
Chapter 5
Simple Ways to Interpret Effects
in Modeling Binary Data

Alan Agresti, Claudia Tarantola, and Roberta Varriale

5.1 Introduction

Suppose you are consulting with a non-statistician colleague in academia, gov-
ernment, or industry, for a study that has a binary response variable. If you use
a standard binary regression model such as logistic or probit regression, is your
colleague able to understand its natural effect measures, such as odds ratios or
probit differences? In our consulting experiences as well as teaching such methods
to students in various disciplines, interpretation can be challenging.

Models for binary responses that apply link functions to the probability of
“success,” such as logistic regression models, are generalized linear models that
employ non-linear link functions. With such models, effect parameters are not as
simple to interpret as slopes and correlations for ordinary linear regression. This
article surveys simple measures that can supplement the ordinary model-based
measures, being easier to interpret. Our intention is not to present new methodology
but rather to show ways of using existing approaches to supplement the most popular
model-based analyses as well as more complex models for binary data.

We consider a binary response variable y taking values 0 and 1 and a set
of explanatory variables .(x1, . . . , xp), which may be a mixture of quantitative
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and categorical. In describing effect summaries for comparing two groups of a
categorical explanatory variable, we sometimes use a separate indicator variable
z to distinguish between the groups. The logistic regression model, defined by

. log

[
P(Y = 1)

1 − P(Y = 1)

]
= α + βz + β1x1 + · · · + βpxp,

is a generalized linear model (GLM) with link function logit.[P(Y = 1)] =
log[P(Y = 1)/(1 − P(Y = 1))]. This model has effects most naturally interpreted
using odds ratios. For example, adjusting for the other explanatory variables, the
odds that .y = 1 for the group having .z = 1 divided by the odds that .y = 1 for the
group having .z = 0 are

.
P(Y = 1 | z = 1, x1, . . . , xp)/P (Y = 0 | z = 1, x1, . . . , xp)

P (Y = 1 | z = 0, x1, . . . , xp)/P (Y = 0 | z = 0, x1, . . . , xp)
= exp(β).

The coefficient .βk of .xk is the change in the log odds per each 1-unit increase in .xk ,
adjusting for the other explanatory variables, so .exp(βk) is a multiplicative effect of
each 1-unit increase in .xk on the odds of response .y = 1 versus response .y = 0.

To compare two levels of an explanatory variable such as two groups, however, it
is easier for methodologists or practitioners to understand a difference or a ratio of
probabilities than a ratio of odds. In our experience, many (even some statisticians)
misinterpret the odds ratio as if it were a ratio of probabilities. When two groups
have probabilities close to 0, the ratio of odds is similar to the ratio of probabilities,
but this is not true otherwise. In fact, [22] noted that when the probabilities exceed
.0.2, the odds ratio is better approximated by the square of the ratio of probabilities.
For example, if an odds ratio is 9, one group may have success probability merely
about 3 times the success probability for the other group.

Other aspects of logistic regression that are due to its nonlinear link function
are not as well known to users. For instance, suppose explanatory variables .x1
and .x2 are uncorrelated, such as in many experimental designs. In ordinary linear
models, the estimated effect of .x1 is the same when .x1 is the sole predictor
as when .x1 and .x2 are joint predictors. For logistic regression, this is not the
case with model-based odds effect measures. For instance, the effect .β∗

1 when
.x1 is the sole predictor relates approximately to the effect .β1 when .x2 is also

in the model by .β∗
1 ≈ β1

√
3.29/[3.29 + β2

2 var(x2)], where .3.29 = π2/3 is the
variance of the standard logistic distribution [18]. For the model with probit link,

.β∗
1 = β1

√
1/[1 + β2

2 var(x2)]. Equality of the effects in the two cases is, however,
approximately true for the simpler measures discussed in this article.

The structure of this paper is as follows. In Sect. 5.2, we show that generalized
linear models using the identity link function and the log link function, although not
as natural for binary data, have simpler summaries and can sometimes supplement
logistic and probit models. We illustrate these summary measures with an Italian
study to model an employment response variable. In Sect. 5.3, we focus on probit
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and logit models and we present alternative probability-based summaries that can
be used to study the effect of an explanatory variable, while adjusting for other
explanatory variables in the model. For group comparisons, these include average
differences and average log-ratios of probabilities and comparisons that result
directly from corresponding latent variable models. In this section we also show
the correspondence between these effect measures obtained for logistic and probit
models and the model-based effect measures obtained with the identity and log
link functions. We conclude this section illustrating the proposed measures with the
Italian study. Section 5.4 uses the measures of Sect. 5.3 to aid in interpreting effects
for more complex models, such as generalized additive models. We illustrate with
an example about horseshoe crab mating, generalizing existing results for a logistic
model.

5.2 Alternative Models for Binary Data

Standard models for binary response variables are special cases of the GLM

.link[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp, (5.1)

for link functions such as the logit and probit. For describing effects, we find it
useful to refer to the model expressed as

.F−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp, (5.2)

where the link function .F−1 is the inverse of a standard cumulative distribution
function (cdf). For logistic regression, .F(z) = exp(z)/[1 + exp(z)] is the standard
logistic cdf. For probit regression, F is the standard normal cdf, which we denote
by .Φ. The nonlinear link function naturally produces effects on the link scale. For
example, with the probit link, .β is the difference between .F−1[P(Y = 1)] when
.z = 1 and when .z = 0, and .βk is the change in .F−1[P(Y = 1)] per each 1-unit
increase in .xk , adjusting for the other explanatory variables. Such effect measures
are not easy to interpret by those who need to understand the effects in more real-
world terms. Although the probit model was the first model for binary data to
receive much attention (pre-dating logistic regression by nearly 10 years), its use by
methodologists has undoubtedly been hampered by the difficulty of interpretation
unless one uses a corresponding latent variable model. The same applies to other
link functions that are potentially very useful, such as those with log-log and
complementary log-log link functions.

