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I. Introduction 

Table 1 shows some preliminary results from a double-blind, parallel-group clinical 
study that is being conducted by Merck Research Laboratories at a large number 
of  centers. The study is designed to compare an active drug with placebo for the 
treatment o f  patients suffering from a particular chronic respiratory disease. Patients 
were randomly assigned to the treatments. At the end of  the study, investigators 
were asked to describe their perception of  the patient's change in condition, using the 
ordinal scale (better, unchanged, worse). Because o f  time considerations in recruiting 
subjects, the study used a large number of  centers (33). To conserve space, Table 
1 shows data from only 10 of  them. The data in Table 1 are highly sparse, the 
three-way table having many strata but few observations per stratum. 

For three-way I x J x K contingency tables, let X, Y, and Z denote the row, 
column, and layer classifications. This article discusses several tests of  the hypothesis 
o f  conditional independence of  X and Y, given Z. For Table 1, for instance, we 
investigate whether treatment has an impact on response, adjusting for center. The 
tests are also applicable to testing X - Y  conditional independence in tables o f  arbitrary 
numbers o f  dimensions, by identifying Z as a composite variable having levels given 
by all combinations of  the other variables. We are particularly concerned with cases, 

Table 1 
Evaluations of response to active drug and placebo 

Stratum Drug Response 

Better Unchanged Worse 

1 Placebo 0 2 1 
Active 1 1 0 

2 Placebo 0 1 0 
Active 1 1 0 

3 Placebo 1 1 0 
Active 0 1 0 

4 Placebo 1 0 0 
Active 1 1 0 

5 Placebo 0 0 1 
Active 0 1 0 

6 Placebo 2 0 0 
Active 1 0 1 

7 Placebo 0 1 0 
Active 1 0 0 

8 Placebo 0 2 0 
Active 1 1 0 

9 Placebo 0 1 0 
Active 1 0 0 

10 Placebo 0 1 1 
Active 1 0 0 
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such as Table l, in which sparseness of  data implies that ordinary large-sample 
chi-squared tests may be invalid. 

Let {nijk} denote the cell counts, having total sample size n and expected frequen- 
cies {mijk}. The counts may follow any of  the standard sampling models, such as 
multinomial or independent Poisson over the entire table, or independent multinomial 
within each level of  Z or each combination of levels of  X and Z. For test statistics, 
the tests that we present use efficient score statistics for loglinear and correspond- 
ing logit models representing various alternative hypotheses. Large-sample versions 
of  many of  these tests are already 'well-known' and available in standard 
software. 

In practice, the hypothesis of  conditional independence is most commonly tested 
against the alternative represented by the loglinear model of  form 

logm~jk = 2 + 2 x + 2 r + 2 z + 2 x r  + )oxz + 2jrz. (1) 

This model, which lacks the three-factor interaction term, assumes that the X - Y  
association is homogeneous across the levels of  Z. Conditional independence of X 
and Y is the special case in which all 2 x r = 0. Another approach, occasionally used 
when the X - Y  association may be highly heterogeneous, tests against the general 
alternative corresponding to the saturated loglinear model. These tests treat both X 
and Y as nominal variables. 

We consider tests in which the alternatives relate to model (1) or the saturated 
model, or models that are special cases of these two and permit trends reflecting or- 
dinality of  X and/or Y. Section 2 discusses statistics for alternatives that are special 
cases of  model (1). The statistics are designed to detect various types of homoge- 
neous association. Section 3 presents statistics for alternatives that permit three-factor 
interaction. 

For a fixed number of  cells, asymptotic chi-squared theory is well developed for 
the statistics we present. Because multi-way contingency tables are often sparse, we 
focus on the use of  these statistics with the exact conditional distribution. For each 
test considered, one could use a likelihood-ratio, Wald, or efficient score statistic 
as the test statistic. We focus on score statistics, because inferential analyses using 
the exact distribution are then computationally much simpler. The conditional score 
statistic uses the distribution based on conditioning on row and column totals in each 
stratum, which are sufficient statistics for the unknown nuisance parameters. 

Computational algorithms for exact tests have limited availability when I and J 
exceed two. Section 4 uses a simple Monte-Carlo algorithm to provide nearly exact 
results for all tests presented in this article. This approach provides highly precise ap- 
proximations for P-values based on the exact conditional approach. Section 5 presents 
asymptotic, nearly exact, and exact results for various tests applied to Table 1. 

