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ABSTRACT

A generalization of Kendall's tau is formulated for describing
the association between a dependent variable and a collection of
independent variables, The coefficient may be defined in terms 'of
the proportional reduction in prediction errors obtained by pre-
dicting the ordering of pairs of observations on the dependent var-
iable based on orderings of the pairs on the independent variables.
The coefficient is formulated both for continuous and discrete var-
iables. Approximate large-sample distributions are considered for
both cases. Some of the properties of this coefficient are dis-
cussed and compared with those of other multiple measures of asso-

ciation based on ranks,

1. INTRODUCTION

We propose a cefficient of multiple rank association a<.x
= a&.xAHv xﬁwv for describing the association between a -
5w

dependent variable Y and a set of independent variables
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1342 AGRESTI

caﬁv.xﬁmv (k)

. ). The coefficient is a generalization of

Kendall's tau for two variables, in that it utilizes the orderings
for pairs of observations on each of the variables. It may be
given a proportional reduction in error interpretation based on
nﬁmﬁﬁnnwnm, pairwise om.&mﬂwam om Y :mwsm pairwise orderings on
B e

In Section 2, we formulate the coefficient for continuous var-
iables. In Section 3, we consider the case in which there are some
tied ranks, or the variables are ordinal categorical in nature.
the measure is then defined in terms of all pairs of observations
intied with respect to Y and it is seen to have similar properties
18 in the full-rank (no ties) case. In Section 4, the calculation
f the asymptotic sampling distribution of the random sample
is compared

Tyex

rersion n.m.x om..ﬁ%-M is discussed. In Section 5,
:0 other Bc.HnHva rank coefficients which have been proposed.

2. A MULTIPLE TAU COEFFICIENT

The multiple tau coefficiemt which we define in this section
is based on a generalization of the proportional reduction in error

interpretation for Kendall's tam mmmncnmm by T,,). For this bivar-

iate case, let P(C) and P(D) regresent the mﬂowwﬁnwonw of concor-
fant and discordant pairs of observations, and suppose that there
ire no tied pairs. If one were to predict at random for each pair
if observations whether that pair was concordant or discordant
H.e., 1if x..w > NA for the pair (X -,mu.v and (X k‘uv, then predict

w VMM with probability % and predict &u < &H with probability %),
‘he expected proportion of prediction errors would be (P(C)+P(D))/2
*J}. If, on the other hand, ome knows that Tyx 0 S.ﬁmA 0) and
wedicts concordance (discordamce) for every pair, the proportion
f errors would be P(D) (P(C)). This results in a proportional

-eduction in error of P(C) -P(@) = Tyx (P(D) -P(C) = _aﬁn_v.

w1 Definition of ﬁm.H

—

Now, suppose that we wish to describe the association between

¢ dependent variable Y and a collection of independent variables
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X= Cm:v.....xﬁnvv. The variables are required only to be at least
ordinal in scale, since just the rankings are utilized. We next
construct a coefficient which has predictions of the ordering on Y
based on the orderings on the «x?v. v=1,...,k} for each pair of
observations. We assume that the proportion of pairs tied on any
of the variables is zero.

Let QH.xMCu... .NHCOV and Qulx.:v.....xmwvv denote the mea-

3
| surements or rankings for a pair (i,j) selected at random. Let

S 0 = st - - i1, etk o 2D

where S is the sign function

S[ul = -1, u<o0
0, u=0
1, u>0.

Also, denote Amwﬁ.uv....‘mw@.uvv by S(i,j), and let

P(S) = P(8),...58) = Pr{(4,3) : 8(1,3) = 8}. (2.2)
For example, P(l,...,1) is the probability that a pair of obser-
vations is simultaneously concordant between Y and each x?v. v=1,
2,...,k. If S(i,j)=§ for the pair (i,3), then that pair is called
v
Mlxﬁ ) concordant legv discordant) if a¢n~ aculc. Let

uxu:ﬁ.....mwv"?uﬁ. v=1,...,k}. (2.3)

For each element § of Dis P(8) +P(-3) is the probability that a
pair has acertain fixed ordering on the Cm?:, namely

(u) _ (W)

(w)

X -X concordant if § § =1
uw

28 2 meessdane 4z @&wsu-r l<us<wsk.
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Consider the rule which specifies that for each set of pairs