In addition, effects often behave in a way that is counterintuitive to those mainly
familiar with ordinary linear models. For example, as mentioned in the introductory
section, if an explanatory variable uncorrelated with .x1 is added to a logistic
regression model, the partial effect of .x1 is typically different than in the model
without the other explanatory variable; it would be identical in an ordinary linear
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model. For contingency tables, this relates to standard collapsibility results [e.g., 1,
pp. 53–54]. For example, consider several 2 .× 2 tables relating binary y to binary
.x1 at different levels for .x2. If the difference or the ratio of proportions is the
same in each table, then when .x1 and .x2 are marginally independent, the marginal
table collapsing over .x2 has the same value for that measure. For the odds ratio,
however, collapsibility occurs when .x1 and .x2 are conditionally independent, given
y, rather than marginally independent. Because of this, regardless of correlation
structure among explanatory variables, it can be challenging to compare the effect
of an explanatory variable to its effect when other variables are added to the model.
Generally, the relation between conditional and marginal effect measures depends
on the model and measure considered. For related literature, particularly for logistic
regression, see [4, 7, 8, 10, 19], and [20]. Related remarks also occur in comparing
effects in marginal models for multivariate responses with effects in corresponding
models that add a random effect to the model [1, pp. 495–497].

5.2.1 Identity and Log Link Models for Binary Data

For comparing groups, simple difference and ratio measures on the proportion scale
result from alternative link functions in model (5.1). For the identity link function,
the coefficient .β of an indicator variable in that model is the difference between
.P(Y = 1) for two groups, adjusting for other variables. The corresponding model
is called the linear probability model. For the log link function, .β is the log ratio of
probabilities.

Generalized linear models with identity and log link functions are relatively
rarely used for binary data. The link values for the linear probability model are
restricted to the [0, 1] range, rather than the entire real line that is the range of linear
predictor values in the model. The log-link values are restricted to negative values.
Because of these restrictions, ordinary maximum likelihood (ML) fitting of such
models, assuming a binomial distribution for the response, may fail. One can always
fit the linear probability model using least squares, as in fitting ordinary linear
models, but the fitted values may be outside [0, 1] for some values of explanatory
variables. When ML works for such a model and it fits the data decently, however,
one obtains the advantage of simpler interpretation of effects than in the logistic
model.

The appearance of the linear probability model is similar to the logistic and probit
models for probabilities between about 0.2 and 0.8. To illustrate, the first panel in
Fig. 5.1 shows 500 observations in which X was uniformly distributed over (0, 100),
and conditional on .X = x, .P(Y = 1) follows a logistic model with .P(Y = 1)

increasing from 0.2 to 0.8 over the range of x values. (For clarity of showing the
data, the binary observations are jittered slightly.) The figure also shows the ML fits
of the logistic and linear probability models. The appearance of the log-link model
is similar to the logistic and probit models when probabilities are uniformly less
than about 0.25 over the ranges of explanatory-variable values and similar to those
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models with link applied to .P(Y = 0) when probabilities are uniformly above about
0.75. To illustrate, the second panel of Fig. 5.1 shows 500 observations in which X

was uniformly distributed over (0, 100), and conditional on .X = x, .P(Y = 1)

follows a logistic model with .P(Y = 1) increasing from 0.01 to 0.25 over the range
of x values. The figure also shows the ML fits of the logistic model and the model
with log link.

When we have reason to expect probabilities to fall in the previously specified
ranges, we believe that it can be helpful in summarizing the size of an effect to use
the models with identity and log link functions, even if only to supplement ordinary
logistic and probit models. In addition, the binary models with identity and log
links share the property with ordinary linear models that effects remain stable when
explanatory variables are added to the model that are uncorrelated with ones already
in the model.

5.2.2 Example: Models for Italian Survey Data

In this section, we fit generalized linear models with logit, log and indentity
link functions to some data from a simple random sample of about 100,000
Italians from the Toscana region in December 2015. The information comes from
administrative sources collected and organized by Istituto Nazionale di Statistica
(Istat). Administrative data relevant for the labor statistics derive mainly from social
security and fiscal authority and are organized in an information system having
a linked employer-employees structure. From this data structure it is possible to
obtain information on the statistical unit of interest, i.e., the worker. The response
variable y indicates whether the subject is present in any administrative source
(1 .= yes, 0 .= no). Assuming there are no measurement errors, a person not present
in an administrative labor source either is not working or is doing so illegally, so in
the following we refer to y as whether employed (1 .= yes, 0 .= no). The examined
explanatory variables are .x1 .= gender (1 .= female, 0 .= male), .x2 .= Italian (1 if the
individual is an Italian citizen, 0 otherwise), and .x3 .= pension (1 if the individual is
receiving a pension, 0 otherwise). For Istat confidentiality reasons, we cannot report
the exact data, but we provide in tables the approximate cross-classified sampled
proportions.