Finally, Section 6 discusses comparisons of  marginal distributions of  a multivari- 
ate categorical response having ordered or unordered categories. One can use the 
homogeneous association statistics as the basis of  nearly exact tests of  marginal 
homogeneity. 
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2. Tests of conditional independence, assuming no interaction 

This section reviews statistics for testing conditional independence, assuming ho- 
mogeneous association. Nearly all tests of conditional independence in the current 
literature refer to this case. We see that three statistics presented by Birch (1965) 
are score statistics for loglinear models. One test treats both X and Y as nominal, 
one test treats X as nominal and Y as ordinal, and one test treats both as ordinal. 
In practice, of course, it is unrealistic to expect homogeneous association to hold 
perfectly, but test statistics derived under that assumption have enhanced power for 
cases in which the degree of heterogeneity is insubstantial. 

As a point of reference, we begin with the case in which X and Y are nominal. 
Let nk denote the counts for cells in the first I -  1 rows and J -  1 columns for stratum 
k of Z. Conditional on the row and column totals in that stratum, let rnt denote the 
null expected value of  nk. Then d = Ek(nk - i n k )  represents the (I - l ) ( J  - -  1) x 1 
vector having elements 

dij = ~ - - -  , i = 1 , . . . , I  - 1, j = 1 . . . .  , J  - 1. 
k k n++k / J  

(2) 

Let Vk denote the null covariance matrix of  nk, where 

ni+k(6ii, n++k - ni,+k )n+jk(6j /n++~ - n+f  k) 
Cov (n i j k ,  ni , j ,k)  = nZ+k(n++~ - 1)  (3) 

with 

1 i f a = b ,  
6ab = 0 otherwise. 

Then V = ~k  Vk is the null covariance matrix of d. The conditional score statistic 
for testing conditional independence against the homogenous association alternative 
(1) equals 

TN = d '  V - l  d,  (4) 

where the N subscript refers to the treatment of the variables as nominal. The test 
statistic has a large-sample null chi-squared distribution with d f  = ( I  - 1 ) ( J  - 1). 

For K = 1 stratum, TN reduces to the multiple (n - 1)/n of the Pearson chi-squared 
statistic for testing independence. For I = J = 2 ,  it is the Cochran-Mantel-Haenszel 
statistic. 

When X and Y are ordinal, it usually makes sense to test conditional independence 
against a narrower alternative, in order to increase the power of the test. One can 
do this by describing the X-Y partial association using fewer parameters, in order 
to concentrate the effect on a small d f  value. Reasonable test statistics are based on 
alternative models that are special cases of (1) and utilize the ordinality. 

In many applications, one expects the partial association to exhibit, in some sense, 
a monotone trend. A simple model that implies such a trend is the one having 
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a linear-by-linear form for the X - Y  association that is homogeneous across levels 
of  Z, 

logmijk = 2 + 2 x + 27 + 2 z + fluivj + 2,.~ z + 2f z.  (5) 

This model replaces the general association term 2 xy in (1) by a linear-by-linear 
term fluivi, where {u~} and {vj} are monotone scores for levels of  X and Y. The 
model implies stochastic orderings of  the rows and of  the columns with respect 
to their conditional distribution on the other variable, within each level of  Z. The 
model of  conditional independence of  X and Y is its special case in which fl = 0. 
For further discussion of  this type of  model and other ordinal models discussed in 
this article, see Goodman (1979), Clogg (1982), and Agresti and Kezouh (1983). 

The sufficient statistic for fl in this model is ~ k [ ~ i  ~ j  UiVjnijk]" Given the marginal 
totals and under conditional independence of  X and Y, 

E ( Z  Z uivjnijk ) (~iuini+k)(~jvjn+jk) 
j ?l++k 

j l'l++ k -- 1 n++ k 

[ j~. 2 (Zjvjn+j k)2 
× vj n +jk 

n++k 

To summarize the ordinal information from the K strata, Mantel (1963) proposed 
the statistic 

To ---- {~k[~/~-~q uivjnijk - E(~']~ i ~-~j UiVjnijk )]} 2 (6) 

~ k  Var(~i  ~-~j uivjnijk ) 

The O subscript refers to the treatment of  the variables as ordinal. This is the condi- 
tional score statistic for testing conditional independence for model (5). It is sensitive 
to 'correlation' alternatives to conditional independence and has an asymptotic chi- 
squared distribution with d f = 1. 