Acvd‘,

with particular fixed orderimgs on the {X one predicts

ordering on Y such that

s(,3) = if P(§) >P(-95)
if P(S) < P(-9) (2.4)

either if P(§) = wmlmv..

o o

According to this prediction rule, the probability that a pair is
in that set and has ordering on Y incorrectly predicted is .

win(P(8),P(~§)). On the other hand, this probability for a random
(V) . %)

prediction rule in which Y-X concordance or Y- X discordance

is predicted with probability % for each is (P(8) +P(-8))/2. When
Acvw

predictions are considered over all such sets with fixed {X

~orderings, the proportional reduction in error is

I (P8 +P(-§))/2 - £ min(P(8),P(-8))
D — = uw
Tyex 7 Iy B +P(=8))/2
: k

(2.5)
=55 [P@-PE0|.
k 3

The factor of % occurs here and in some subsequent formulas due to
the fact that both _w@.v -P(~8) _ and _mﬂllm.v |mAmv_ occur in these
sums when UW is used as the index set.

Notice that T may be expressed as

Y-X
a&.Mu xmur. Qa@;.fl@v_imv_. (2.6)
where
() = (B(&) -P(=8))/(B(S) +P(-9)). (2.7)
Hence, Tyex is a weighted average of absolute values of Kendall's

tau-type measures computed within each set of fixed orderings on

the ﬁxncvw. Since the joint orderings of the ﬁxAcvw are fixed for
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those pairs with §=¢ or §= =%, 7{%)! 1s in fact the absolute
value of Kendall's tau between 7 and each of the x«\v Cum Ty we sk

for that set of pairs. Alternati , let
. = A\M P(35) > P(-%) s Y =l “mAMV n\malmbv . (2.8)

Then, we could rewrite the roefficient as

Tyog ™ By~B = L (#48) ~P(~8)}, . (2.9)

et g

where mznumczmAmv =Pr(s(i,j) in mxv and mauumnﬁmxw.uv in Uav for a
randomly selected pair (i,j). We shall refer to the pairs indexed:

by Ux as those with majority ordering on Y with respect to mxAcvw,

and by wa as those with minority ordering on Y with respect to

() ;
{x }. Thus aw.x is also similar in structure to Kendall's tau
in that it may vmlwdanVﬂmnma as the difference in the probabil-

ities of two types of pairs of observations.

2.2 Properties and Example

general, it can be shown that Hm.xnwv.....xﬁwvv Tyex(1)

We shall next considers some of the properties of Ty.x It is

clear from its definition that T is invariant under owmmﬂlnuml

Y-X
serving transformationson any of the variables. In the simple

bivariate case,

Tyx = [P -PED] = [P -2 = |1, ]. (2.10)

%xﬁ

In the trivariate case,

]

Tyex(D) x(2) [P(1,1) =P(-1,-1)| + |P(1,-1) = P(~1,1)]

]

max{|(P(1,1) +P(1,-1)) = (P(~1,1) +P(-1,-1))],
[(P(1,1) +P(-1,1)) - (P(1,-1) +P(~1,-1)) |}

1]

amx:amxﬁi.mawxﬁv:. (2.11)

The behavior of da.& becomes less trivial when k exceeds two,
as the simultaneous vnmawmnw<m power available from Axﬁﬂv.....zArqv
may exceed that of the one most strongly associated with Y. In

c(k+1)

30 e ey
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Equality occurs if and only if for each choice of Amw.....awv,

mwnmmw

mﬂmuw....mwwwv > wﬁlmw,....lmw.lyv
and :
wﬁmmu....mfwiwv > mﬁlmw...,.law.ﬁvu
or
mm&pw...eﬁﬁwwv £ mﬁlmw.....law.nwv
and /
waa»w....QWWlwv < wAlwww...,law.Hv.

