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Investigators examining empirically derived classifications are
often concerned with the replicability of an obtained classification.
However, most available statistics which allow replication com-
parison suffer from various limitations. This paper proposes an
adjustment to one of these statistics, the Rand statistic, which will
allow comparison across different levels for number of clusters
found within a classification. This adjustment permits the user to
compare several different classifications with respect to classifica-
tion agreement, while correcting for the contribution of chance to
any observed agreement.

THE problem of measuring classification agreement has been
encountered by many investigators in classification research. For
example, in research paradigms utilizing cluster analysis techniques,
replication designs are frequently used to establish the reliability of a
cluster solution. In such instances, a measure is needed to compare
the degree of correspondence between a solution and its replication.

The two measures most frequently used by classification re-
searchers are the kappa statistic (Cohen, 1960) and a statistic
proposed by Rand (1971). Both have been applied to describe the
relative number of agreements between two solutions to the same
data set. When used in this manner, the two statistics yield values
which correlate fairly well (Milligan, 1981).
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Moreover, both statistics contain some inherent limitations to
their utility for classification research. The kappa statistic corrects
for chance agreement, a valuable property for this type of applica-
tion. However, use of kappa is limited to those instances where the
number of clusters (k) in the two solutions being compared are
identical. Unfortunately, in applied research there are often no clear
criteria for determining k, and those criteria which have been
proposed will not always yield equivalent values in a replication
design. When faced with this situation, the experimenter can use the
approach advocated by Rand (1971).

Rand’s statistic defines two instances of classification agreement:
first, when two solutions agree that two entities are to be assigned to
the same cluster; and second, when the solutions agree that the two
entities are to be assigned to different clusters. Suppose that in the
population of interest, there are k; clusters in the first classification,
and k, clusters in the second. Let P; be the probability that a
randomly selected individual is classified in cluster i in the first
solution and cluster j in the second solution. Rand’s statistic is
defined to be the probability that a randomly selected pair are
classified in agreement. This probability equals

P, = 33P7 + Z3P(1 — Pix — Py; + Py 1)
1 - 2P, - 3P, +235P; )

Unlike kappa, this statistic makes no correction for chance
agreement. That is, we cannot tell whether a specific value of P; is
“large” or ‘“‘small’’, because its value when individuals are classi-
fied at random (i.e. P; = P;, P ;) is not zero, and depends on P;. and
P.;. This artifact can be a serious disadvantage when the replicabil-
ity of different classifications are being compared. For example, if
there are k; equal sized clusters in the first solution and &, equal
sized clusters in the second, P, = (1/kiky) + (1 — (1/k)(A — (1/ky))
for random classification and P, T 1.0 as k; and &, increase.

Adjusted Statistic

Let P_ represent the probability of chance agreement for a pairing,
as calculated using the marginal distributions. For chance agree-
ment, P; = P;,P,;, and thus:

P, = 22(Pi+P+j)2 + 22Pi+P+J(1 - Py — Py + P P.) 3
= 222Pi+2P+j2 + 1 - 2Pi+2 - EP+j2. (4)
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If we utilize the same correction used with kappa, we obtain the
following relationship:
P, — P,

adjusted agreement Q) = T—F (&)

Hence, the adjusted version of Rand’s statistic equals

_ 233PF - 2CEPHEPLY)
2Pi+2 + 2P+j2 - 2(2Pi+2)(2P+j2).

This statistic equals one for perfect agreement (in which case P, = 1
also), 0 = 0 for chance agreement, and ) < 0 when agreement is
less than expected by chance. Values of () greater than zero
represent the proportion of the maximum possible difference ob-
tained between the probability of agreement and the probability of
chance agreement.

©

Calculating Actual Agreement

Let n; equal the number of entities observed in cell cluster i in the
first solution and cluster j in the second solution, and let n = 22n;.
The total number of possible pairings is equal to the combination (3),
or n(n — 1)/2. We may calculate the number of observed agreements
(N,) and the number of chance agreements (N,) as follows:

N, = 33n? — 12Cn:? — 12Cn ) + n(n — 1)12, @)
N, = CZn;2n,Ain? = 12En,» = 12Cn. ) + n(n — D2, (8)
Th.us, our estimate for adjusted agreement, £}, may be calculated
using

N; — N

-1
=D _
2

Q=

B S3n? — (Eni2En,Hin
12Cn:2) + 12En. ) — Cnis2=n Ain?

If a random sample of people are clustered according to two
procedures, with fixed numbers of clusters k; and k,, then () is
approximately normally distributed around (). We may calculate the
asymptotic variance for { using the delta method (Goodman and
Kruskal, 1972). Let

®
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¢ii = 4(PD(2P,'+2 + 2P+j2 - 2(2P,+22Pu2)) +
P QEP,AEIPS) - (3P, — S3P)

(10)
+ P 2P HEIPP) — (SP % — SZP).
Then, the asymptotic variance of { is oh/n, where
SZPP%; — (SZP®,)
of = EEPAY — C2P)) "

(SPis? + P,/ = AP P )

Let us return to the original Rand (1971) article for an example.
The data which he presented may be expressed in the contingency
table found in Table 1. The number of observed agreements equals

N,=10-9-7+15=09. (12)

Rand’s statistic is equal to this number divided by the number of
possible pairings, which in this case equals 6(5)/2 = 15. Thus, Rand
obtained a value of .60 for his example. However, this figure does
not account for chance agreement. The expected number of agree-
ments due to chance equals

N.=(18X14)/36 —9 -7+ 15=6. (13)

Thus, by chance alone we would expect to obtain a Rand value of
6/15 = .40. Incorporating the adjustment for chance, we obtain

Q = (9-6)/(15-6) = .333, (14)

which represents the corrected agreement between the classifica-

TABLE 1
Classification Comparison Example from Rand (1971)
Classification One Classification Two
Entity Cluster Entity Cluster
A 1 A 1
B 1 B 1
C 1 C 2
D 2 D 2
E 2 E 2
F 2 F 3
Cluster for Classification Two
1 2 3 Total
Cluster For 2 1 0

1
Total 2 3 1 6

1IN =

Classification One
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tions. In other words, the difference between the number of ob-
served agreements and chance agreements is 33.3% of the maximum
possible difference. A calculation of the variance yields:

n = .4444/6 = .074. (15)

The comparison of classifications of the same data set is an
important problem for cluster analysis users. Rand’s statistic has a
basic appeal to cluster analysis researchers, since it was derived
specifically to address the problem of evaluating cluster analysis
methods. Hence, this measure has been widely used in Monte Carlo
studies of clustering efficiency. In such studies, experimenters may
hold constant the value for k, and as such this will not be a
complicating factor. However, in an applied study where k may be
expected to be quite variable, the Rand statistic loses its value as a
comparative metric, since it is highly dependent upon chance
agreement as a function of k. The aim of this paper has been to
derive an adjustment by which the Rand statistic may be used as an
informative comparison measure.
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