Suppose next that the row variable X is nominal and the column variable Y is 
ordinal. A useful loglinear model replaces the ordered row scores in model (5) by 
unordered parameters {/~i}, 

logmqk ---- 2 + 2/x + 2f + 2 z + pivj + 2 xz + 2f z.  (7) 

Within each level of  Z, this model implies a stochastic ordering of the rows with 
respect to their conditional distributions on Y. The ordering is the same as that of  
{/~}, and is identical at each layer of Z. The fully ordinal model (5) is the special 
case in which these parameters change linearly across the rows. One can also use 
model (7) when X is ordinal but one does not expect a linear trend. An analogous 
model with ordered row scores and unordered column parameters applies when X is 
ordinal and Y is nominal, or when they are both ordinal and one expects the levels of  
Y to be stochastically ordered on X but without a linear trend of  column parameters. 



94 D. Kim, A. Aorestil  Computational Statistics & Data Analysis 24 (1997) 89-104 

For model (7), the sufficient statistics for {Pi} are ~ j  vjn,j+, i = 1 . . . . .  I. Assuming 
that the model holds, conditional independence is equivalent to #1 = ]A2 . . . . .  ]At. 
Let * denote the ( I -  1 ) × 1 vector having elements 

{i = Z n i + k ( f 2 i k  - -  33k), i = 1 , . . . , I  -- i, 
k 

where Yik = ~]ni]~v]/ni+k, and Yk = ~ i  ~ ]  ni]kvjn++k. Note that Yik is the row 
mean on Y at levels i of  X and k of  Z, and 35k is the kth stratum mean for Y, treating 
Y as a response with scores {vj}. Conditional on the row and column marginal totals 
for each stratum, let A denote the null covariance matrix of  ~, which has elements 

1 Cov((,, (/,) = ~ n~+k(bii, n++k -- ni,+~) ~ n+jk(v] - y k )  2 • (8) 
k n++k(n++k -- 1) j 

The conditional score statistic for testing conditional independence against the 
nominal-ordinal alternative (7) is 

TNO = g t A - l g .  (9) 

This statistic is sensitive to differences in row mean scores among the I conditional 
distributions of  Y that are similar at each level of  Z. The asymptotic null distribution 
is chi-squared with d f = I - 1. 

The three statistics just discussed are not new. Presented by Birch (1965), they are 
special cases of  a general statistic proposed by Landis et al. (1978). Their connections 
with loglinear models do not seem to have been considered. The asymptotic chi- 
squared tests using these three statistics are available in SAS (CMH option in PROC 
FREQ). The ordinal statistics can be applied with scores chosen by the user or with 
ridit (midrank) scores. One can regard the rank-score version of statistic (6) as a 
stratified Spearman correlation test statistic, and the rank-score version of  statistic 
(9) as a stratified Kruskal-Wallis test statistic. 

For Table 1, for the general association altemative, TN = 1.90 ( d f  = 2) has a P- 
value of  0.39. When the table has only two rows, the statistic (6) for the correlation 
altemative is identical to the statistic (9) that compares row means. With equally 
spaced column scores, To = TNO = 1.81 ( d f  = 1), for a P-value of  0.18. These 
P-values are based on the asymptotic chi-squared distributions. For the one-sided 
alternative of  a better response for drug than placebo, one can treat the signed square 
root of  the correlation statistic To as a normal variate. The P-value then equals 0.09. 

3. Tests of conditional independence, permitting interaction 

The tests just discussed are directed toward homogeneous association altematives. 
In some applications, one might expect the association between X and Y to vary 
considerably across levels of  Z. The test statistic should then relate to a model that 
permits three-factor interaction. Such statistics combine information from the various 
strata based on summarizing the association separately in each stratum. Because 
they focus on broader alternatives, these statistics run the risk of  potential lack of  
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power. To help protect against this, one should use a statistic that recognizes any 
ordinal classifications and takes into account the likely form of  the association in 
each stratum. 

We present conditional score statistics for three alternatives corresponding to mod- 
els permitting heterogeneous association. They are unified by having the common 
structure T* = ~ T(k), where T(k) is one of the three forms of  statistic from the 
previous section applied to stratum k alone. 

