p.
264]. Bishop et al. [4, p. 39] give conditions
under which partial associations are the
same as unconditional associations, so that
multidimensional contingency tables* can
be meaningfully collapsed.

The same remarks regarding covariates
apply to quantitative variables. For example,
the mean salary for men may exceed the



mean salary for women for the faculty at a
particular university. When factors such as
department, rank, and number of years in
rank are controlled, however, it is possible
that the difference in the means may change
appreciably. In a related example, Cochran
[9] discusses how failure to use age standard-
ization in comparing two populations can
lead to fallacious conclusions.

FAILURE TO ADJUST THE ERROR RATE
FOR MULTIPLE INFERENCES

The importance of using multiple compari-
son procedures for making pairwise infer-
ences about several means is emphasized in
many statistical methods textbooks (e.g.,
Snedecor and Cochran [21, p. 272]; see also
MULTIPLE COMPARISONS). The authors of
these books note that the use of a standard
error rate (such as 0.05) for each of a large
number of inferences may result in an un-
acceptably large probability of at least one
error occuring (e.g., at least one type I error
or at least one confidence interval not con-
taining the parameter it is designed to en-
close). Fallacious arguments can easily occur
in many other contexts from using a single-
inference error rate when several inferences
have actually been conducted.

This type of error frequently occurs when
the need for a multiple-inference approach is
not obvious. For example, a researcher ana-
lyzing a large data set on several variables
may screen it, using computer packages to
compute correlations, chi-squares, analyses
of variance, regression analyses, etc., on vari-
ous combinations of the variables. In some
cases several competing tests may be con-
ducted to test the same hypothesis. The re-
searcher may select from the computer print-
out everything achieving significance at the
0.05 level and report those results as if the
corresponding hypotheses and analyses were
the only ones considered.

A more subtle failure to adjust for multi-
plicity of inferences results from the ten-
dency of research journals in many fields to
publish only those studies that obtain statis-
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tical significance at a certain level. If a large
number of researchers independently test the
same true null hypothesis, there is a good
chance that a type I error will be published.
Researchers who do not obtain significant
results may be discouraged from submitting
their findings or feel pressured to find ways
of achieving significance (e.g., other tests,
more data). Walster and Cleary [24] give a
good discussion of this problem. They also
emphasize the importance of replication of
previously published research so that type I
errors are exposed.

Fallacious arguments of a similar nature
can occur from treating the maximum or
minimum of a set of random variables as if
it had the same distribution as an arbitrary
one of the variables. This error occurs when
a researcher selects the two most distant
sample means (out of a collection of several
means) as the most interesting finding of a
survey and compares those means using
standard two-sample tests or confidence in-
tervals. The error also occurs in variable
selection for a regression model when at
each stage, one tests the significance of the
partial effect of X; on Y after having selected
X, because it had the largest such effect out
of some set of variables. Many events that
seem to be very unusual occurrences when
viewed in isolation may seem rather com-
mon when considered in proper context.
Suppose that a coin shows heads in each of
10 tosses. We would probably suspect that
the coin is unbalanced in favor of heads,
since the probability of such a rare event
if the coin were balanced is only (%)1°=
0.00098. However, if we were told that this
coin had had the greatest number of heads
out of 1000 coins that had been tossed 10
times each, we would be less likely to believe
that it was biased (see Wallis and Roberts
[23, p. 116)).

Another misuse that occurs when multiple
inferences are not recognized as such is the
application of fixed sample-size methods af-
ter obtaining each new observation in a se-
quential sampling scheme (see Moran [18§]
and Armitage et al. [1]). The result we pre-
dict may occur if we wait long enough.
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CONFUSION OF CORRELATION WITH
CAUSATION :

Fallacious arguments often result from the
belief that correlation* implies causation*.
The everyday usage of the word “cor-
relation” in the English language probably
contributes to the confusion. The fallacy can
often be shown by illustrating the lack of
partial association when certain control vari-
ables are introduced, as in the sex—graduate
admissions study by Bickel et al. [3]. Yule
and Kendall [26, Chaps. 4, 15, 16] discuss
the problems in detail.

A special case of the correlation—
causation fallacy is the “post hoc” fallacy
that if A4 precedes B, it must be a cause of B.
Campbell [8, p. 172] illustrates the fallacy by
reference to the plane traveler who requests
that the captain not turn on the “fasten seat
belts” sign, since it always seems to result in
a bumpy ride. For other examples of the
post hoc fallacy, see Huff [14, Chap. 8].

Other types of misapplications of correla-
tion coefficients abound. Barnard [2] ex-
plains why “astonishingly high correlations”
need not be especially noteworthy. For ex-
ample, a correlation arbitrarily close to 1
may be produced by a single outlying obser-
vation. Another common error occurs in the
generalization of inferences to a different
sampling unit. For example, “ecological cor-
relations” computed from rates or totals for
units such as counties or states may be very
different in magnitude from correlations ob-
tained using data on individuals. Freedman
et al. [11, pp. 141-142] state that the correla-
tion between average income and average
education computed for nine regions in the
United States is about 0.7, whereas it is
approximately 0.4 when computed for indi-
viduals from census data.

REGRESSION FALLACY

The phenomenon of regression* toward the
mean for the bivariate normal regression*
model was first noticed by Sir Francis Gal-
ton* in his studies of X = father’s height and
Y = son’s height. Based on this phenomenon

he made the fallacious conclusion that the
variability in heights must decrease with
time. A counterexample is given by Good
[13], who notes that a reversal of the labeling
of Y and X would necessarily force the
conclusion that variability in heights is in-
creasing with time. The fact that “highly
unusual” observations tend to be followed
by more regular observations, when not rec-
ognized or not understood, has resulted in
various types of fallacies and superstitions
(e.g., that a professional athlete having an
outstanding first year will have a “soph-
omore jinx”). For further discussion, see
Freedman et al. [11, pp. 158-159].