In particular if _HNA&Vwa*wv~u 1 for some 2 (1<2<k), then
equality results. ;

As an example of the romputation of Tyex> W€ consider some
data adapted from Kendall {1970, p. 121). In the Table, Kendall
identified the variables Y, xAHv. and NANV with intelligence,
mathematical ability, and musical ability, respectively. The
Kendall's nwﬂuwmwcmm are Too(1) = awxﬁmvu .644,  Now suppose that

a variable X is added to the system, with rankings as also
given in the Table, for which awMAuuu.n.Hum. The 45 pairs of

observations may be partitioned into the following sets:

TABLE

Rankings for Numerical Example of HM.N
Individual y  xD x@ x
A 1 1 4 1
B 2 4 1 8
c 3 ‘.5 3 7
D ) 4 6 5 6
; E 5 2 2 9
F 6 7 6 5
G 7 3 7 10
'H 8 9 10 3
b 4 9 8 9 2
B | 10 10 8 4

MULTIPLE ASSOCIATION BASED ON RANKS 1347
§ Pairs wiith S(i,4) = 8
(lyE1) (&4,B), (A,F), (&,6), (A0, (4,1}, (A, J), (E,0)
Al_.ulu.qiu.v AE»HV
(1,1,-1) (8,C), (B,D), (B,F), (B,H), (B,I), (B,J), (c,b),

(c,F), (C,m, (c,1), (c,J), (D,F),. (D,H), (D,I),
(0,0), (E,F), (E,H), (E,1), (E,J), (F,H), (F,I),
(F,I), (G,H), (G,I), (G,J)

(=1;=1,1} (C,E), (D,E)

(1,-1,1) (A,B), (A,C), (a,E), (H,I), (I,J)
(-1,1,-1)  Nonme

(1,-1,-1) None

(-1,1,1) (8,E), (8,6), (C,6), (D,G), (F,G)

For these pairs, wxmumﬁw.w.wv+.WA~.H.|~V+.wAH.|~.Hv¢.mA|H,H.HV

= 42/45 = -933 and wE"u.omw» so that a&.x“u.mmw. That is, 93.3%
of the Y pair orderings may be vwmawnnmalmowﬁmoﬁﬁw. which is an
86.7% reduction in error from the 50% correct expected for random

predictions.

3. A MULTIPLE TAU COEFFICIENT FOR ORDINAL CATEGORICAL DATA

Tied pairs of observations would typically occur for most
systems of variables in the social and behavioral sciences, where
variables are commonly measured on ordinal categorical scales. If
only a small proportion of pairs of observations are tied on at
least one of the variables, one could continue to use a<.x as
defined in the previous section (tied pairs being ignored in the
calculation). However, this resultsin a reduction in the poten-
tial magnitude of the measure which becomes substantial as the
proportion of tied pairs increases. For example, if the dependent
variable is dichotomous with proportions .2 and .8 of observations
in the two categories, the maximum possible value for Ty.x Would
be .32 (the proportion of pairs untied on Y) regardless of the

distribution of ties msosw the independent variables.
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To permit a maximum value of one and to ensure that the value

does not decrease as independent variables are added to the system,

one could base the coefficient on those pairs untied on Y. That
is, for a<n -1, Oor 1, v=1,...,k, let
P(S) = Pri(di,3): mmﬁ. Lﬂ*o and S(i,j) = 8} (3.1)

Let wH denote the probability that a pair is tied with respect to

Y. For example, if there are a, distinct values of Y with propor-—
a
om

tion p, at the i-th level, then mﬁnumwuaww. Then, letting

Dy = {8:8 =-1, 0, or +1, v=1,...,k},
- (3.2)
uw = {§ in um, :P(8) >P(-8) 1,
we define y
Tyox = *Zpr BIORSICHIVICES M)
(3.3

= I, (B(8) -B(-8))/(1-P).

We observe that Ty.x DaY be expressed as

Tyex ~ ﬁ.@nwﬂv n&mcwswnﬁm@v,fumvvw\ﬁmﬁ el G0

That is, a4rx is the proportional reduction in error of predictions
of - the onmmnMrm on Y (for those pairs untied on Y) obtained by

predicting majority ordering relative to predicting order randomly.

Alternatively, aw.x may be expressed as

i MU~ yﬁn@.v_muﬁv IWAllalv
k

T P(8) +P(-0)