When X and Y are nominal, the ordinary test has as its alternative the saturated 
loglinear model. The score statistic is similar to the Pearson statistic for testing con- 
ditional independence against that alternative. Letting Xk 2 denote the Pearson statistic 
for testing independence within the kth level of  Z, the conditional score statistic is 

k 

The unconditional score statistic, ~k  X~, is the Pearson statistic normally used for 
the large-sample test. The asymptotic distribution for either statistic is chi-squared 
with d f  = K ( I -  1 ) ( J -  1). 

A disadvantage of  this test is that it can have much less power than the nominal- 
by-nominal test of  the previous section when the degree of  three-factor interaction is 
not severe, particularly when K is large. One can narrow the alternative hypothesis 
for such a test somewhat by using a statistic that corresponds to a model that provides 
some pattern for the interaction or for the association in each partial table. 

When X and Y are ordinal, suppose that one expects a monotone association 
between X and Y that changes strength across levels of  Z. A relevant loglinear 
model is then the heterogeneous linear-by-linear association model, 

log mi/k = 2 + 2 x + 2 r + 2 z + flkUiVj "q- ~k Z "~ ~ f Z .  (10) 

Fitting this model is equivalent to fitting a linear-by-linear association model sepa- 
rately at each level of  Z. Model (5) is the special case in which/~t . . . . .  /~K, and 
conditional independence is the further special case in which that common value is 
equal to 0. 

For this model the sufficient statistic for flk is ~i  ~-,y uivynqk. Let r denote the 
K × 1 vector having elements 

( n,+kn+jk~. 
rk = ~ ~-~ uivj nijk 

i j n++k / 

The conditional score statistic for testing H0 :/~ . . . . .  fix = 0 is a quadratic form 
based on r that simplifies to 

7 ' * =  Z To(k), 
k 

where To(k) denotes (6) applied to stratum k alone. Its asymptotic distribution is 
chi-squared with d f  = K. This statistic is sensitive to correlation alternatives that 
vary in strength among the strata. 
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When X is nominal and Y is ordinal, a relevant loglinear model to allow hetero- 
geneity across the strata is 

l ogmi jk  = ). -k- ,~x i q- ).~ -Jr- )~ ~- PikUj ~t_ t~XikZ _~_ I~YZ. (11) 

The {vj} are fixed monotone scores, and separate row effect parameters {#ik} pertain 
to each stratum. In stratum k, the conditional distributions on Y are stochastically 
ordered according to the values of  these parameters. The relevant sufficient statistics 
are sample means for Y at all the row and stratum combinations. Model (7) is the 
special case in which #i~ . . . . .  #ix for all i, in which case the comparison of  the 
rows has the same form for each stratum. Model (11) reflects alternatives whereby 
means on Y vary across levels of  X, but in a different way at different levels of  Z. 
Conditional independence is the further special case in which #~ . . . . .  #~ for 
all k. 

Let q be the K(I  - 1) × 1 vector having elements 

ni+kn+jk 
qik = Y~  vj nijk , i =  1 , . . . , I - 1 ,  k =  1 , . . . ,K .  

j n++k / 

The conditional score statistic for testing H0 : #~k . . . . .  #tk for all k is a quadratic 
form in q that simplifies to 

V;o -- Two(k), 
k 

where TNo(k) denotes (9) applied to stratum k alone. Its asymptotic distribution is 
chi-squared with d f  = K(I  - 1). 

This statistic also applies when both variables are ordinal and one expects location 
shifts in the row means, but one does not expect a monotone trend in those row 
means in every stratum. An analogous model treats X as ordinal and Y as nominal. 
Then, the X - Y  association term has form uivjk, for ordered row scores and unordered 
column parameters that differ by stratum. 

For Table 1, the test statistic for the most general alternative equals T* = 10.28 
( d f  = 12) and has a chi-squared asymptotic P-value of  0.59 (The zero column total 
that occurs in all but the first and last table forces the corresponding fitted values 
to be 0 and causes a reduction in d f  from 20 to 12 for this test). The statistics for 
the nominal-by-ordinal and ordinal-by-ordinal alternatives equal T* = T* o = 9.67 
( d f  = 10) and have an asymptotic P-value of  0.47. 