We first restrict attention to the 27,775 subjects having age over 65. The sample
proportions that were employed (.y = 1) in the eight cases that cross classify the
three explanatory variables were small, so we fitted models both with logit and log
links, as shown in Table A1 of the Appendix. The main-effects model fits are

.logit[P̂ (Y = 1)] = −1.8686 − 1.3236x1 − 0.4295x2 + 0.2162x3

and

.log[P̂ (Y = 1)] = −2.0374 − 1.2388x1 − 0.3619x2 + 0.2003x3
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Fig. 5.1 Data sets showing
jittered binary data and fits of
logistic regression model and
(1) linear probability model
when .P(Y = 1) varies from
0.2 to 0.8, (2) log-link model
when .P(Y = 1) is less than
0.25

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P(
Y=

1)

identity link

logistic

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P(
Y=

1)

log link

logistic



5 Interpreting Effects in Modeling Binary Data 161

Table 5.1 Fitted values for Istat sample of older subjects, for models with logit and log links for
predicting employment using gender (G), Italian (I), and pension (P)

Main effects Gender/Italian interaction

Logit link Log link Logit link Log link Sample proportion

G I P .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) (Sample size)

1 1 1 0.0321 0.0321 0.0314 0.0314 0.0316 (13,300)

1 1 0 0.0260 0.0263 0.0255 0.0257 0.0244 (2300)

1 0 1 0.0485 0.0461 0.0865 0.0864 0.0690 (100)

1 0 0 0.0395 0.0378 0.0709 0.0708 0.0812 (200)

0 1 1 0.1109 0.1109 0.1118 0.1118 0.1116 (11,000)

0 1 0 0.0913 0.0908 0.0920 0.0915 0.0949 (600)

0 0 1 0.1608 0.1593 0.1106 0.1111 0.1238 (100)

0 0 0 0.1337 0.1304 0.0911 0.0909 0.0800 (100)

Note: The sample sizes for the sample proportions were not the actual ones used but are rounded
to the nearest hundredth, for Istat confidentiality reasons

Table 5.1 shows the fitted values for the two models. They are uniformly very close,
with the absolute difference averaged over the 27,775 cases being only 0.000097.
The residual deviances (for the grouped data files) are 13.17 and 13.85, with df =
4.

The log-link model has the advantage of simplicity of interpretation, the expo-
nentiated coefficients estimating ratios of probabilities instead of ratios of odds. For
instance, adjusting for whether an Italian citizen and whether receiving a pension,
the probability that a woman is employed is estimated to be .exp(−1.2388) = 0.2897
times the probability that a man is employed.

Table 5.1 also shows sample proportions for the eight cases. Both models show
clear lack of fit for the non-Italians, although the sample sizes for those cases
are relatively small. In fact, for non-Italians, fitted and sampled values are quite
different. Improved fits result from adding an interaction term between gender and
whether an Italian citizen to reflect that the gender effect seems to be larger for
Italian citizens than for non-citizens. Table 5.1 also shows fitted values for the model
with this interaction term, with logit and log links. For this model, fitted values are
again uniformly very close, with the absolute difference averaged over the 27,775
cases being only 0.000062. The residual deviances are 1.35 and 1.42 with df = 3.

We next consider the 72,225 subjects having age under 65. The sample propor-
tions that were employed (.y = 1) in the eight cases that cross classify the three
explanatory variables fell between 0.20 and 0.75, so we fitted models both with
logit and identity links, as shown in Appendix Table A2. The main-effects model
fits are

.logit[P̂ (Y = 1)] = 0.3502 − 0.6440x1 + 0.7017x2 − 1.8737x3
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and

.P̂ (Y = 1) = 0.5876 − 0.1386x1 + 0.1513x2 − 0.4078x3

Again, the identity-link model has the advantage of simplicity of interpretation. For
instance, adjusting for whether an Italian citizen and whether receiving a pension,
the probability that a woman is employed is estimated to be 0.1386 lower than the
probability that a man is employed. (Interestingly, the estimated effects of .x2 and
.x3 have reverse sign from the estimated effects for the older sample, and the gender
effect in the logit model is about half the size.)

Table 5.2 shows the fitted values for the two models and sample proportions for
the eight cases. The fits are quite close, with the absolute difference averaged over
the 72,225 cases being only 0.00430. These two models show lack of fit for the non-
Italians with a pension, although these are only 195 of the 72,225 cases. Improved
fits result from adding an interaction term between the Italian citizen and pension
variables. The gender main-effect estimate in the identity-link model changes only
from .−0.1386 to .−0.1397. Table 5.2 also shows fitted values for the interaction
models with logit and identity links. They are quite close, with the average absolute
difference being only 0.00286. The residual deviances are 15.80 and 30.32 with
.df = 3, not particularly large for this enormous sample size.

We do not wish to suggest by these examples that one should not use logistic
regression. Indeed, an obvious advantage of it compared to the models with log and
identity links is that it is relevant regardless of the range of values for .P(Y = 1).
However, we believe that the log-link model and identity-link model can sometimes
supplement the logit-link model, in particular by providing effect interpretations that
are simpler for many to understand.