Y-X

(3.5)
=51, A®+AEM 1B ],
) k

where yﬁmv"umAmp\Ay.,wav is the proportion of the pairs of obser-

. vations untied on Y for ar»nr.MAw.uv =3. Hence, aw.x may be

MULTIPLE ASSOCIATION BASED ON RANKS

ot
Lt
s
“wr

interpreted as a weighted average of the absolute values of
A
Wmdmwwm w tau-type measures within each fixed set of orderings on
. 4 , Or B §.5°3 on
the {X }. Here, *aAmw_ 1s the absolute value of Kendall's tau
v
between Y and each of the xﬂ ) such that & #0, within the set .of
. v 181 Se O L
pairs for which S=6 or §=-§.
Clear is i i i
H%' d%.M 1s 1nvariant under strictly order preserving
transformations on any of the variables. When there are no tied
pPairs with respect to any of the variables, Ty X reduces to the
coefficient discussed in Section 2, so we have used the same syvmbol.
In the bivari : :
. o ate case, aw.x reduces to the absolute value of
omers
XY (see Somers (1962)), a well-known asymmetric ordinal
measure of association. When k= 2, it is likely to be not much
larger than i
g amxmﬁ&.xﬁwv.ﬂ«.xﬁwvv, but there is not necessarily
equality here due van?m additional contribution in the numerator
of pairs tied on X but not on xﬁmv and Y, or of pairs tied on

(2) (D)
X but not on X and Y. Again, though, aw.x is of primary

interest when k> 3.
It can be shown that T
2 H%-NAMV xﬂmnv MH%QNAHV«..-qMﬁAWJTHVw

si . y
nce the denominator remains constant and the numerator can not

9e ey

decrease when a variable is added to the system. Equality results
if and only if the introduction of xAx+~v does not alter the pre-
dictions of w..xﬁcv concordance or discordance (v= l,...k), and out
of those pairs tied on all xncv. (v=1,...,k), there is nsm same

(k+1)

. (k+1
proportion of Y-X ) concordant and Y-X discordant pairs.

4. SAMPLING DISTRIBUTIONS

When the value of any measure is computed from some sample,
one would usually be interested in making inferences about the
value of the measure for some associated population. We now con-
sider large sample approximations for the first two moments and
the distributions of the coefficients under random sampling, for
the case when all pairs untied on Y and at least one xﬁcv are of
majority or minority ordering. TFrom these distributions, large

sample approximate confidence intervals may be formulated for T
YeX©
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4.1 Inference - Continuous Variables

Suppose at first that there is probability zero of a tied pair
with respect to any of the variables. For all § in D, let P(8) be
the sample proportion of pairs for which §(i,j) =23, and let

UKH {8:P(8) >P(-8)} =
mﬁ = {§:P(8)< mmnlvv.
Then the sample value ﬁM.M,om ﬁm..m may be written as
tyex = wa& Mwuwt <S.\=€u Ly, (4.2)
where ’
Vig T 1 if 8(i,3) in D
= -1 if 8(i,§) in D
= 0 otherwise.
Now,

Bty,y = mf.u = Pr(8(i,3) in D) -Pr(s(i,j) in D)

= muwwﬁb_umd%v» contains §) - Pr(D  contains §)7.

Notice that t X is not in general unbiased. If we assume,

YeX
however, that
(8 ~P(-8)| >0 for all § in D, (4.3)
then m&%@..v vw?@.v :u@.v >P(-8))+1 as n~+=, so that
= = o, 4.4
?..az..ux and @E.nuav +1 as n~ (4.4)
It follows then that as n->,
" (4.5)

Bty *I PO =L P(S) =T,
YeX "Dy — D Y-X

MULTIPLE ASSOCIATION BASED ON RANKS 1

(0%}
La
et

For asymptotic purposes, we shall act as if @z = cx and @3 = UJ,

appealing to the same argument used in a lemma by Goodman and
Kruskal (1963, p. 357). 1In other words, for sufficiently large

n, equals

ty.x

. ~

2y (B(8) -B(-8)) = B, -P . (:
M

o
a

M m

The statistical behavior of this coefficient is similar to that of
the absolute value of Kendall's tau, in terms of being an «wnnagnwmu
ically) unbiased estimate of the difference between two proportions
- the proportions of pairs of majority ordering and pairs of minor-
ity ordering on Y with respect to ﬁxa¢vw. Hence, it seems reason-
able to apply a derivation for n:m distribution of Kendall's tau
(e.g., see Noether (1967,Ch. 10)), with slight modifications, to
get a large sample distribution for n&.x.

For three observations chosen at random, let

P

Pr(S(1,2) and S$(1,3) both in vzv

-
1]

Pr(S8(1,2) and S(1,3) both in D )
s (4.7)

]

Pr(s(1,2) in D, S(1,3) in D)

A A

mdA.MAH.Nva cs. $(1,3) in uzv.