Each test statistic discussed in this section has d f  increased by a multiplicative 
factor of  K compared to the corresponding test statistic assuming homogeneous as- 
sociation. This can be a major detriment toward achieving decent power, especially 
when K is large. When the degree of  association heterogeneity is not severe, one is 
better off using the tests of  Section 2. For instance, suppose X and Y are both ordinal 
and model (10) is plausible. If  the partial associations all have the same direction 
(i.e., all flk > 0 or all fik < 0), the score statistic To based on the simpler model 
(5) is likely to be preferable. That is, the advantage of  having a statistic based on 
d f  --- 1 rather than d f  = K outweighs loss of  information from lack of  fit of  the 
model on which the statistic is based. 
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In this regard, the remark of  Mantel (1963) in a similar context is instructive: "That 
a linear regression is being tested does not mean that an assumption of  linearity is 
being made. Rather it is that test of  a linear component of  regression provides power 
for detecting any progressive association which may exist." On the other hand, if the 
partial associations have different direction, with some flk > 0 and some flk < 0, then 
To may fail to detect the association and the score statistic T* for the heterogeneous 
model (10) is more appropriate. 

When the control variable Z is also ordinal, one can attempt to improve the power 
by providing further structure for the nature of  the interaction across the levels of  
Z. For instance, when X and Y are ordinal, suppose one can specify a set of  scores 
{wk} such that one expects model (10) to hold with flk roughly proportional to wk. 
This resulting simplification of  that model has conditional score statistic for testing 
conditional independence equal to 

wk[Ei Ej uivjn,j  - e ( E i  E j  2 
~k w2 Var(~i ~ j  uivjnijk ) 

(12) 

where the formula for the null expectation and variance are those given preceding 
formula (6). This is a single-degree-of-freedom chi-squared statistic that simplifies 
to To when all wk = 1. 

4. Approximation of exact P-values 

For fixed/, J, and K, standard asymptotic chi-squared theory applies to the statistics 
presented in the previous two sections. In practice, however, for sparse tables such 
as Table 1, large-sample results are often suspect, particularly as the d f  value for the 
statistic increases. We now discuss more precise tests of  conditional independence 
using these statistics. 

To test conditional independence (CI) against an alternative hypothesis that cor- 
responds to a more complex model (M), the exact conditional approach eliminates 
nuisance parameters by using the distribution of the minimal sufficient statistics for 
M, conditional on the minimal sufficient statistics for CI (see, e.g., Andersen, 1974; 
Agresti, 1992). The conditional reference set for CI is the set of  all tables having 
the same row totals {ni+k} and columns totals {n+j~} for the partial tables as the 
observed data. Denote this set by 

F = {x : xi+k = nt+k, x+jk = n+jk, all i,j, k}. 

The null conditional distribution of  the cell counts consists of  independent gener- 
alized hypergeometric distributions for the various strata, and does not depend on 
the nuisance parameters. From Birch (1965), the conditional distribution is propor- 
tional to (1-[iI-[jl-[kxijk!) -1, defined over all tables in F. The exact P-value is the 
null conditional probability that the relevant test statistic T takes value at least as 
large as the observed value. The calculation is based on the conditional distribution 
for the statistic induced by the generalized hypergeometric distributions defined on F. 
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That is, letting 

r , =  { x ~  r : T > t}, 

the exact P-value is 

.= (::.x.O ' ] (:::x.,) '] 
All the test statistics in this paper have the form 

T -: s' Var(s)-ls, 

where s is a score vector. In Section 2, for instance, the score vector has ( I -  1 ) ( 3 - 1  ) 
elements in the nominal case, (I - 1) elements in the nominal-by-ordinal case, and 
1 element in the ordinal case. For a particular statistic, the covariance matrix in this 
general expression is the same for each table in F. Thus, the calculation of T for 
each table in F primarily involves recalculating the extra sufficient statistic for the 
association terms in the relevant loglinear model for the alternative hypothesis. 

Software for exact tests in three-way tables exists for limited cases, as discussed 
later in Section 5. Even for cases in which software exists, the reference set F is 
often too large for an exact P-value computation, since it grows exponentially in n 
and the table dimensions. When the sample size is moderately large but the table 
has many cells and is sparse, the use of  standard asymptotic theory is questionable 
(particularly for tests having a large d f ) ,  but exact methods are usually infeasible. 