Table 5.2 Fitted values for Istat sample for younger subjects, for models with logit and identity
links for predicting employment using gender (G), Italian (I), and pension (P)

Main effects Italian/Pension interaction

Logit Identity Logit Identity Sample proportion

G I P .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) .P̂ (Y = 1) (Sample size)

1 1 1 0.1876 0.1924 0.1845 0.1775 0.1991 (3400)

1 1 0 0.6006 0.6002 0.6011 0.6020 0.5974 (27,700)

1 0 1 0.1027 0.0410 0.2153 0.2119 0.2202 (100)

1 0 0 0.4271 0.4489 0.4243 0.4334 0.4339 (5200)

0 1 1 0.3054 0.3310 0.3012 0.3171 0.2879 (3800)

0 1 0 0.7411 0.7389 0.7416 0.7416 0.7453 (27,500)

0 0 1 0.1789 0.1797 0.3433 0.3516 0.3372 (100)

0 0 0 0.5867 0.5875 0.5840 0.5731 0.5725 (4400)

Note: The sample sizes for the sample proportions were not the actual ones but are rounded to
the nearest hundred, for Istat confidentiality reasons
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5.3 Alternative Effect Measures for Explanatory Variables

Because of the range restrictions for probabilities, the identity and log links are often
not appropriate. But even in fitting a model such as logistic or probit regression, one
can construct summary measures based on differences and ratios of probabilities to
help others understand the size of the effects. In this section, we describe two types
of interpretation that supplement estimated model-parameter effects with simpler
effects reported on the probability scale rather than on the scale of the link function.
Such effects also exhibit greater stability in terms of the impact of uncorrelated
explanatory variables.

When a binary regression model of generalized linear model form contains
solely main effects, .P(Y = 1) changes monotonically as a quantitative explanatory
variables increases, with others at fixed values. This is the situation that we assume
in forming these supplementary summary measures.

5.3.1 Probability Effect Measures

A simple summary for the effect of an explanatory variable .xk averages the rate of
change in .P(Y = 1), as a function of .xk . For this, we consider the expression (5.2)
of the model, namely .F−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp. Let .f (y) =
∂F (y)/∂y denote the corresponding probability density function. For a quantitative
explanatory variable .xk , the rate of change in .P(Y = 1) when other explanatory
variables are fixed at certain values .x∗ is

.∂P (Y = 1|x = x∗)/∂xk = f (α + βz∗ + β1x
∗
1 + · · · + βpx∗

p)βk.

These measures are denoted in different ways depending on the context; for
example, the econometric literature [6] uses the term elasticity, while the statistics
literature calls them either marginal effects or partial effects. Long and Mustillo
[16] and many others refer to such an instantaneous effect as a marginal effect. This
terminology is a bit misleading, as this partial derivative refers to a conditional effect
of .xk rather than its marginal effect as the term marginal is commonly used (i.e., for
a sole predictor, collapsing over the other explanatory variables). Some authors, e.g.
[14], instead use the term partial effect, which we use in this paper.

For the logit link, the partial effect for .xk on .P(y = 1) has the expression

.∂P (Y = 1|x = x∗)/∂xk = βkP (y = 1|x = x∗)[1 − P(y = 1|x = x∗)].

This takes values bounded above by its highest value of .βk/4 that occurs when
.P(Y = 1|x = x∗) = 1/2. For probit models, the highest value of this instantaneous
change is .βk/

√
2π , also when .P(Y = 1|x = x∗) = 1/2. These maximum values

need not be relevant, as .P(Y = 1) need not be near 1/2 for most or all the data.
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Any particular way of fixing values of the explanatory variables has its corre-
sponding partial effect value for .xk . Long and Mustillo [16] summarize various
versions. Here, we mainly consider the average partial effect, which estimates the
partial effect of .xk at each of the n sample values of the explanatory variables,
and then averages them. We could instead estimate the partial effect with every
explanatory variable, including .xk , set at its mean, which is the partial effect at
the mean. Or, we could set all explanatory variables at values considered to be of
particular interest. This might be more appropriate if the sample is not random or not
representative of the population of interest, in which case it is sometimes referred
to as a partial effect at a representative value. For each version, the summary value
obtained still reflects the effect of .xk adjusting for the explanatory variables, unlike
an averaging of the effect over values of a random effect in a generalized linear
mixed model, in which case the effect changes nature to being population-averaged
and can have quite different magnitude.

For a categorical explanatory variable, for each version one would instead use a
discrete change, estimating the change in .P(Y = 1) for a change in an indicator
variable. To compare two groups, for instance, for the n sample observations, we
could find the difference between estimates of .P(Y = 1) when .z = 1 and when .z =
0 at the sample values for the other predictors and average the obtained values. When
the number of possible values of the categorical explanatory variable is greater than
two, the discrete change is computed as the difference in the predicted probabilities
for cases in one category relative to the reference level.

Discrete changes are also relevant for quantitative explanatory variables, to
summarize estimated changes in .P(Y = 1) over a particular range of .xk values.
For example, to summarize the effect of a quantitative variable .xk on y, it can be
useful to report the difference between the model-fitted estimate of .P(Y = 1) at
the maximum and minimum values of .xk , when other explanatory variables are set
at particular values such as their means. A caveat for such measures is that their
relevance depends on the plausibility of .xk taking extreme values when all other
explanatory variables fall at their means. Also, this summary can be misleading
when outliers exist on .xk , in which case one can instead report the estimated
probabilities at more resistant quantiles. Reporting them at the upper and lower
quartiles of .xk summarizes the estimated change in .P(Y = 1) over the range of
the middle half of the observations on .xk , with other explanatory variables fixed.
Such a measure has greater scope for reflecting reality.