Using the same argument as for m<u.,u. it can be seen that
m<m+m+muwmm=+8‘
ij M m >

and

m<£ 42 > wzz+w=§..m5=|m9z as n>®,

Now,

2
<wHAﬁ&.xv = h 2 g L var(v,.)+ I L cov(v )

DAQIHV HAu Hu MAu H~Au~
{A#1" or j#i")

2
= T?m.. HL ﬁﬁwwiﬁ,?wmv + wanoﬁfm.fwvg (4.8)

13771 5
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by symmetry. Using the fact that mza wzz z, P M m w MB,
maKn"wZB. we see that for lazge n the variance of \ln%.m is
approximately
o = 16(P. -P.)°. (4.9)
MM M

In addition, it seems reasonable based on representation Ab.Nv‘no

conjecture that the mm%EvnonMn.awmanvanom of nm X is normal (at

least for a broad class of aﬂwmww%wnm &HmnHHVCnHosmv so nrmn

25 weo ot _
.\m?m Mqﬁm.xv N(0,0%), - (4.10)

under assumption (4.3). Im practice, ome would probably not know

0. However, when (4.10) holds,

PaY m
NOM‘HMJMV\Q == Z.AO«HVw

/n(t
where 8 is a consistent estimate of a, m% Slutzky's Theorem (see
Goodman and Kruskal (1963,p. 356)). For example, one could substi-

tute in the formula for o2 the sample values

By=1I_, ¥ /a(n-1) = z B ()

(4.11)

Pygg = Bieg M 04 - D/n@-1 (-2),

‘where ZH is the number of pairs (i,j) containing the i~-th obser-
vation for which §(i,j) is in u&.
100(1 - a)% confidence interval for Ty.x 18 mu<m= by n&.x“wNQ\NQ\\N.

If there are some tied pairs, but not enough to treat the

Then, an approximate large-sample

data using nmnmmomﬁnmu techniques, then a correction factor can be

inttoduced into the asymptotic variance of n&.xu yielding a for-

mula analogous to Noether's (10.8). That is

- - -~ 4Ry .12
S:.\m?@. < ) = pﬁw§+m=§ BB o) w4 = E ) . (4.12)
j =

MULTIPLE ASSOCIATION BASED ON RANKS 1353

which reduces to the formula for % in (4.9) when there are no

tied pairs. The sample values of P, p , and P are
mm mM Mm
b - gn (m, - 1)/n(n-1
i=1 @y (my n{n-1)(n-2),
(4:13)
P =B =1 M. /n(n-1)(n-2
gl TMm T Cger B0 n-2,

where SH Mm\nrw number of pairs containing the i-th observation

for which S(i,j) is in ma.

4.2 Inference - Ordinal Categorical Variables

Suppose now that there are a, nmnmmowwmm for Y, a cate-
; 1
gories for xﬁ ) 5% Wy mw categories for NAWV and let p i
0 1y

denote the probability (under random sampling) that an obser-
(1) va
1 of X - Hw of X

We shall only discuss here the situation in which there is full

i

vation is in category wo of Y, i

. random sampling over the entire multinomial classification (i.e.,

none of the marginal distributions are treated as fixed). We

assume that

[P ~P(~8)| >0 for all & in D/

- Lok (4.14)

bmn.mmw www denote the sample proportions (the m.2.e."'s)
0"

nonnmmvozawnmnomv. .y.>Hmo.wmnﬁmﬁavwm:aﬁm.wcmn:m
Ho,....ww = i
same functions of the mmw H.w that {P(8)} and ﬁvwW are of the
OC LY W Racs
Avw i }. For example, for a 2X2x2x2 cross—-classification,
RREE

P(l,1,1) = Nm—ypwmwmmw. Then, the random sample version wm.x can

be written as

a
A = 0 2
t = Za, (P - - -X « 5
YoX MczA &) -P(=-8))/(1 i=1 va. (4.15)
where mm is the sample version of om. As n >,
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PriB, =00~ 1, (4.16)
since the {p, .} are consistent estimates of the mnw i
igeeeiy o i

For asymptotic arguments, then, we shall again treat U% as known.