Since software is not available in the generality needed for exact tests using the 
statistics we presented for I x J x K tables, one can approximate the exact conditional 
result as closely as needed by performing a Monte-Carlo simulation of the exact dis- 
tribution of  the conditional score statistic. Agresti et al. (1979) utilized this method 
for a variety of tests for two-way tables. The method consists of  sampling contin- 
gency tables randomly from F in proportion to their probabilities, and computing an 
unbiased point estimate and a narrow confidence interval for the exact P-value. 

To illustrate, suppose we want to estimate an exact P-value for some statistic 
T, and let to denote its observed value. We sample M contingency tables with re- 
placement from the reference set F, where M is chosen to give the desired degree 
of accuracy with some fixed probability. For instance, M = 12 600 is sufficient to 
estimate a P-value that is no greater than 0.050 to within an accuracy of  0.005 with 
probability 0.99. For the ith table sampled, let Yi : 1 if it is in Fro, and let yi : 0, 
otherwise. The point estimate of the exact P-value is 

1 
P = --~ ~-~ Yi, 

the proportion of  sampled tables falling in Fro, having standard error [P( 1 - P ) / M ]  t/2. 
One generates K independent generalized hypergeometrics in order to generate 

the K partial tables for each random table in the Monte-Carlo simulations. Kreiner 
(1987) described this approach for tests of  conditional independence. Our algorithm 
uses a table-generation procedure suggested by Patefield (1981) to generate each of  
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the K partial tables at each step. Even for large tables or large sample sizes, one 
can quickly approximate exact P-values as closely as needed for any of  the statistics 
presented in the previous two sections. 

For practical applications, we prefer this approximation to others, such as the 
saddlepoint (Pierce and Peters, 1992; Agresti et al., 1993). For tests of  conditional 
independence, it is available more generally (e.g., for multi-degree-of-freedom statis- 
tics for testing vectors of  parameters), its accuracy is known to the user, and that 
accuracy can be set as finely as one requires. Though the process could be speeded 
up by using importance sampling (as in Mehta et al., 1988), we have not encoun- 
tered any problems with obtaining precise results quickly using our algorithm in a 
workstation environment. 

5. Example 

We illustrate the nearly exact tests using the data in Table 1. Table 2 summa- 
rizes results for the asymptotic tests reported in Sections 2 and 3. The data are so 
sparse that these large-sample approximations are questionable. To estimate P-values 
for exact conditional tests, we used Monte-Carlo sampling with M = 100 000. This 
guarantees that P-value estimators fall within 0.004 of  the true P-value with proba- 
bility at least 0.99, and to within 0.002 of  the true value with at least this probability 
when the true P-value is no greater than 0.050. Table 2 also shows results for the 
nearly exact tests, in terms of  99% confidence intervals for the exact P-values. These 
intervals are based on inverting results of  0.01-level large-sample tests for a binomial 
proportion, using the null standard error (i.e., the endpoints are roots of  a quadratic 
equation). The ordinal-by-ordinal analysis refers to the one-sided alternative. 

Table 2 illustrates that asymptotic P-values can be rather poor when the d f  value 
for the test is large and the sample size is small. The exact P-value of  1.000 for the 
most general test permitting heterogeneity simply indicates that no table configuration 
with the given margins can produce a larger Pearson statistic in any one of  the strata, 
which is evident by visual inspection of  the partial tables. 

Table 2 
Results of asymptotic, nearly exact, and exact tests of conditional independence for Table 1 

Test Degrees of Asymptotic Est. exact Exact 
statistic freedom P-va lue  P-value P-value 

Assuming homogeneous association 
Nominal-by-nominal 1.90 2 
Nominal-by-ordinal 1.81 1 
Ordinal-by-ordinal 1.81 1 

Permitting three-factor interaction 
Nominal-by-nominal 10.28 12 
Nominal-by-ordinal 9.67 10 

0.39 (0.413, 0.421) - -  
0.18 (0.210, 0.217) 0.216 
0.09 (0.136, 0.142) 0.140 

0.59 (0.99993, 1.000) 1.000 
0.47 (0.609, 0.617) - -  
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For each nearly exact test having an estimated exact P-value reported in Table 2, 
computations based on 100 000 simulations took between one and three minutes on 
a Sun SPARCstation 10-30 with 32 MB main memory, 1.2 GB hard disk, and 86.5 
MIPS. The computing time is roughly proportional to the size of the table or the 
sample size. For instance, the same tests conducted on a 4 x 3 x 10 table containing 
data for two additional dose levels of  the drug and having twice as many cells and 
about twice as large a sample took about twice as long. 