A useful and easy-to-obtain measure that we’ve not seen proposed for the two-
group comparison focuses on ratios of estimated probabilities for the two groups.
For example, we could average the n log-ratios of probability estimates, to obtain a
measure comparable to the effect in the log-link GLM, and then exponentiate that
average for interpretive purposes. Again, other versions are possible, such as finding
the ratio at the mean of the other explanatory variables. Such measures would seem
to be especially useful when fitted probabilities are near 0 for the groups being
compared.

Greene [9, pp. 775–785] showed how to obtain standard errors for the maximum
likelihood estimators of some effect measures based on instantaneous rates of
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change and differences of probabilities. We have used the bootstrap to obtain a
standard error (SE) for the log-ratio measure just proposed. Mood [18] pointed out
that the average partial effect has behavior reminiscent of effects in ordinary linear
models, in the sense that it is roughly stable when we add an explanatory variable
to the model that is uncorrelated with the variable for which we are describing
the effect. Such behavior is expected, as such an average partial effect typically
takes similar value as the effect using the linear probability model discussed in
Sect. 5.2. The effect measures are available in software, such as presented by Leeper
[13], Long and Freese [15, pp. 341–351], and Sun [21, pp. 527–531]. Agresti and
Tarantola [3] and Iannario and Tarantola [12] proposed analogous measures for
modeling ordinal data.

5.3.2 A Probability Summary for Ordered Comparison of
Groups

It is sometimes realistic to regard a categorical variable as crude measurement of an
underlying continuous latent variable .y∗ that, if we could observe it, would be the
response variable for an ordinary linear model. In fact, model (5.2) is implied by a
model in which a latent response has conditional distribution with standard cdf given
by the inverse of the link function [1, p. 252]. We next use this connection to suggest
an alternative way to summarize an effect, in the context of comparing two groups
(.z = 0 and .z = 1). Let .y∗

1 and .y∗
2 denote independent underlying latent variables

for the binary response, representing the underlying distributions when .z = 1 and
when .z = 0 respectively. At a particular setting .x for other explanatory variables,
.P(Y ∗

1 > Y ∗
2 ; x) is a summary measure of relative size, suggested by Agresti and

Kateri [2] for ordinal response variables.
The normal latent variable model with .y∗ ∼ N(βz + β1x1 + · · · + βpxp, 1)

implies the probit model

.Φ−1[P(Y = 1)] = α + βz + β1x1 + · · · + βpxp,

with .α the cutpoint on the underlying scale between .y∗ values for which .y = 1 and
for which .y = 0. For this model,

.P(Y ∗
1 > Y ∗

2 ; x) = P

[
(y∗

1 − y∗
2 ) − β√
2

>
−β√

2

]
= Φ

(
β√
2

)
. (5.3)

This is true regardless of the .x value, so we denote it by .P(Y ∗
1 > Y ∗

2 ). For the logit
link,

.P(Y ∗
1 > Y ∗

2 ) ≈ exp(β/
√

2)

[1 + exp(β/
√

2)] , (5.4)
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for the .β coefficient of z in the logistic model.
When the latent variable model for binary data is realistic, this type of probability

comparison of the groups supplements the ordinary interpretation of the effect
coefficient .β. As .β increases from 0, the probability increases from 0.5 toward 1.
In addition, a natural way to construct a summary measure of predictive power is to
estimate .R2 for the linear model that is specified for the underlying latent response
variable. McKelvey and Zavoina [17] suggested this measure for a probit model for
ordinal responses, for which the underlying latent variable model is the ordinary
normal linear model, but it applies also for binary data and for other link functions
for ordinal data [3].

5.3.3 Example: Measures for Italian Survey Data

We illustrate these measures for the example from earlier in this article of modeling
Italian employment status. For simplicity, here we consider only the main effects
models.

The average partial effect for a logistic model approximates the corresponding
effect from the binary model with identity link. For the younger age group, we
obtained the gender effect of .−0.1386 (.SE = 0.0035) with the identity-link model.
The estimated average partial effect for the model with logit link is .−0.1409
(.SE = 0.0035). This can be easily found with an existing package in R applied
to the ungrouped data file, with code such shown in Table A2 in the Appendix.

The average partial effect for log-ratios that we suggested for a logistic model
approximates the corresponding effect from the binary model with log link. For
the older age group the gender effect estimate is equal to .−1.2388 (.SE = .0.0516)
with the log-link model. The estimated average log-ratio partial effect for the model
with logit link is .−1.2398 (.SE = 0.0517). Table A3 in the Appendix presents
edited R code for obtaining the estimated average log-ratio partial effect and for
using the bootstrap with 1000 resamplings of the data to obtain its SE. As one
can do with the log-link model parameter estimate, one could utilize the asymptotic
normality of the sample measure to obtain a correponding confidence interval for the
population value, such as the 95% confidence interval .−1.2398 ± 1.96(0.0517),
which is (.−1.341,−1.138). The exponentiated endpoints of the interval, that is
(0.26, 0.32), are a confidence interval on the probability-ratio scale. (Recall that
the log-link model provided ML estimate 0.2897.) Alternatively, one can find a
bootstrap confidence interval, such as shown with the percentile method in Table A3.