Thus, for large n,

—

I (B(8) -B(=8)) I, (P(8)-P(=8))
UK s — Uz i

Volt, . -T. ) =+va &

2

%0
w!MMMHvH .Hlmwuw

s (&.17)

8y
Py

{2 R et

which has asymptotically the same distribution as

2 N

(=B yayPy

2 % 3y .2,
2y EO-B8) - (1-2,2,5)3, @@-P-0)

/o . (4.18)

8 3%

This last expression is a continuously differentiable function of

{a.;
Ho...ww

the A\MAWW

o...uw

~-p, . )} are jointly asymptotically normally
. i.4.
0 k 0 k
distributed about 0 with

} in a meighborhood of mww }. Using the fact that

<wﬂ\m@ nw Vun :..m v.
_,.H .ﬁo...ww b iy, fgeedy fgeeedy

and

no< ﬁ\mﬁu»o.:»wafo:;wv . _\mﬁo:.uw-ﬁo.:uxg

= -p P. :
wo..dww uo...uw

’

it then follows that \mAnA.x..ﬂM.xv is asymptotically normally dis-

tributed about zero with variance

2

(T, <L p 0 )2 L, p ¢ )

i 1. "1 el s AP 1 trewe Lo 1 wiand 1 senl

o2 a0 k707 Tk T0T Tk 0 R 07Tk 0Tk, gy
3 2.4
A=z, 9
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where

+2p. L., (P(8) -P(-5)).
iy Dy

Notice that the asymptotic variance depends on which of P(3)

and P(~8) is the maximum, for all S in ow. In practice, c° may

be replaced by its maximum likelihood estimate 52 (the same for-

mula with the substitution of the sample proportions mww. i H.
01

Then, nw.x.wNQ\mw\xm.wm a large-sample approximate 100(l -a)%

confidence interval for a&.x. The calculations are very' cumber-
some for a large number of independent variables or a fine clas-
sification of variables, but can be handled very simply for many

cross-classifications using a computer program.

5. A COMPARISON WITH OTHER MULTIPLE ORDINAL COEFFICIENTS

The best known and most commonly used measure of multiple

rank association, apparently first proposed by Moran (1951), is

- 2 2 2
T T T A T =Ty (2) 1 (1)) (= Tyg(3). g (D (2

2
P (L= Ty () (1)

<(k=-1)), (5.1

PR

where a4xA~v is Kendall's tau between Y and xﬁpw
Tox(@) o x(1) = Ty (2) =Ty (1) T L -12 (1) (L=T2 (1) (2D

b
is Kendall's partial tau of order 1, etc. The formula for Hm is

analogous to the one for the coefficient of determination with

Kendall's tau substituting for the Pearson correlation. In fact,
this coefficient is the same as the coefficient of determination
corresponding to a linear model using sign scores based on the

n(n - 1) ordered pairs of observations. That is, in using least
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squares to fit the equation
¥ ks (1) _ (1) €2) ..C2) . ) _ (k).
mm<“ mwu wwmﬁxu xH HL.cNmmxu X, 1+ .+wmexw X 1:4542)

to the observed pair scores, the partial taus and multiple Ty are
the results of applying the formulae for the Pearson partial and
multiple nowﬂmwmnwoz.

Based on this construction, am can be given the usual pro-
portional reduction in error interpretation (based on the sum of
squared prediction errors) in terms of predicting Y pair scores
using the linear function of mxmcvw pair scores, as compared to
predicting them randomly. The reader should see the mﬂnwnwmw by
Hawkes (1971) and Ploch (1974) for more complete expositions
coricerning the Ecwnw<mnwmnw analysis of ranked data by means of
a system including these partial and multiple measures.

A related approach is to formulate a multiple correlation
measure corresponding to the linear model in which the rank on
Y is modelled as a linear function of the ranks on the ﬁxAcvw. ‘
When k=1, this gives the Spearman's ﬂ:o rank correlation coeffi~
cient. For general k, this measure is the same function of the
pairwise Spearman's rhos that the multiple correlation coeffi-
cient is of pairwise Pearson correlations. This coefficient is
implied as a special case of a measure of association in the
general approach to rank tests of independence given by Puri and
Sen (1971, Ch. 8). ‘

When there are tied pairs on at least one of the variables,
the zero-order taus which constitute am become d 's (Kendall
(1970, p. 35)), and (5.1) is used with the mavmﬁwncnwoa of that
generalization of tau for tied ranks (see Hawkes (1971), Ploch,
(1974)). Alternatively, for ordinal categorical variables,

Morris (1970) proposed using the Somers nx& bivariate measure on
the single table composed of the Y classification crossed with a
nwmwmum»nwnwos based on all possible combinations of nwm.nmnmmonwmm

of the independent variables (one category from each variable).
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The obvious difficulty with this latter approach is in deciding

how to order these newly created categories, especially if there
are several independent variables or several levels for each one.
There is no unique way to define the ordering of this new classi-
fication, and of course different choices for this ordering could
lead to drastically different values of the measure.