We purposely chose an example having only two rows, since software exists for 
exact analyses for some cases, making comparisons possible. Table 2 also reports 
these exact results, where available. For 2 x J x K tables, StatXact (1991) provides an 
exact test for a statistic that refers to the special case of alternative (7) with I = 2. 
For Table 1, StatXact reports P = 0.216 for this analysis, compared to (0.210, 0.217) 
for the Monte-Carlo approach reported in Table 2. For the one-sided alternative, 
StatXact reports P = 0.140, compared to (0.136, 0.142) for the Monte-Carlo approach 
reported in Table 2. StatXact also uses Monte-Carlo methods with 2 x J x K tables 
when exact inference is impractical. 

Software for the general I x J x K case is more limited. The DIGRAM soft- 
ware (Kreiner, 1989) provides Monte-Carlo approximation for exact tests against the 
general alternative, based on the Pearson goodness-of-fit statistic for the model of  
conditional independence. This is the unconditional score statistic for the altemative 
of  the saturated model. When the stratum sample sizes are identical, the conditional 
and unconditional score statistics have the same ordering of  the sample space, and 
thus have identical exact P-value. DIGRAM also provides an ordinal test based on a 
partial association version of  the gamma measure of  association. That test does not 
correspond to a loglinear model alternative, but would tend to be powerful for trend 
alternatives similar to those detected by (5). Yao and Tritchler (1993) used the Pear- 
son statistic for exact tests of  conditional independence for 2 x 2 x K tables. Baglivo 
et al. (1992, 1993) discussed an algorithm for this exact test for the I x J x K 
case, but did not provide software. Morgan and Blumenstein (1991) described an 
algorithm for testing the fit of  loglinear models using an ordering of  tables in F 
based solely on the table probability. The algorithm requires complete enumeration 
of  tables in F, and is impractical when n, L J, or K have moderate size. 

When K = 1, the exact test that orders tables in F by (6) for the linear-by-linear 
alternative was discussed by Agresti et al. (1990) and Cohen and Sackrowitz (1992), 
and is available in StatXact (1991). For arbitrary K but I = J = 2, widely avail- 
able software including StatXact provides tests of  conditional independence for 
alternative (1). 

6. Nearly exact tests comparing marginal distributions 
of repeated categorical responses 

The tests for the homogeneous association alternative proposed in Section 2 can 
be used to compare marginal distributions of multivariate responses. Suppose each 
subject is measured on a categorical response having J categories for each of 1 
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measurements. For instance, each subject might be measured on the same response 
variable at each of  I separate occasions. We refer to the I separate components of  
the multivariate response as items. Let ~bijk denote the probability that subject k 
makes response j for the ith item. Consider the model 

log(qSuk/q~/Jk) = ~jk + flij. (13) 

For each response category paired with the baseline category J, this logit model 
is additive in subject and item effects. This is a multinomial version of the Rasch 
model (Rasch, 1961). 

This model implies the loglinear model of  quasi-symmetry for the j l  cross- 
classification of  responses for the I items. In fact, conditional ML estimates of  {flij}, 
based on conditioning on suffÉcient statistics for {ajk}, are identical to ML estimates 
of  main effect parameters in the quasi-symmetry model (Conaway, 1989). Given that 
model (13) holds, marginal homogeneity in the J l  table is equivalent to fl~j - - 
fl~j for j - 1,... , J -  1. For this model, this special case corresponds to complete 
symmetry in the j l  cross-classification. 

Among the most common tests of  first-order marginal homogeneity in j1 contin- 
gency tables are the likelihood-ratio test and score test based on comparing the fits 
of  the complete symmetry and quasi-symmetry models (Caussinus, 1966; Darroch, 
1981). They are large-sample chi-squared tests, having d f  = ( I -  1 ) ( J -  1). For 
a sample of  N subjects, one can apply the score test statistics of  Section 2 to the 
1 × J × N table {nijk} in which nijk denotes the number of  responses by subject k 
that fall in category j for item i. Each cell count in this contingency table is a 0 or 
1, and ni+k -- 1 for all i and k. 