Whether a latent variable is sensible for measuring propensity toward employ-
ment is debatable. But if so, from Eq. (5.4) with the estimated gender effect .β̂ =
−1.3236 for the older sample, the estimated probability that a randomly selected
female would be higher on the latent variable than a randomly selected male is
.exp(−1.3236/

√
2)/[1 + exp(−1.3236/

√
2)] = 0.282. For the younger sample, the

effect is .exp(−0.6440/
√

2)/[1 + exp(−0.6440/
√

2)] = 0.388.
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5.4 Generalized Additive Model for Binary Data

A generalized additive model (GAM) replaces the linear predictor in a binary
generalized linear model (GLM) by additive unspecified smooth functions. Its basic
version has the form

.link[P(y = 1)] = s1(x1) + · · · + sj (xj ) + · · · + sp(xp),

where the smooth function .sj is typically based on cubic splines [11] and more
generally uses basis expansions of low rank with complexity controlled by ridge
penalties on regression coefficients [e.g. 23]. The name additive derives from
the additive structure of the predictor. GAMs have the advantage over GLMs of
greater flexibility, with an ordinary GLM with .sk(xk) replaced by .βkxk . In practical
application, it is often helpful to use both smooth and linear terms in a model.
Using a graphical portrayal of a GAM fit, we may discover patterns that we would
miss with ordinary GLMs, and we may obtain potentially better estimates of mean
responses. A disadvantage of GAMs and other smoothing methods, compared with
GLMs, is that interpretability is even more difficult. It can be more difficult to
summarize an effect and judge when it has substantive importance.

Fasiolo et al. [5] described an efficient visual method for interpreting GAMs,
using the mcgViz package in R. The proposed methods include ones to bin the
data and summarize them in a form that can be displayed effectively, interactive
Q-Q plots, portrayals of conditional residuals, and visualizations of the uncertainty
of the fitted smooth effects. To supplement these with simple numerical summaries,
we believe that measures that aid in interpreting binary GLMs can also be useful for
GAMs. When an effect of a quantitative explanatory variable seems to be monotonic
and not highly variable in the degree of non-linearity, useful measures include
measures of average partial rates of change of probabilities and comparisons of the
fitted probability at extreme values or quartiles or other quantiles of the explanatory
variable.

How does one describe quantitatively the effect of an explanatory variable or
obtain a confidence intervals for the true effect? Here, we suggest a way to construct
an estimated average partial effect using the fit of a GAM. For explanatory variable
k, let .xi(k) denote the values of the other explanatory variables for observation
i. The fitted rate of change for explanatory variable .xk for observation i can be
approximated by

.[P̂ (y = 1 | xi(k), xik + ε) − P̂ (y = 1 | xi(k), xik − ε)]/2ε

for a very small .ε. Finding the mean of these values for the n observations yields an
approximate average partial effect for that predictor. We suggest starting with a trial
value such as .ε = 0.000001 and then using a smaller value yet to ensure that results
are stable to several decimal places. For comparing two groups, one could find an
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average difference or average ratio of estimated probabilities at the n values of the
explanatory variables.

5.4.1 Example: GAM for Horseshoe Crab Study

We illustrate the use of the average partial effect in the context of GAMs with a
data set analyzed extensively with logistic regression in [1], from a study of nesting
horseshoe crabs. During spawning season, a female migrates to the shore to breed.
With a male attached to her spine, she lays clusters of eggs, which are fertilized
externally. During spawning, other male crabs, called satellites, may cluster around
the pair and fertilize the eggs. The response outcome for each female crab is whether
she had any satellites (1 .= yes, 0 .= no). Explanatory variables associated with this
response were the female crab’s carapace (shell) width, which is a summary of her
size, and her color (four categories from light to dark), which is a surrogate for the
crab’s age, older crabs being darker. In the sample, width had a mean of .26.3 cm and
a standard deviation of .2.1 cm. Logistic modeling showed that width had a positive
effect on the presence of a satellite, and color being dark (category 4) had a negative
effect.

The logistic ML fit with predictors width and an indicator for color that is 1 for
dark-colored crabs and 0 for others is

.logit[P̂ (Y = 1)] = −11.6790 + 0.4782(width) − 1.3005(color),

with standard errors of 0.104 for width and 0.526 for color. Table A4 in the appendix
shows edited results for the logistic regression and a GAM fit with these data, which
is

.logit[P̂ (Y = 1)] = −11.2470 + s(width) − 1.2805(color),

s(width) being a smoothing spline. Figure 5.2 shows the GAM fit, with jittered
observations. Adding an interaction term does not provide a significantly improved
fit.

Table A5 in the Appendix shows edited R code for finding the average partial
effects for width and for color for this GAM as well as for the corresponding logistic
model. Interpretation is relatively simple. For the logistic fit at the .n = 173 observed
width values, the average rate of change is .0.087 in the estimated probability of
a satellite per 1 cm increase in width, adjusting for color. At those width values,
the estimated probability of a satellite averages .0.261 lower if the crab has dark
color than if it has a lighter color. For the GAM, the corresponding values are .0.085
(standard error .= 0.015) and .0.254 (standard error .= 0.112), quite similar because
the logistic model fits relatively well.

Table A6 in the Appendix shows edited R code for using the bootstrap with 1000
resamplings of the data to obtain standard errors and confidence intervals for the
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Fig. 5.2 Portrayal of GAM fit for the effects of width and color (black for dark, red for other
colors) on jittered responses for whether a female horseshoe crab has at least one satellite

average partial effects in the GAM. For example, the bias-corrected and accelerated
(BC.a) confidence interval of (.−0.466,−0.028) for the average partial effect for
color indicates that at the sampled width values, the probability of a satellite is
estimated to average between .0.028 and .0.466 lower if the crab has dark color than
if it has a lighter color. The relatively wide interval reflects partly that the sample
had only 22 dark-colored crabs.