NEGLECTING ASSUMPTIONS

Misuses of statistical procedures commonly
occur from severe violations of basic as-
sumptions concerning method of sampling,
required sample size (for use of asymptoti-
cally based formulas), measurement scale of
variables, and distribution of variables. For
example, fallacious conclusions could result
from using formulas based on simple ran-
dom sampling for data collected as a cluster
sample, from treating time-series data as an
independent identically distributed se-
quence, from applying the chi-square test*
of independence to a contingency table hav-
ing a small total frequency or having or-
dered rows or columns, and from blindly
applying techniques such as regression, anal-
ysis of variance*, and factor analysis* to
dichotomous variables. A sociology Master’s
thesis is rumored to exist which contains
about 100 applications of the Kolmogorov—
Smirnov* two-sample test, none of which
attains significance at the 0.05 level. The
author apparently applied the standard form
of the test designed for continuous variables
to highly discrete data, for which that test is
highly conservative.

NEGLECTING VARIATION

Fallacies or misleading statements often oc-
cur from a failure to consider variation*.

N
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Examples include reporting a percentage
without listing its base sample size (and
hence its standard error) and attributing im-
portance to a difference between two means
which could be explained by sampling error.

MISINTERPRETATION OF STATISTICAL
TESTS OF HYPOTHESES

The results of statistical tests are often mis-
interpreted due to factors such as confusion
of statistical significance with practical sig-
nificance and acceptance of the null hypoth-
esis without consideration of the power func-
tion. For good discussions, see Kruskal [17,
p. 456] and Kish [16].

FALLACIOUS PROBABILITY REASONING

Many advances in the historical develop-
ment of probability occurred because of fal-
lacious arguments in gambling situations
which led to seemingly contradictory results
in the pocketbook (see Freedman et al. [11,
pp. 223-225], Huff [15, pp. 63-69], and
Todhunter’s [22, Chap. XIII] discussion
about D’Alembert’s fallacies). Among the
most common errors are the following: treat-
ing sample points as equally likely when
they are not; misinterpreting the law of large
numbers, as when arguing that in 1,000,000
flips of a fair coin, the number of heads is
bound to be within a few units of 500,000;
not understanding independent trials or con-
ditional probability, as in the argument that
a sequence of 10 consecutive heads in coin
flipping is almost sure to be followed by a
tail; misuse of the additive law, as in the
argument that for n independent trials with
probability p of success on each, the proba-
bility is np of at least one success. Many
fallacious probabilistic arguments result
from an unawareness of certain paradoxes.
For example, it is tempting to argue that
P(Y > X)>1 and P(Z > Y)>; implies
that P(Z > X) >1. The transitivity paradox
shows that this need not be the case even if
X, Y, and Z are independent (see Blyth [6]).

—
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FALLACIES WITH TIME-SERIES DATA

Failure to recognize the special problems
occurring in the analysis of time-series data
often leads to fallacious conclusions. For
example, strong spurious associations may
result from correlating variables which are
measured over time and have similar trends
(see Huff [14, p. 97]). Errors in statistical
analysis often result from applying formulas
based on independent observations, such as
by using standard regression procedures and
disregarding effects of serially correlated er-
ror terms (see Wonnacott and Wonnacott
[25, pp. 136-147]). Richman and Richman
[19] show how fallacious conclusions con-
cerning changes in the level of heroin addic-
tion result from improper analyses of time-
series data.

IMPROPER BASE

A common statistical error in the news me-
dia is the comparison of frequencies based
on different totals. Examples include the
statement during the Vietnam war that it
was safer to be in the army than driving on
the nation’s highways due to the lower
yearly death-total in the war (rates of death
should be compared, preferably within age

groups).

MAKING AN INFERENCE WITHOUT THE
NECESSARY COMPARISON

This error commonly éppears through the
reporting of only one row of a contingency
table. For example, a criminal rehabilitation
program might be criticized because partici-
pants in it have a recidivism rate of 50%.
Without being given the corresponding rate
for nonparticipants or for other programs,
we would have a difficult time making a
judgment.

BIASED DATA THROUGH MEASUREMENT
ERROR OR INTERVIEWER EFFECT

Wallis and Roberts [23, p. 96] quote a survey
in which the percentage of blacks inter-
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viewed who felt the army to be unfair to
their race was 35% for those people having a
black interviewer and 11% for those hav-
ing a white interviewer (see also Huff [14,

p- 24)).

BIASED DATA DUE TO IMPROPER
SAMPLING FRAME

The average number of children in families
having students in a particular school would
tend to be overestimated by sampling chil-
dren from that school, since a large family is
more likely to be represented in the sample
than a small family.

UNCRITICAL RELIANCE ON COMPUTERS

Among the likely consequences of the devel-
opment of computer-based statistical pack-
ages have been a greater relative frequency
in the use of statistical procedures that are
inappropriate to a problem or which the
researcher fails to understand, errors asso-
ciated with unrecognized multiple inferences
due to searching for significant results, and
the attributation of greater accuracy to the
results than the data warrant (see compuT-
ERS AND STATISTICS).
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(CAUSATION
LOGIC IN STATISTICAL REASONING)

ALAN AGRESTI

FARLIE-GUMBEL-
MORGENSTERN
DISTRIBUTIONS

The Farlie-Gumbel-Morgenstern (FGM)
system of bivariate distributions includes all