When the response categories are nominal, one would use statistic (4), with d f  = 
(I - 1 )(J  - 1 ), a statistic discussed by Darroch (1981). For J = 2, this statistic is 
algebraically identical to McNemar's statistic when I = 2 and Cochran's Q statistic 
when I > 2 (Somes, 1986). When the response categories are ordinal, one could use 
statistic (9), with d f  = (I - 1 ), to detect differences among the 1 marginal mean 
responses. For equally spaced scores, this provides a test of  marginal homogeneity 
for the special case of  (13) in which fl,-j - fli, j+~ --- fl~; such a common difference 
for all j corresponds to a constant item effect in an adjacent-categories logit model 
(Agresti, 1993). If the items themselves are ordered, one could use statistic (6), with 
d f  --- 1, to improve power for detecting a trend in the mean response across the 
items, corresponding to a linear trend across items in fl~. 

These large-sample chi-squared tests may be inadequate if some of the marginal 
counts are small. Agresti et al. (1992) presented alternative tests for large, highly 
sparse tables, which rely on Wald statistics using jackknife estimates of  covariance 
matrices. Their approach is also an asymptotic one, and may behave poorly for small 
samples. In such cases, one could use the nearly exact versions of  the tests described 
in Section 4, conditional on sufficient statistics for nuisance parameters in models 
such as (13). This approach takes some computational effort, because of the typically 
large number of  strata. It has simple structure, however, and unlike other approaches, 
has guaranteed accuracy to a chosen level of  precision regardless of the sample size. 
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Table 3 
Results of tennis matches for w o m e n  players in 1989-1990 season 

Winner  Loser  

Seles Graf  Sabatini Navratilova Sanchez 

Seles - -  2 1 3 2 

Gra f  3 - -  6 3 7 

Sabatini 0 3 - -  1 3 

Navratilova 3 0 2 - -  3 

Sanchez 0 1 2 1 - -  

We illustrate this approach to nearly exact testing of marginal homogeneity by 
conducting the test for Table 3, which summarizes results of matches among five 
women tennis players during the 1989-1990 season. For instance, Steffi Graf won 3 
of the 5 matches that she and Monica Seles played. The quasi-symmetry model for 
these data is equivalent to the Bradley-Terry model (Fienberg and Lamtz, 1976). The 
hypothesis of marginal homogeneity for this table is equivalent to identical player 
parameters in the Bradley-Terry model, or equal chances of a victory for each player 
in each pair. The likelihood-ratio test based on comparing the symmetry and quasi- 
symmetry models has a test statistic of 11.5 based on df = 4, for an asymptotic 
P-value of 0.021. Entering the data for the 46 matches as 92 observations in a 
2 × 5 x 46 cross-classification of outcome (winner, loser) by players by match results 
in a value for the score test statistic (4) of 10.6, for an asymptotic P-value of 0.031. 
The 99% confidence interval for the exact P-value for this test, based on 100 000 
simulations, equals (0.024, 0.027). For these data, the asymptotic approaches perform 
adequately. 

7. Comments 

For small data sets with relatively few levels of the variables, exact methods can 
be conservative because of the high degree of discreteness of the test statistic. One 
could then instead use a mid P-value. The test is no longer 'exact,' but results can be 
trusted more than asymptotic results. Alternatively, one could use a modified P-value 
that maintains exactness but reduces conservativeness (Kim and Agresti, 1995). In 
practice, the conservativeness problem diminishes rapidly as n , / ,  J, and K increase. 

Other approaches exist for approximating results of exact inferences. For instance, 
Baglivo et al. (1988) suggested a hybrid approach that combines exact and asymp- 
totic techniques. Kolassa and Tanner (1994) used a double-saddlepoint approximation 
for components of the relevant conditional distribution, and then used Gibbs sam- 
piing to approximate the distribution of the statistic of interest. This approach is 
considerably more complex for the problem of testing conditional independence, and 
unlike simple Monte-Carlo, convergence to the exact result does not occur as the 
number of simulations increases. However, for more complex models, Gibbs sam- 
piing yields results for cases in which simple Monte-Carlo is difficult to apply. See 
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Diaconis and Sturmfels (1993) and Forster et al. (1996) for application of Markov 
chain Monte-Carlo methods to some complex models. 

The first author has prepared a FORTRAN program, designed for UNIX work- 
stations, for conducting Monte-Carlo approximation of exact P-values for tests of 
conditional independence discussed in this article. This is available from the authors 
by e-mail or by sending a formatted 3 ½ inch diskette. 
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