5.5 Discussion and Future Research

Future research could apply the methods of this paper to other models for binary
responses. In particular, using alternative link functions to aid in interpretation
would be useful for marginal models, whether fitted by GEE methods or maximum
likelihood. The binary and log links are more challenging for random effects
models, as the usual assumption of normally-distributed random effects adds
another restriction to models with bounded range values. Effect measures such as
average partial effects are also relevant for models for multi-category responses. See
[3] for their use with cumulative link models for ordinal responses.

Perhaps more challenging for future research is the development of effect
measures for generalized additive models. The average partial effect measure
presented in this article is of use when relationships are monotone, but often that
is not the case. Even when it is the case, difference or ratio effects are sometimes
highly variable across the range of an explanatory variable, and a single summary
may be too simplistic. Also for the binary generalized linear models considered
here, we assumed that .P(Y = 1) is monotone in quantitative explanatory variables,
and alternative measures are needed when this is not the case.

In summary, in these days in which statistical science is ever more visible,
partly because of the emergence of data science and methods for “big data,” it is
increasingly important for statisticians to develop ways to present relatively simple
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summaries of complex methods that will be understandable by a relatively wide
audience. We hope that this paper is a step in that direction.

Acknowledgments The authors appreciate helpful comments from two referees and from Pablo
Inchausti and Maria Kateri.

Appendix

This appendix provides the source code for the R analyses described in the text.

Table A1 R code for fitting logistic and log-link models to the older-age Istat sample

-------------------------------------------------------------------------------
>Italian1 <- read.csv("http://www.stat.ufl.edu/~aa/cat/data/Italian_older.csv",
+ header=TRUE)
>mod.logit <- glm(empl ~ female + italian + pension, family=binomial,
+ data=Italian1)
>summary(mod.logit) # fit of logistic model; default link is logit

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8686 0.1631 -11.46 <2e-16
female -1.3236 0.0546 -24.26 <2e-16
italian -0.4295 0.1632 -2.63 0.0085
pension 0.2162 0.0948 2.28 0.0225
---
>mod.log <- glm(empl ~ female + italian + pension, family=binomial(link=log),
+ data=Italian1)
>summary(mod.log) # fit of model with log link function

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0374 0.1465 -13.91 <2e-16
female -1.2388 0.0516 -24.00 <2e-16
italian -0.3619 0.1460 -2.48 0.013
pension 0.2003 0.0885 2.26 0.024
-------------------------------------------------------------------------------
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Table A2 R code for fitting logistic and linear probability models to the younger-age Istat sample
and finding the average partial effect for the logistic regression model

-------------------------------------------------------------------------------
>Italian2 <- read.csv("http://www.stat.ufl.edu/~aa/cat/data/Italian_younger.csv",
+ header=TRUE)
>mod.logit <- glm(empl ~ female + italian + pension, family=binomial,
+ data=Italian2)
>summary(mod.logit)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.3502 0.0224 15.6 <2e-16
female -0.6440 0.0161 -39.9 <2e-16
italian 0.7017 0.0225 31.2 <2e-16
pension -1.8737 0.0288 -65.1 <2e-16
---
> mod.linprob <- glm(empl ~ female + italian + pension,

family=quasi(link=identity, variance="mu(1-mu)"), data=Italian2)
>summary(mod.linprob) # fit of linear probability model

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.5876 0.0052 112.4 <2e-16
female -0.1386 0.0035 -40.1 <2e-16
italian 0.1513 0.0052 29.1 <2e-16
pension -0.4078 0.0052 -78.4 <2e-16
---
>library(mfx)
>logitmfx(mod.logit, atmean=FALSE, data=Italian2)
Marginal Effects:

dF/dx Std. Err. z P>|z|
female -0.14062 0.00346 -40.6 <2e-16
italian 0.15820 0.00512 30.9 <2e-16
pension -0.41602 0.00508 -81.9 <2e-16
-------------------------------------------------------------------------------
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Table A3 R code for finding average log-ratio partial effect and bootstrap SE and bootstrap CI
for the logistic regression model applied to the older-age Istat sample

-------------------------------------------------------------------------------
>library(plyr)
>library(boot)
>attach(Italian1)
---
APER.log<-function(formula, data, indices, fam, var_exp)

{
dat<-data[indices,]
mod <- glm(formula, family=fam, data=dat)
pred.prob <- (predict(mod,type="response"))
var_exp_ind<-var_exp[indices,]
r_new<- as.data.frame(cbind(var_exp_ind, pred.prob))
r1_new<-count(r_new, vars = c(names(r_new)))
row_r1<-nrow(r1_new)
pred.prob.Male_new<-r1_new$pred.prob[1:(row_r1/2)]
pred.prob.Female_new<-r1_new$pred.prob[((row_r1/2)+1):row_r1]
r2_new <- count(var_exp_ind[,-1],vars = c(names(var_exp_ind)[-1]))
APER.log_new <- ((log(pred.prob.Female_new/pred.prob.Male_new)%*%r2_new$freq)
+ /sum(r2_new$freq))
return(APER.log_new)
}
APER.log(formula=empl ~ female + italian + pension, data=Italian1, indices=
+ c(1:nrow(Italian1)), fam=binomial,var_exp=cbind(female, italian, pension))

[,1]
[1,] -1.2398
---
APER.log_boot <- boot(data=Italian1, statistic=APER.log, R=1000,

formula=empl ~ female + italian + pension, fam=binomial,
var_exp=cbind(female, italian, pension) )