In many situations, the coefficient T.. would be adequate by

M
itself for describing the extent of multiple association. One
should be aware, however, that its behavior need not strictly

g (k) for

Y.

parallel that of the multiple correlation w«.xﬁwv
a given set of variables. For example, suppose that we are con-
sidering the population values when the joint distribution of

.xD 3@

Kendall's tau is related to the Pearson correlation p for a

) is a trivariate normal. Then, using the fact that

bivariate normal distribution by

x -2 .SIH
ﬁ.mu. P
it can be seen using differential calculus that if Pyx(2).x(1) =
then A&NANV.NAHVH 0 only in the trivial case srms.oxﬁwvxﬁwv or
o%xamv equals -1, 0 or 1. Thus, in general in the normal case
with a spuriously related independent variable xANv, 4xAmv.xAHv
# 0 and hence axv._a%xﬁpv_ even though Ry x(Dx(2) = [o

vx (1)
Also, one could have a trivariate normal system with p xﬁwv.xﬁyv

# 0 but Tyx(2).x(1) =0, so that T, _aﬁwcv_ though Ry, x(D x(
> _waﬁyv_. Similar deviations, nﬁocmr not as extreme, tend to
occur for the Spearman-type multiple correlation based on ranks.
The multiple rank coefficient v has other deficiencies, as
well. For example, its sampling distribution is too noaﬁwmx to

allow the formation of confidence intervals for the population

value, even for large samples. The proportional reduction in

2
error interpretation for az is somewhat artificial, in the sense
that the predicted Y pair scores obtained from (5.2) are not -1, 0

or +1 in general, and in fact need not even be between -1 and +1.
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In addition, when k23, az is .only adequate if the simple addi-
tive relationship given by (5.2) is the appropriate model for the
nmwmnwomeHu maozm the pair scores.

It is the intent of this article to introduce the coefficient
~as a supplementary Bmmmcmm for &mmowwvwnm the rank-order

3
X @y K,
association between Y and (X v g5 X, . It should be clear

M :
ciation, and thus should not cw viewed as competitors. —Among the

that T_ and aw.M measure two somewhat different facets of asso-

nice features of Hn X are a simple Hsﬁmﬂwnmnmﬁwos and the fact
that it is not just appropriate for a certain type of nmwmnwosmrpv
among the pair scores. However, we have also seen ways in which
the behavior of AA.N is unlike that of the scwnwvwm.WOﬂHmHmnHos.
probably even more so than Ty For example, am.xﬁwv.....wav may
equal AM.MAHV....»NAW+~NWMWWn there vam SOSMMWO partial asso-
ciation between Y and X given X 7;..., X", in the mmﬂmwwv

that the value of tau for the joint distribution of Y and X
6] (k)

conditional on X 77,...,X is nonzero. This occurs srwn.,
given the ordering of a pair of observations on NAHV,....NANV.
no further predictive power (as defined in Section 2) is obtained
from knowledge of the ordering on wa+Hv.

Of course, similar situations occur in many other contexts
in measuring association. For example, the measure lambda which
is commonly used for describing association between nominal vari-
;ﬂ ables (Goodman and Kruskal (1954)) is based on prediction of the
category of the amvmnmmnn variable with soamw.mnmncmnn%. It will
be zero even though two variables are statistically dependent, if
there is no reduction in prediction errors due to knowledge of the
nmanQHwNmnMom on the independent variable. In conclusion, it
should be emphasized that these deficiencies do not Hn<mpwamnm the
use of these coefficients. Each is useful in the appropriate
nwﬂncsmnmnmmm as long as one understands the prediction rule and
definition of error for the coefficient, and interprets its value
according to these or other available descriptions. In this vein,
we propose nrmn.m coefficient such as HA.x should be nmzmwmmnmm
as a complementary means of describing multiple rank association.
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