> APER.log_boot
Bootstrap Statistics :

original bias std. error
t1* -1.2398 -0.00039268 0.051689
---
> boot.ci(APER.log_boot,type="perc")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Intervals :
Level Percentile
95% (-1.344, -1.141 )
-------------------------------------------------------------------------------
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Table A4 R code for GAM fit for using width and color as predictors of whether a female
horseshoe crab has any satellites

-------------------------------------------------------------------------------
>Crabs <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Crabs.dat",
+ header=TRUE)
>Crabs$c4 <- ifelse(Crabs$color == 4, 1, 0) # indicator for color cat. 4
>fit.glm <- glm(y ~ width + c4, family=binomial, data=Crabs)
>summary(fit.glm)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.6790 2.6925 -4.338 1.44e-05
width 0.4782 0.1041 4.592 4.39e-06
c4 -1.3005 0.5259 -2.473 0.0134

Null deviance: 225.76 on 172 degrees of freedom
Residual deviance: 187.96 on 170 degrees of freedom
---
>library(gam)
>fit.gam <- gam(y ~ s(width) + c4, family=binomial, data=Crabs)
>summary(fit.gam)

Null Deviance: 225.7585 on 172 degrees of freedom
Residual Deviance: 185.4678 on 167.0001 degrees of freedom
Anova for Parametric Effects

Df Sum Sq Mean Sq F value Pr(>F)
s(width) 1 17.774 17.7736 18.3127 3.15e-05
c4 1 5.928 5.9278 6.1076 0.01446
Residuals 167 162.084 0.9706
>fit.gam$coefficients
(Intercept) c4
-11.2470 -1.2805
-------------------------------------------------------------------------------
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Table A5 R code for finding the average partial effects for width and for color for the logistic
regression model and for the generalized additive model for the presence of horseshoe crab
satellites

-------------------------------------------------------------------------------
> Crabs <- read.table("http://www.stat.ufl.edu/~aa/cat/data/Crabs.dat",

header=TRUE)
> Crabs$c4 <- ifelse(Crabs$color == 4, 1, 0) # indicator for dark color
> fit <- glm(y ~ width + c4, family=binomial, data=Crabs)
> library(mfx)
> logitmfx(fit, atmean=FALSE, data=Crabs) # with atmean=TRUE, finds
Marginal Effects: # effect only at the mean

dF/dx Std. Err. z P>|z|
width 0.08748 0.02447 3.5748 0.00035
c4 -0.26142 0.10569 -2.4735 0.01338
---
dF/dx is for discrete change for the following variables: "c4"

#Function to obtain Average Partial Effects in a GAM model
APE_GAM<-function(formula,data,indices, pvar1,pvar2, fam,epsilon){

d <- data[indices,]
fit <- gam(formula,family=fam, data=d)
data_plus <- data
data_minus <- data
data_plus[,pvar1] <- data[,pvar1] + epsilon
data_minus[,pvar1] <- data[,pvar1] - epsilon
data1_plus <- data_plus[,c(pvar1, pvar2)]
data1_minus <- data_minus[,c(pvar1, pvar2)]
tvec <- (predict(fit, data1_plus, type="response")

- predict(fit,data1_minus, type="response"))/(2*epsilon)
APE <- mean(tvec)
return(APE)

}

# APE for width
> APE_GAM(formula = y ~ s(width) + c4, data=Crabs, indices=c(1:nrow(Crabs)),
+ pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
[1] 0.0850665

# Function to obtain a discrete change in a GAM model
dchange_GAM <-function(formula, data, indices, pvar1, pvar2, fam,epsilon){

d <- data[indices,]
fit <- gam(formula,family=fam, data=d)
data_plus <- data
data_minus <- data
data_plus[,pvar2] <- 1
data_minus[,pvar2] <- 0
data1_plus <- data_plus[,c(pvar1, pvar2)]
data1_minus <- data_minus[,c(pvar1, pvar2)]
tvec <- (predict(fit, data1_plus, type="response")

- predict(fit, data1_minus, type="response"))
APE <- mean(tvec)
return(APE)
}

dchange_GAM (formula = y ~ s(width) + c4,data=Crabs,indices=c(1:173),
pvar1=5, pvar2=8, fam=binomial,epsilon=0.000001)

[1] -0.2539021
-------------------------------------------------------------------------------
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Table A6 R code for using a bootstrap to find confidence intervals for the average partial effects
for width and for color for the generalized additive model for the presence of horseshoe crab
satellites

-------------------------------------------------------------------------------
#width variable
> APE_boot <- boot(data=Crabs, statistic=APE_GAM, R=1000, formula =
+ y ~ s(width) + c4, pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
> APE_boot
Bootstrap Statistics :

original bias std. error
t1* 0.0850665 -0.0007855886 0.01513634
> boot.ci(APE_boot, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Level BCa
95% ( 0.0536, 0.1122 )

#color variable
> disc_boot_1 <- boot(data=Crabs, statistic=dchange_GAM, R=1000, formula =
+ y ~ s(width) + c4, pvar1=5, pvar2=8, fam=binomial, epsilon=0.000001)
> disc_boot_1
Bootstrap Statistics :

original bias std. error
t1* -0.2539021 -0.002005479 0.1118384

boot.ci(disc_boot_1, type="bca")
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates
Level BCa
95% (-0.4658, -0.0285 )
-------------------------------------------------------------------------------
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